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Calcific Aortic Valve Disease (CAVD) is the most common heart valve disease and 
its incidence is expected to rise with aging population. No medical treatment so far 
has shown slowing progression of CAVD progression. Surgery remains to this day 
the only way to treat it. Effective drug therapy can only be achieved through a better 
insight into the pathogenic mechanisms underlying CAVD. The cellular and molecular 
events leading to leaflets calcification are complex. Upon endothelium cell damage, 
oxidized LDLs trigger a proinflammatory response disrupting healthy cross-talk between 
valve endothelial and interstitial cells. Therefore, valve interstitial cells transform into 
osteoblasts and mineralize the leaflets. Studies have investigated signaling pathways 
driving and connecting lipid metabolism, inflammation and osteogenesis. This review 
draws a summary of the recent advances and discusses their exploitation as promising 
therapeutic targets to treat CAVD and reduce valve replacement.
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inTRoDuCTion

Over the course of an average day, aortic valve (AoV) leaflets open and close 100,000 times allowing 
unidirectionality blood flow from the left ventricle to the systemic circulation. The proper function 
of AoV is achieved by thin leaflets composed of three distinct layers of extracellular matrix (ECM), 
rich in fibrillar collagen, glycosaminoglycans (GAGs) and elastin. Calcific Aortic Valve Disease 
(CAVD) appears first as AoV sclerosis developing into AoV stenosis (1, 2). Macroscopically, leaflets 
are thickened and progressively calcified resulting into stiff leaflets with restricted movement.

CAVD is one of the most common heart valve disease and its prevalence increases with aging (3). 
Nowadays, in western countries, 2.8% of the general population aged over 75 years is affected with 
moderate to severe aortic stenosis (3, 4). With life expectancy increasing, prevalence of heart valve 
disease is expecting to rise. Nevertheless, due to a lack of drug treatment (5), surgery remains the 
only way to treat it through surgical valve replacement or transcatheter aortic valve implantation.

The seeking of therapeutic targets relies on mechanistic understanding of CAVD. Due to its 
association with aging, CAVD used to be considered as a passive disease, but is now established 
that CAVD is an active cellular-driven regulated process (6). Heart valve homeostasis is tightly 
controlled by valve interstitial cells (VICs) embedded in ECM, valve endothelial cells (VECs) 
covering the leaflet, and circulant and resident immune cells. When CAVD develops, lipid 
deposition, inflammation and angiogenesis occur while VICs are entering an osteogenic program as 
a response to exposure to risk factors including age, congenital heart defect, male gender, tobacco 
use, diabetes, hypertension, obesity and dyslipidemia (7–9). As a result, homeostasis is disrupted, 
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ECM is remodeled, and formation of calcium nodules occurs. 
Although mechanisms leading to CAVD are still unclear, studies 
on diseased human aortic valves and animal models of CAVD, 
reviewed by Sider  et al. (10), have provided valuable insights 
into cellular components and signaling pathways involved in the 
pathogenesis. This review will summarize the current findings 
with emphasis on valuable therapeutic candidates.

CAvD: Multi-Step Process with 
endothelium Damage as Starting Point
Endothelium dysfunction is an early feature of CAVD (11, 12) 
and likely the result of altered blood shear stress (13). There is 
indeed a spatial correlation between the calcific lesions, located 
almost exclusively on the aortic side of AoV leaflet, and the 
local hemodynamic environment (14–16).The hypothesis of 
hemodynamic onset is reinforced by the predisposition and 

accelerated progression of CAVD in patients with bicuspid 
aortic valve (17) that display different blood flow patterns than 
observed with tricuspid AoV (18, 19). Endothelium damage 
favors lipid deposit followed by infiltration of inflammatory cells, 
two hallmarks of early AoV lesions (20). Therefore, lipids and 
cytokines will influence neighbored VECs and VICs to promote 
activation of VICs, ECM remodeling and mineralization of AoV 
leaflets (Figure 1).

oxidized LDLs Mediate inflammation and 
Mineralization
The importance of dyslipidemia in CAVD was confirmed by 
prevalence of CAVD in familial hypercholesterolemia caused 
by mutation of LDL receptor (Ldlr) and leading to abnormal 
circulating level of LDL (21–23). Hypercholesterolemia induced 
in animal models by genetic mutation (Ldlr−/−, ApoE−/−, 

