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In mammals, aging is associated with accumulation of senescent cells. Stresses such as 
telomere shortening and reactive oxygen species induce “cellular senescence”, which is 
characterized by growth arrest and alteration of the gene expression profile. Chronological 
aging is associated with development of age-related diseases, including heart failure, diabetes, 
and atherosclerotic disease, and studies have shown that accumulation of senescent cells has 
a causative role in the pathology of these age-related disorders. Endothelial cell senescence 
has been reported to develop in heart failure and promotes pathologic changes in the 
failing heart. Senescent endothelial cells and vascular smooth muscle cells are found in 
atherosclerotic plaque, and studies indicate that these cells are involved in progression of 
plaque. Diabetes is also linked to accumulation of senescent vascular endothelial cells, while 
endothelial cell senescence per se induces systemic glucose intolerance by inhibiting skeletal 
muscle metabolism. A close connection between derangement of systemic metabolism and 
cellular senescence is also well recognized. Aging is a complex phenomenon, and there is 
no simple approach to understanding the whole process. However, there is accumulating 
evidence that cellular senescence has a central role in the development and progression 
of various undesirable aspects of aging. Suppression of cellular senescence or elimination 
of senescent cells reverses phenotypic changes of aging in several models, and proof-of-
concept has been established that inhibiting accumulation of senescent cells could become 
a next generation therapy for age-related disorders. It is clear that cellular senescence drives 
various pathological changes associated with aging. Accordingly, further investigation into the 
role of this biological process in age-related disorders and discovery of senolytic compounds 
are important fields for future exploration.
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intRoDuCtion

In aging societies, the discrepancy between the total lifespan and the healthy lifespan is becoming 
a major problem. Chronological aging is associated with a higher prevalence of age-related 
diseases, including heart failure, diabetes, and atherosclerotic disorders with or without various 
comorbidities, resulting in impairment of the quality of life by limitation of normal activities. Thus, 
aging is associated with several undesirable processes. The mechanisms of aging and age-associated 
disorders are complex, and thus cannot be comprehended by a simple approach. However, recent 
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studies have indicated a pivotal role of cellular senescence in 
the progression of age-related disorders (1–5). Back in the 
1960s, Hayflick et al. demonstrated that fibroblasts have limited 
potential to replicate (6), indicating that aging also occurs at 
the cellular level. Such aging of cells is currently described 
as “cellular senescence”. Senescent cells become enlarged and 
flattened. In association with proliferative arrest, alterations 
of gene expression by these cells lead to secretion of pro-
inflammatory molecules (7). This is known as the senescence-
associated secretory phenotype, and it results in chronic sterile 
inflammation that promotes tissue remodeling. Senescent cells 
have been found in various organs of animal models, as well as 
in elderly humans and persons with age-related disorders. There 
is evidence that cellular senescence in the vasculature, termed 
“vascular senescence”, is crucially involved in the pathogenesis 
of cardiovascular and metabolic disorders. Vascular senescence 
has been reported to promote atherosclerosis (8), systolic cardiac 
dysfunction (9, 10), and systemic metabolic dysfunction (11). 
In this review, we delineate the role of cellular senescence in the 
diseases associated with aging, focusing on vascular senescence 
in cardiovascular and metabolic disorders, and discuss the 
potential usefulness of therapies targeting senescent cells.

Role of Cellular Senescence in Aging and 
Age-Related Diseases
Diverse deleterious changes of cells and tissues accumulate with the 
progression of aging, leading to a decline of physiological activity 
and an increased risk of death. Organ function deteriorates with 
chronological aging, and this biological process is characterized 
by cellular senescence, changes of intercellular communication, 
mitochondrial dysfunction, and deregulation of nutrient sensing 
(1). It is well known that DNA damage, telomere shortening, 
oncogenic stress, and exposure to high levels of reactive oxygen 
species (ROS) all occur with chronological aging, and signaling 
via the p53 pathway has been reported to increase under these 
conditions (12). The p53 protein is a transcriptional factor with 
a crucial role in maintenance of genomic stability that mediates 
the coordination of DNA repair, cell cycle regulation, apoptosis, 
and cellular senescence. Because p53 is involved in suppression 
of tumorigenesis, it has been described as the “guardian of the 
genome” (13). In addition to its role in the repair of DNA damage 
and maintenance of genomic stability, studies have indicated 
that p53 contributes to a broad spectrum of biological processes, 
such as cell metabolism, autophagy, antioxidant defenses, and 
angiogenesis (13–15). Accordingly, p53 signaling is thought to 
have a central role in cellular senescence. Somatic cells have a 
finite lifespan and eventually enter a state of irreversible growth 
arrest termed “replicative senescence.” Telomeres are repetitive 
nucleotide sequences located at the terminals of mammalian 
chromosomes that undergo incomplete replication during cell 
division, resulting in telomere shortening. Because telomeres 
are essential for chromosomal stability and DNA replication, 
DNA damage is recognized when telomere shortening exceeds 
the physiological range and this triggers cellular senescence, 
mainly via the p53 or p16 signaling pathways. “Stress-induced 
premature senescence” is another type of cellular senescence that 

is triggered by various stress signals, including DNA damage 
induced by oxidative stress or irradiation, constitutive activation 
of mitogenic stimuli, oncogenic activation, and metabolic stress. 
It is also mediated via the p53 or p16 signaling pathways. 
Preference for one pathway over the other depends on the cell 
type and also varies among species (16, 17). In humans, telomere 
dysfunction activates either p53 or p16 signaling, while only p53 
signaling is activated in rodents (18). It is generally accepted 
that p53 signaling is primarily activated by DNA damage and 
telomere dysfunction, while p16 signaling is primarily linked 
to mitogenic stress, chromatin disruption, and general cellular 
stress (16, 17, 19) (Figure 1).

It was reported that p53 is increased in the failing heart, in aged 
vessels, and in the visceral fat of patients with obesity or heart 
failure. Studies have indicated a pathological role of p53-induced 
cellular senescence in aging and age-related disorders, including 
heart failure, atherosclerotic disease, obesity, and diabetes (10, 
11, 15, 20–24). However, there is controversy about the role 
of p53 in aging and age-related diseases (3, 25, 26). In some 
settings, p53 signaling has been shown to have a beneficial effect 
by suppression of aging. Matheau and colleagues reported that 
Trp53/Cdkn2a transgenic mice were resistant to carcinogenesis 
and had a longer median lifespan (27). It was also reported 
that Trp53 transgenic (“Super p53”) mice displayed resistance 
to carcinogenesis without any signs of premature aging, and 
these mice showed normal glucose tolerance on a standard diet 
(28–30). Furthermore, Baker et al. found that loss of p53 or p21 
accelerated cellular senescence in the adipose tissue and skeletal 
muscle of BubR1 progeroid mice (31). They also reported that 
p19Arf, acting upstream of p53, suppressed senescence and aging 
in the same progeroid model (32). Taken together, these various 
reports suggest that the p53/p21 signaling pathways regulate 
cellular senescence in a context-dependent manner.

FiguRe 1 |  Common pathways of cellular senescence. Telomere 
dysfunction, DNA damage, cellular stress (ROS etc) up-regutate p53/p21, 
p16 signal and induces cellular senescence.
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Interestingly, it was recently reported that elimination 
of senescent cells by genetic manipulation inhibited age-
related degenerative changes in several organs of mice, such 
as the heart and kidneys (33). Other studies have identified 
several pharmacological agents that selectively damage and 
remove senescent cells, and these compounds have been 
described as “senolytic agents”. For example, an inhibitor of 
anti-apoptotic proteins (ABT263) depletes senescent bone 
marrow hematopoietic stem cells and senescent muscle cells in 
a chronological aging model, leading to rejuvenation of these 
tissues (34). The gene expression profile of senescent cells is 
shifted toward a pro-inflammatory phenotype associated with the 
secretion of biologically active molecules (senescence-associated 
secretory phenotype). In vitro studies have shown that exposure 
of young fibroblasts to senescent fibroblast promotes senescence 
of the young cells via a gap junction-mediated process, which 
has been described as the “bystander effect” (35). Studies have 
shown that senescent cells damage their local environment and 
promote tissue remodeling in age-related disorders, suggesting 
that inhibition of cellular senescence and/or elimination of 
senescent cells could be potential next generation therapies for 
diseases associated with aging.

Biological Markers of Cellular Senescence
Biological markers reflecting direct evidence of cellular 
senescence have not yet been identified, but several markers 
are used to indirectly detect senescent cells, among which 
senescence-associated beta-galactosidase (SA-β-gal) activity 
is the most common. Lysosomal beta-galactosidase activity is 
normally detected at a low pH (usually around pH 4), but becomes 
detectable at a higher pH (pH 6) in senescent cells due to marked 
expansion of the lysosomal compartment (36). Other established 
markers of cellular senescence include high expression of p53, 
p16, p21, p38 mitogen-activated protein kinase (p38MAPK) and 
γH2AX, reflecting the activation of DNA damage responses (4, 
37–40). In addition, high mobility group A (HMGA) proteins 
or heterochromatin markers, including HP1 and tri-methylated 
lysine 9 histone H3 (H3K9me3), are recognized as molecular 
markers of senescence-associated heterochromatin foci and are 
considered to indicate cellular senescence (40).