FiguRe 1 |  CAVD is a multi-step disease. Upon valve endothelium damage, low-density-lipoprotein (LDL) and lipoprotein a [Lp(a)] accumulate. Oxidation of LDL 
(oxLDL) trigger infiltration of macrophages and T cells that express pro-inflammatory cytokines among which IL-6 and TNF-α. Proinflammatory cytokines impairs 
protective role of valve endothelial by inhibition of endothelial nitric oxide synthase (eNOS) and production of nitric oxide (NO). Therefore, oxidative stress (ROS) 
increases and contributes to enhance oxLDL. Concomitantly, valve interstitial cells (VICs) get activated by cytokines and oxLDL directly, or indirectly through 
autotaxin (ENPP2) and lysophosphatidyl acid (LPA). Therefore, VICs enter an osteogenic differentiation leading to calcific deposit and nodule formation. Activated 
VICs secrete glycosaminoglycans (GAGs), favoring further accumulation of oxLDL. Increased cyclooxygenase 2 (COX2) and its product prostaglandin (PTG), Wnt 
and BMP signaling have been shown to drive osteogenic differentiation while inhibition of IGF-1 signaling by dipeptidyl peptidase-4 (DPP4) contributes as well to 
pathogenesis. Also, Notch signaling, induced by NO, repress osteogenic differentiation. Finally, T cells favor osteogenesis and osteoclast formation by production of 
TNFSF11 but secrete Interferon-γ (IFN-γ) which limits calcium resorption. Altogether, aortic valve leaflets gets remodeled and stiffen leading to aortic valve stenosis. 
ROS: Reactive Oxygen Species. LPAR1: Lysosphosphatidyl Acid Receptor 1. TLR: Toll-like receptor. IL6: interleukin 6. TNF-α: Tumor necrosis factor- α. BMP: Bone 
Morphogenetic Protein. Morphogen. BMPR1: BMP Receptor 1. Fzd: Frizzled. RANK: Receptor Activator of Nuclear Factor kB. TNFSF11: RANK ligand.
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ApoB100/100) and/or combined with enriched diet further 
indicate that increased lipid deposits precede the emergence 
of inflammatory and calcification processes (21, 24). Due to 
association between lipid and CAVD, clinical trial using lipid 
level lowering drug have been carried out, but it has shown 
negative results in regard with reducing CAVD (5, 25–27). One 
of the reasons might be that statins are ineffective to reduce 
Lp(a) level (28, 29) . Lp(a) consists of low density lipoprotein 
(LDL)-like particle in which apoliprotein(a) is covalently linked 
to apoliprotein B100 (30). Histopathologic studies demonstrated 
accumulation of apoliproteins and lipid in early stages of CAVD 
(31). Genome wide association study further described a SNP in 
LPA gene that was strongly associated with CAVD. Individuals 
with that SNP had higher Lp(a) plasma level and higher risk of 
aortic valve stenosis (32–34).

Altogether, Lp(a) appears genuinely to mediate the onset of 
CAVD. Deciphering the pathogenic mechanisms linking Lp(a) 
to CAVD has been recently acknowledged as a priority (35). 
Several studies highlighted a link between lipid metabolism 
and calcification through oxidation of LDLs. Lp(a) is a carrier 
of oxidized phospholipids (OxPLs), used by Lp(a)-associated 
phospholipase A2 (Lp-PLA2), to generate lysophosphatidyl 
choline (LPC), all highly expressed in human CAVD (36, 37). 
LPC is then transformed into lysophosphatidyl acid (LPA) by 
ectonucleotide pyrophosphatase/phosphodiesterase 2 (ENPP2), 
secreted by stimulated VICs (38). LPA is also produced during 
non- oxidative transformation of LDLs. Therefore, LPA activates 
VICs through enzymatic LPAR1/RhoA/NF-κb signaling, and 
mediates mineralization through BMP2 expression (38, 39). 
The requirement for RhoA to promote calcific nodule was also 
illustrated in vitro (40). The signaling pathway is confirmed with 
decreased AoV mineralization when using Ki16425, an inhibitor 
of LPAR1, in Ldlr−/−, ApoB100/100 mice fed with high fat and high 
sucrose diet (39). It is important to mention that changes in the 
ECM, with accumulation of glycosaminoglycans, precede and 
favor oxLDL retention (24, 41, 42).

The findings indicate that lowering Lp(a), OxLDL or targeting 
LPAR1 are attractive options and might be used to prevent 
the onset of CAVD. Multiple treatment options are currently 
suggested to decrease Lp(a). IONIS-APO(a)Rx, and IONIS-
APO(a)-LRx, antisense oligonucleotide targeting Apo(a) mRNA 
have been shown to lower Lp(a) level (43). Targeting Proprotein 
Convertase Subtilisin/Kexin type 9 (PCSK9), a hepatic protease 
that promotes LDLR destruction, might be a way to decrease LDL 
and oxidative products. This might be achieved with monoclonal 
antibodies, Alirocumab and Evolocumab (44), or by using 
Inclisiran, a small RNAi targeting PCSK9 (45, 46).

inflammation Contributes to Calcification
Inflammation occurs after endothelium activation and lipid 
deposition. Microarray analysis of human CAVD (47) and 
Rapacz familial hypercholesterolemia swine, an established 
model of human FH (21) shows upregulation of inflammation-
related genes and chemokines. Histological studies present 
inflammatory cells, composed of macrophages, B and T cells 
found near osteoblast-like cells and calcified area in human 

CAVD (20, 48, 49). PET imaging using 18-Flurodexoxyglucose 
uptake (18F-FDG) to monitor inflammation reports higher 18F-
FDG uptake in patients with AoV sclerosis and stenosis and a 
raise of the activity as the disease gets more severe (50).