Cardiac Aging Predisposes to Heart 
Failure
Heart failure has a high prevalence among the elderly (41). 
The prognosis of severe heart failure is still unacceptably poor, 
and there is an urgent need to find better therapies for this 
condition. Age-related heart failure develops in persons without 
established risk factors, such as hypertension, obesity, diabetes, 
or atherosclerotic diseases (42, 43). Heart failure without systolic 
dysfunction is classified as heart failure with a preserved ejection 
fraction (HFpEF), and occurs in approximately half of all patients 
with heart failure. HFpEF is prevalent among the elderly and lack 
of specific therapy for this type of heart failure is a major clinical 
problem. The mechanism of HFpEF is still not fully understood, 
although there is evidence of cardiac endothelial cell remodeling 
being involved in its onset and progression (44). It was also 

reported that coronary microvascular endothelial inflammation 
is critically involved in the pathology of HFpEF (45), while a 
recent study indicated a causative role of senescent signaling in 
this disorder (46). Thus, the physiological aging process seems to 
increase susceptibility to the onset of heart failure, considering 
that the prevalence of heart failure increases with age. Various 
studies have indicated that cellular senescence is critically 
involved in the pathology of heart failure, as described below.

vascular Senescence and Heart Failure
Endothelial Cell Senescence
Although the role of cellular senescence in the failing heart is 
still not fully understood, a number of studies have suggested a 
pathological influence on heart failure. The cardiac level of p53 is 
increased in a murine model of left ventricular pressure overload, 
leading to suppression of myocardial angiogenesis that results 
in capillary rarefaction, tissue hypoxia, and cardiac dysfunction 
(15). Chronic sterile inflammation develops in the failing heart, 
and it is now well accepted that such inflammation is one of 
the mechanisms underlying cardiac remodeling (47). It was 
recently demonstrated that activation of p53 signaling in vascular 
endothelial cells induces cardiac inflammation and remodeling 
in a murine model of left ventricular (LV) pressure overload (10). 
Expression of p53 by capillary endothelial cells in the left ventricle 
increases in response to LV pressure overload, leading to elevated 
expression of intercellular adhesion molecule (ICAM)−1 by these 
cells that promotes infiltration of macrophages and cardiac 
inflammation. Conversely, depletion of p53 from capillary 
endothelial cells results in suppression of ICAM-1 expression 
and cardiac inflammation with improvement of cardiac 
dysfunction. Activation of the sympathetic nervous system 
occurs in heart failure and is associated with a poor prognosis 
(48). It was reported that the sympathetic nervous system/ROS 
axis increases p53 expression by endothelial cells in a murine 
model of LV pressure overload (10). In another study, depletion 
of p53 from endothelial cells improved capillary rarefaction 
and cardiac function, while suppressing cardiac fibrosis and 
remodeling (9). These findings indicate that endothelial p53 
signaling suppresses angiogenesis, thereby promoting capillary 
rarefaction in the failing heart. Inhibition of p53 in endothelial 
cells could potentially become a next generation therapy for 
patients with heart failure and a reduced ejection fraction. As 
mentioned above, about half of all heart failure patients have 
HFpEF with a preserved ejection fraction. There are several 
established risk factors for HFpEF, including overweight/obesity, 
hypertension, diabetes, and aging. Cardiomyocyte hypertrophy 
and interstitial fibrosis develop in patients with HFpEF, leading 
to incomplete myocardial relaxation and increased wall stiffness 
(49–51). It is generally accepted that coronary microvascular 
inflammation is central to the pathogenesis of HFpEF (45), and 
it was recently demonstrated that endothelial cell senescence 
also makes a contribution. When mice with accelerated 
senescence were fed a high-fat, high-salt diet, both endothelial 
cell senescence and inflammation increased in cardiac tissue, 
along with the typical hemodynamic and structural changes 
of HFpEF (46). Considering that cellular senescence induces 
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vascular dysfunction and inflammation, it seems reasonable that 
it would also promote pathologic changes of HFpEF. Accordingly, 
suppression of endothelial cell senescence may be a therapeutic 
option for this currently untreatable disorder (Figure 2).

vASCulAR Aging PReDiSPoSeS to 
AtHeRoSCleRotiC DiSeASeS

Structural and Functional Changes of 
Aging Arteries
Coronary artery disease and stroke are associated with arterial 
dysfunction. Arterial remodeling occurs with aging, even in the 
absence of cardiovascular disease and cardiovascular risk factors. 
While aging is a physiological process and not a pathological 
condition, studies indicate that aging per se is linked with 
vascular remodeling that predisposes to cardiovascular disease. 
Aged arteries are characterized by an increase of the intima/
media thickness ratio, which was reported to increase by 2- to 
3-fold from 20 to 90 years of age (52, 53). Vascular smooth muscle 
cells switch from the “contractile” to “synthetic” phenotype with 
aging and this change contributes to intimal thickening, which 
is associated with increased arterial permeability and leads 
to development of atherosclerotic disease. The arterial media 
also becomes thicker with aging and its cellularity decreases 
simultaneously (54). Moreover, the length and circumference of 

the aorta increase with aging (55), and these structural changes 
reflect increased collagen production and a corresponding 
decline of the elastin content (56). In association with such 
changes, aged vessels show reduced compliance, reduced 
elasticity/distensibility, and increased stiffness, resulting in a 
higher systolic blood pressure and lower diastolic pressure (57). 
Medial calcification is another characteristic of aged vessels. In 
association with other age-related disorders like hypertension, 
dyslipidemia, and diabetes, such vascular remodeling increases 
susceptibility to atherosclerotic vascular diseases. In elderly 
patients, atherosclerotic plaques tend to become larger and 
vascular stenosis becomes more severe over time. Aged rabbits 
fed a high fat diet developed more severe atherosclerotic lesions 
compared to young animals on the same diet. Therefore, it is 
well accepted that aging per se promotes the pathogenesis of 
atherosclerotic disorders, and studies have suggested that cellular 
senescence has a critical role in this process.

vascular Senescence in Arterial Diseases
ROS and chronic low-grade sterile inflammation are two 
major contributors to the progression of age-related vascular 
dysfunction. Senescent cells accumulate in the arteries with 
aging irrespective of whether or not a person has age-related 
vascular disorders (58–61). Along with aging, vascular tissues 
of rodents and humans show elevation of the levels of p16, 

FiguRe 2 |  Role of endothelial senescence in cardio-metabolic disease. Chronological aging induces vascular endothelial cell senescence (EC senescence as 
characterized with an increase of ROS, p53/p21, p16, SA-β-Gal, inflammatory response, and reduced eNOS/NO level). EC senescence has a pivotal role in the 
progression of diabetes and heart failure. Exercise has a potential to suppress ECs senescence.
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p21, phosphorylated p38, and double-stranded DNA breaks, in 
association with high SA-β Gal activity (62–65). It was reported 
that expression of p53 and p21 is increased in the arteries of elderly 
persons, together with structural breakdown of telomeres known 
as telomere uncapping (61). Both telomere length and telomerase 
activity were found to be reduced in endothelial progenitor 
cells from patients with coronary heart disease (66). In patients 
with chronic heart failure, telomere attrition was identified in 
circulating leukocytes (67). Moreover, the leucocyte telomere 
length displays an inverse association with the risk of coronary 
heart disease independently of conventional vascular risk factors 
(68). Accordingly, it is generally accepted that telomere length 
and telomerase activity are involved in human cardiovascular 
disease (69). Interestingly, senescent cells are increased in the 
coronary arteries of patients with ischemic heart disease, but 
not in the internal mammary arteries (58). Endothelial cells 
and vascular smooth muscle cells (VSMCs) from patients with 
abdominal aortic aneurysm (AAA) have the phenotypic features 
commonly observed in senescent cells (60). Hypertension is an 
established risk factor for atherosclerotic diseases, and it was 
reported that binding of p53 to the p21 promoter is increased 
in the arteries of hypertensive patients. While telomere length 
is comparable between patients with hypertension and controls, 
telomere uncapping is 2-fold higher in hypertensive patients (70). 
A murine model of genomic instability demonstrated senescence 
of endothelial cells and VSMCs in the aorta, along with impaired 
vasodilation, increased vascular stiffness, and hypertension (71). 
In hypertensive rats treated with deoxycorticosterone acetate 
and salt, overexpression of p16 was detected in the coronary 
arteries (72). Aortic p16 expression was elevated in another 
model of hypertension (mice administered an endothelial 
nitric oxide synthase inhibitor) (73), indicating the existence of 
a vicious circle between cellular senescence and hypertension. 
Thus, studies have shown that senescent cells accumulate in 
the vessels of patients with atherosclerosis, hypertension, 
aneurysms, diabetes, and intimal hyperplasia (Figure 3), so the 
role of endothelial cell, VSMC and immune cell senescence in 
arterial diseases is discussed next.

endothelial Cell Senescence in Arterial 
Diseases
Endothelial cells are critically important for maintaining vascular 
homeostasis and are involved in various biological functions, 
including angiogenesis, blood pressure regulation, coagulation, 
and systemic metabolism. Aged endothelial cells develop a 
dysfunctional phenotype that is characterized by reduced 
proliferation and migration, decreased expression of angiogenic 
molecules, and low production of nitric oxide (NO), which is 
synthetized by NO synthase (NOS) and mediates vasodilatation. 
In dysfunctional endothelial cells, NO production is generally 
reduced due to low NOS activity. This change is associated 
with impairment of endothelium-dependent dilatation (EDD), 
which is reported to predict future cardiovascular events. 
Dysfunctional endothelial cells develop pro-oxidant, pro-
inflammatory, vasoconstrictor, and prothrombotic properties, 
and studies indicate that cellular senescence has a pathological 
role in such phenotypic aging.

Senescent endothelial cells have been found in atherosclerotic 
plaque (58). An autopsy study of patients with ischemic heart 
disease revealed that SA-β-gal activity is increased in the 
coronary arteries, but not in the internal mammary arteries. In 
the coronary arteries, SA-β-gal activity is high in cells located 
on the luminal surface (probably endothelial cells). ICAM-1 is 
also increased in senescent human aortic endothelial cells, while 
both endothelial nitric oxide synthase (eNOS) and NO activity 
are reduced in these cells compared to young cells. Importantly, 
these pathological phenotypic changes induced by replicative 
senescence were suppressed by activation of telomerase reverse 
transcriptase in aged human aortic endothelial cells, indicating 
that telomere shortening induces endothelial cell senescence and 
has pathological consequences in atherosclerotic diseases (58). 
In patients with AAA, telomeres are significantly shorter and 
oxidative DNA damage is more severe in endothelial cells from the 
aneurysmal region (60). In atherosclerotic mice, disturbance of 
flow in the ascending aorta and aortic arch promotes endothelial 
cell senescence, and in vitro studies have indicated that aberrant 

FiguRe 3 |  Cellular senescence in aged arteries. Aged arteries are characterized by accumulation of senescent vascular endothelial cells (EC), senescent vascular 
smooth muscle cells (VSMCs), and senescent foam cells. Accumulation of these senescent cells are associated with an increase of ROS, p53/p21, p16, SA-β-Gal, 
inflammatory response, telomere attrition and reduced eNOS/NO level). Senescence of these cells promotes pathological changes in atherosclerotic diseases and 
also has a role in development of hypertension.
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flow is a signal inducing cellular senescence (74). One of the 
problems related to an increase of senescent cells is development 
of the senescence-associated secretory phenotype, which is 
characterized by production of pro-inflammatory cytokines 
with a causal role in tissue remodeling (7). In human arterial 
endothelial cells with replicative senescence, levels of H2O2 and 
O2

– are high and NO production is reduced. High ROS levels in 
senescent endothelial cells are thought to accelerate senescence. 
Aging is reported to be linked with increased circulating levels 
of pro-inflammatory cytokines, such as interleukin-6, tumor 
necrosis factor alpha, and monocyte chemoattractant protein-1 
(75). It is highly possible that accumulation of senescent 
endothelial cells in the arteries of elderly persons induces chronic 
sterile inflammation and vascular remodeling, increasing 
susceptibility to atherosclerotic diseases. Controversy exists as to 
whether physical activity is associated with telomere length, since 
physical activity is positively correlated with telomere length 
in some studies, but not in other studies (76). It is generally 
accepted that physical activity improves vascular structure and 
function in humans and rodents. Bioavailability of NO declines 
with aging in association with elevation of ROS levels, while 
these changes are ameliorated or reversed by physical activity. 
Recently, it was shown that older individuals who performed 
exercise had lower levels of p53, p21, and p16 in endothelial 
cells from the brachial arteries and antecubital veins compared 
to sedentary older individuals, indicating that physical activity 
suppresses senescence of human vascular cells (77). Thus, there 
is evidence that physical activity improves vascular function, 
but further studies are needed to identify the detailed molecular 
mechanisms involved (Figure 2).

vascular Smooth Muscle Cell Senescence 
in Arterial Diseases
Functional changes of VSMCs occur with aging, partly due 
to deregulation of TGF-β signaling, and these cells undergo 
transformation from a “contractile” to a “synthetic” phenotype. 
It was reported that aged SMCs show enhancement of inducible 
NOS (iNOS) activity, as well as higher expression of ICAM-1 and 
angiotensinogen in response to stress (78, 79). Intimal thickening 
develops with aging, partly due to increased production of 
collagen and a corresponding decrease of elastin (56). Generally, 
intimal thickening is widespread and concentric in the aorta, 
while it is eccentric in the coronary arteries. Intimal thickening is 
a preatherosclerotic lesion because topographic correspondence 
has been demonstrated between the sites of intimal thickening 
and atherosclerotic plaques. Telomeres are shorter in cells from 
atherosclerotic plaque in the human aorta compared to normal 
vessels. Telomeres are also shorter in VSMCs from the fibrous 
cap of atheroma compared to VSMCs from the normal vascular 
media, and these cells are positive for SA-β-gal staining along with 
elevated p16 and p21 expression. It was reported that oxidative 
stress induces DNA damage in VSMCs and suppresses telomerase 
activity, leading to telomere shortening and cellular senescence 
that contribute to acceleration of atherosclerotic disorders (80). 
In addition, senescence of VSMCs was reported in apolipoprotein 
E null mice treated with angiotensin II (81). Smooth muscle 22α 

is an actin-binding protein that is known as a marker of smooth 
muscle cell senescence. Recently, it was shown that smooth 
muscle 22α promotes angiotensin II-induced cellular senescence 
by suppressing Mdm-2-mediated degradation of p53 (82). In 
addition, Cafueri et al. reported that VSMCs from the aneurysms 
of AAA patients display telomere attrition and marked oxidative 
DNA damage (60). Senescent VSMCs have been identified in 
atherosclerotic lesions of patients with coronary artery disease, 
AAA, and peripheral artery disease (58). It was also reported 
that 18% of VSMCs from carotid artery plaques are positive for 
p16 and p21, in association with detectable SA-β-gal activity 
(80). Furthermore, SA-β-gal positive VSMCs in carotid plaques 
express interleukin-6, suggesting that senescent VSMCs have 
a senescence-associated secretory profile and a causative role 
in the progression of atherosclerotic disorders (83). Senescent 
VSMCs show dysregulated production of pro-inflammatory 
cytokines, growth factors, and extracellular matrix modifiers, 
accelerating the process of vascular remodeling. Some inducers 
of senescence are common to VSMCs and vascular endothelial 
cells, such as ROS and angiotensin II (84, 85), while hypoxic stress 
was reported to inhibit senescence by promoting telomerase 
activity (86). It was recently found that senescent VSMCs in 
atherosclerotic plaque display loss of telomeric repeat-binding 
factor-2 (TRF2), a protein localized in the telomeres. TRF2 
overexpression reduces DNA damage, accelerates DNA repair, 
and suppresses cellular senescence in vitro, while introduction 
of TRF2 into loss of function mutants results in the opposite 
phenotype. Studies using transgenic mice have shown that 
VSMC-specific loss of TRF2 function increases atherosclerosis 
and necrotic core formation in vivo, while these pathological 
changes are suppressed in mice with VSMC-specific gain of TRF2 
function (87). These results clearly indicate that inhibition of 
VSMC senescence is extremely important for suppressing the 
progression of atherosclerotic diseases.

immune Cell Senescence in Arterial 
Diseases
In human vascular cells, telomere length shows a strong inverse 
correlation with aging, and telomere shortening is linked with 
cardiovascular disease and diabetes (88, 89). Elderly individuals 
with short telomeres in leukocyte DNA are reported to have 
a higher mortality rate, partly attributable to increased death 
from heart disease (90). Monocytes from patients with 
atherosclerosis exhibit increased production of ROS and various 
pro-inflammatory cytokines, including MCP-1, IL-6, IL-1β, 
and TNF-α (91). It was recently demonstrated that senescent 
intimal foam cells accumulate in atherosclerotic lesions and act 
as the key drivers of atheroma formation. Importantly, specific 
deletion of these senescent cells by genetic or pharmacological 
approaches has been shown to reverse atherosclerosis in mice 
(92). According to another report, cellular senescence mediated 
by p16INK4a promotes pro-inflammatory phenotypic changes 
in macrophages (93). These studies indicate that leukocyte 
senescence is involved in the progression of atherosclerotic 
plaque, suggesting that suppression of leukocyte senescence may 
be an important approach for combating atherosclerotic diseases.
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vascular Senescence in Metabolic 
Syndrome
Chronic sterile inflammation of visceral fat develops in patients 
with heart failure, obesity, and/or diabetes, and is well accepted 
to have a central role in inducing systemic insulin resistance and 
progression of metabolic disorders. It was previously reported 
that p53 induces inflammation of visceral adipose tissue in 
murine models of obesity or heart failure, which is involved in the 
progression of these age-related diseases (21, 24, 94). Occurrence 
of cellular senescence in visceral fat was reported to result in 
deterioration of systemic metabolic health. Capillaries have a 
crucial role in metabolically active organs, including skeletal 
muscle and brown adipose tissue. Capillarization of skeletal 
muscle was reported to increase in older adults after exercise 
training, and this increase of capillaries leads to enhancement 
of systemic insulin sensitivity (95). It was recently demonstrated 
that vascular endothelial cell senescence induces systemic 
metabolic dysfunction (11) (Figure  2). Conversely, it has 
been well documented that obesity is associated with vascular 
senescence. In metabolically unhealthy persons with obesity and/
or diabetes, insulin/insulin receptor/insulin receptor substrate/
phosphoinositide 3-kinase/Akt signaling is down-regulated in 
vascular cells, while insulin receptor/son of sevenless/growth 
factor receptor bound protein/mitogen-activated protein kinase 
(MAPK) signaling is enhanced. This is known as “selective 
insulin resistance”, and it mediates pro-atherosclerotic responses 
by activation of MAPK signaling. It was reported that activation 
of MAPK signaling by hyperinsulinemia and selective insulin 
resistance induces vascular remodeling through vasoconstriction, 
proliferation, and vascular cell migration (96). Various studies 
have indicated the existence of a vicious circle between vascular 
senescence and metabolic syndrome, as discussed below.

endothelial Cell Senescence in Metabolic 
Syndrome
Capillary network formation is critically important for 
morphogenesis and maintenance of homeostasis, while vascular 
dysfunction induces organ malfunction and systemic metabolic 
disorders (97, 98). In animal studies, diabetes has been shown 
to induce vascular cell senescence. For example, endothelial cell 
senescence develops in the aortas of Zucker diabetic rats and 
hyperglycemic mice or rats (99–101). These reports indicate that 
hyperglycemia induces cellular senescence, while there is also 
evidence that cellular senescence per se promotes systemic metabolic 
dysfunction. It is widely accepted that skeletal muscle contributes 
to glucose disposal, so maintaining skeletal muscle homeostasis 
is crucial for systemic metabolic health. Metabolic stress induces 
accumulation of lipids and chronic sterile inflammation in skeletal 
muscle, contributing to development of systemic insulin resistance 
(102, 103). It was recently demonstrated that endothelial cell 
senescence suppresses skeletal muscle metabolism, leading to 
systemic glucose intolerance. Metabolic stress induced by dietary 
obesity increases p53 expression in the vascular endothelium (11), 
while endothelial cell-specific depletion of p53 reduces both visceral 
and subcutaneous fat volumes and improves systemic glucose 
intolerance. It is generally accepted that eNOS has a protective 

role in the cardiovascular system, which is mainly mediated by 
production of NO. It was reported that eNOS up-regulates skeletal 
muscle expression of peroxisome proliferator-activated receptor-γ 
coactivator-1α, a master regulator of mitochondrial biogenesis and 
cell metabolism, while this up-regulation is suppressed by p53. 
Down-regulation of p53 expression in vascular endothelial cells 
promotes glucose uptake by skeletal muscle through up-regulation 
of glucose transporter-1 expression in endothelial cells, and 
contributes to better systemic metabolic health. These findings 
indicate that suppression of endothelial cell senescence is important 
for maintenance of systemic metabolic health (11).

Potential next generation therapies 
targeting Senescent Cells for 
Cardiovascular and Metabolic Disorders
It was recently established that selective depletion of senescent 
cells (“senolysis”) reverses phenotypic changes of aging (33, 34, 
104–106). Accumulation of senescent cells promotes chronic sterile 
inflammation in the visceral adipose tissue of patients with obesity and 
elderly persons. In a murine model of premature aging, elimination 
of p16-positive senescent cells contributed to suppression of the 
aging phenotype in several organs, including epididymal/inguinal 
white adipose tissue, the heart, and the kidney (33). Several agents 
causing selective depletion of senescent cells (senolytic activity) have 
been identified. It was reported that an anticancer agent (ABT263) 
has a senolytic effect by selectively removing p16-positive senescent 
cells from the bone marrow via apoptosis, leading to rejuvenation 
of hematopoietic stem cells during aging (34). In addition,  
Xu et al. showed that depletion of senescent cells in aged mice 
preserved adipogenesis and increased insulin sensitivity (104). Zhu et 
al. showed that administration of another senolytic therapy (dasatinib 
+ quercetin: D + Q) significantly improved systolic cardiac function 
and reduced the left ventricular end-systolic dimension in 24-month-
old mice (105). Treatment with D + Q also improved vasomotor 
function in aged mice, as well as reducing aortic calcification and 
osteogenic signaling in hypercholesterolemic mice (107). Regarding 
genetic approaches, elimination of p16-positive senescent cells from 
plaques suppressed pathologic changes in low-density lipoprotein 
receptor-deficient mice (92). Senescent VSMCs show hypermetabolic 
changes, with increased glycolysis and oxygen consumption. 
Administration of 2-deoxyglucose causes greater depletion of 
senescent VSMCs than control VSMCs in vitro, but clinical trials 
investigating the anticancer effect of 2-deoxyglucose have identified 
the issue of toxicity (108). Depletion of specific components to alter 
cell metabolism has now attracted attention in the field of anticancer 
therapy, including the search for senolytic agents targeting cell 
metabolism. There is evidence that elimination of senescent cells 
by administration of senolytic agents has the potential to become 
a next generation therapy for cardiovascular disorders (109, 110). 
Suppression of cellular senescence is another possibility. Sirtuin1 
(SIRT1) is one of the most promising molecules to be studied in 
relation to suppression of aging. Activation of SIRT1-signaling was 
reported to prolong the lifespan of rodents, while overexpression of 
SIRT1 in VSMCs or vascular endothelial cells suppresses senescence 
and extends the survival of these cells. Resveratrol activates SIRT1, 
and administration of resveratrol was reported to prevent arterial 
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wall inflammation and elevation of the pulse wave velocity by 
dietary obesity (111). Moreover, activation of SIRT1 attenuates 
arterial stiffness and hypertension in Klotho-haplodeficient mice 
(112). SIRT1 expression and activity are decreased in the VSMCs 
of patients with AAA, together with vascular cell senescence and 
elevated p21 expression, while SIRT1 inhibits p21-induced cellular 
senescence and contributes to suppression of vascular inflammation 
(113). Another study showed that calorie restriction up-regulates 
SIRT1 expression in vascular smooth muscle cells, and reduced 
the incidence of AAA (114). These results indicate that activation 
of SIRT1 in VSMCs may potentially prevent the progression of 
AAA (113, 114). Nicotinamide adenine dinucleotide (NAD) is a 
coenzyme involved in cell metabolism, redox reactions, and DNA 
repair, and it is well known to suppress aging (115). Nicotinamide 
phosphoribosyltransferase (Nampt) is the rate-limiting enzyme 
for conversion of nicotinamide to nicotinamide mononucleotide, 
enabling subsequent biosynthesis of NAD+. Nampt overexpression 
was reported to suppress senescence of VSMCs through a process 
mediated by SIRT1 signaling (116). In patients with aortic dilation, 
an inverse relationship between Nampt expression by VSMCs and 
the diameter of the ascending aorta was recently identified, and 
the authors concluded that NAD+ biosynthesis in the aortic media 
is important for protection against DNA damage and premature 
VSMC senescence (117). Systemic metabolic dysfunction is reported 
to induce cellular senescence in endothelial cells. Aged mice with 
systemic glucose intolerance and hyperinsulinemia show elevation 
of aortic NADPH oxidase-2 (Nox2) expression, while in vitro glucose 
and insulin challenge increases Nox2 and ROS levels in coronary 
microvascular endothelial cells, promoting cellular senescence along 
with elevation of p53 (118). Furthermore, hyperlipidemia associated 
with aging enhances mitochondrial oxidative stress and induces 
plaque instability in ApoE−/− mice (119). It was previously reported 
that Akt, which acts downstream of insulin signaling, negatively 
regulates the lifespan of human endothelial cells via p53/p21 signaling 
(120). Dietary intake of rapamycin (an inhibitor of mTOR, a molecule 
that acts downstream of the insulin signaling pathway) was shown 
to reverse age-related vascular dysfunction and oxidative stress, in 
association with reduced arterial expression of the senescence marker 
p19 (121). In the LEADER trial, a glucagon-like peptide 1 analogue 
(liraglutide) reduced the death rate from cardiovascular disease in 
patients with type 2 diabetes, as well as decreasing nonfatal myocardial 
infarction and nonfatal stroke (122). Another glucagon-like peptide 
1 analogue (exenatide) showed beneficial vascular effects, partly via 
enhancing adiponectin production, and suppressed oxidative stress 
and inflammation in the vascular plaques of ApoE−/− mice (123). 
Taken together, these studies indicate that, in addition to use for the 
inhibition of systemic metabolic disorders, suppression of cellular 
senescence and/or elimination of senescent cells could become next 
generation therapies for cardiovascular disorders.

Conclusion and Future Directions
This review outlined the pathological role of vascular senescence in 
cardiovascular disease and metabolic disease. Both capillaries and 
arteries are critically important for delivery of nutrients and oxygen 
to the organs/tissues for maintenance of physiological function. 
Vascular endothelial cells and VSMCs have a crucial role in vascular 

homeostasis. Senescence of vascular cells promotes the development 
of age-related disorders, including heart failure, diabetes, and 
atherosclerotic diseases, while suppression of vascular cell senescence 
ameliorates phenotypic features of aging in various models. Recent 
findings have indicated that specific depletion of senescent cells 
reverses age-related changes. Considering that suppression of 
cellular senescence is associated with a risk of tumorigenesis, specific 
depletion of senescent cells may be a more promising approach to 
the treatment of age-related diseases. An issue that remains to be 
explored is the potential side effects of such treatment. For example, 
Demaria and colleagues found that genetic removal of senescent cells 
delayed wound healing in mice (124). We also need to identify the 
best senolytic agents, and optimize the dosage and administration 
and combinations for treatment of various conditions. Potential 
gender differences are another important research topic. Although 
the biological networks contributing to maintenance of homeostasis 
are extremely complex, it seems reasonable to explore senolytic 
agents that can act on specific cellular components or tissues. Several 
clinical trials of senolytic agents are currently ongoing. Survivors 
of hematopoietic stem cell transplantation are prone to premature 
aging, and one pilot clinical study is designed to test whether D + Q 
can suppress aging in these patients (Clinical Trials. Gov Identifier: 
NCT02652052). Another clinical trial is testing whether D + Q 
reduces pro-inflammatory cells obtained by skin biopsy in patients 
with idiopathic pulmonary fibrosis (Clinical Trials. Gov Identifier: 
NCT02874989). Furthermore, a clinical trial is ongoing to determine 
whether D + Q can reduce the senescent cell burden and frailty in 
patients with chronic kidney disease, as well as improving the function 
of adipose tissue-derived mesenchymal stem cells (Clinical Trials. 
Gov Identifier: NCT02848131). So far, only D + Q has been assessed 
in the clinical setting, and none of the current clinical trials are 
testing whether senolytic agents can inhibit cardiovascular disorders. 
However, depletion of senescent cells was demonstrated to suppress 
pathological progression of atherosclerotic plaque in rodents, 
suggesting that senolytic agents could become a next generation 
therapy for cardiovascular disorders (Table 1).
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