Besides activation of endothelial cells (11, 12), OxLDLs trigger 
proinflammatory cytokines expression and promotes infiltration 
of immune cells into AoV leaflets (42, 51, 52). In diseased 
AoV, higher oxLDL content correlates with higher amounts of 
inflammatory cells (53) . During inflammation, immune cells 
secrete inflammatory cytokines including IL-2 (54), IL-1β (55), 
TNF-α (56, 57) , IL6(58) and MMPs (55, 59) than stimulates 
VICs, ECM remodeling and promote the expression of genes 
involved in osteogenesis (52). Altogether, data support that 
CAVD is an inflammatory disease, and inflammation may drive 
calcification.

Although inflammation precedes ECM remodeling and 
calcification, inflammation over the course of the disease has not 
been fully explored yet. Similarly, immune cells display a broad 
heterogeneity with specific function. Thorough characterization 
of macrophages, T cells or B cells is now just starting to be 
done in the context of CAVD. M1 macrophage subset have 
recently be found to be the predominant macrophage subset in 
CAVD, promoting osteogenic differentiation of VICs through 
TNF-α and IL-6 secretion (58, 60). T cells are also reported 
surrounding calcified area. T cells favor calcification through 
cytokine TNF-α and TNFSF11 expression (56, 61, 62). Increased 
T cells in diseased AoV is likely the result of increased circulating 
CD8 +T cells (63). Activated T cells infiltrate the leaflets and 
surround calcified area and display high level of inflammatory 
cytokine IFN-γ (62). Although TNFSF11 promotes osteoclast 
activity, aberrant IFN-γ level impairs calcium resorption by 
valve osteoclast. Therefore, calcium accumulates in the leaflets 
and facilitates nodule formations (62). A similar study indicates 
that macrophages surrounding calcium deposits in human 
atherosclerotic are defective and unable to resorb calcification 
(64). Such role of macrophage in CAVD have not been explored 
yet. Circulating Tregs are also measured in patients with CAVD 
and associate with disease progression (65). Although dendritic 
cells are found abundantly in heart valve and accumulate in AoV 
stenosis, their contribution to CAVD is still unknown (51, 66).

Deeper understanding of regulation, timing and functional 
role of immune cells in CAVD will bring valuable information 
to determine how targeting inflammation might help preventing 
pathogenesis.

veCs Are natural inhibitors of 
Calcification, Through no Release, but 
Activators Through oxidative Stress
Inflammatory cytokines, TNF-α and IL-6, induce valve 
endothelial-to-mesenchymal (EMT) transformation through 
Akt/NF-κb signaling and reduce endothelial nitric-oxide synthase 
(eNOS) expression (67). Although some markers of EMT are 
measured in human calcified aortic valves (67), studies have still 
to address if EMT contribute to pathogenesis of CAVD.

VECs have the particularity to display side-specific heterogeneity. 
Endothelium on the aortic side displays an antioxidative and 
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anti-inflammatory phenotype defined by its RNA expression 
profile  (15). Thus, aortic side of AoV demonstrates protection 
against repetitive insult in normal AoV. As consequence, VECs 
are releasing nitric-oxide (NO), a natural inhibitor of pathogenic 
differentiation of VICs into myofibroblast andosteoblasts  (68). 
Increased NO release has been shown to inhibit calcific nodule 
formation in vitro (69) and in vivo with atorvastatin treatment (70). 
On the opposite, in CAVD, altered mechanical stimulus, oxLDLs 
or TNF-α impair eNOS expression (68, 71, 72). Concomitantly, 
uncoupling of NO synthase leads to increased production of 
superoxide and oxidative stress which drives calcification (73).
The critical role of endothelium and eNOS was further illustrated 
through modulation of a multifunctional enzyme dipeptidyl 
peptidase-4 (DPP4) and insulin growth factor-1 (IGF-1). Upon 
NO depletion, DPP4 increases in human VICs and limits IGF-1 
signaling leading to enhanced calcification. Treatment of rabbit 
and mouse model of CAVD with Sitagliptin, a selective DPP4 
inhibitor, was protective against AoV calcification (74). Similarly, 
the protective role of VECs is illustrated by TGF-β1 expression 
that translocates Sox9 into VICs nucleus and prevent calcific 
nodule formation (75, 76). Therefore, enhancing protective role 
of VECs, during early phase of disease, must be exploited. Notably, 
increasing NO production with statins or using DPP4 inhibitor 
,broadly used as hypoglycemic drugs for treatment of type 2 
diabetes mellitus, might mitigate CAVD.

viCs Differentiate into osteoblast-Like 
Cells and Mineralize the Leaflets
Histological studies report the formation of bone nodules in 
stenotic CAVD resulting from deposition of calcium in the 
form of hydroxyapatite in the valve leaflet (49). Once heart valve 
development is complete, VICs become quiescent, but in disease 
get activated and turn into active phenotype. In response to 
pathological stimuli, VICs differentiate into osteoblast-like cells 
with abnormal expression of typical bone genes, including Runx2, 
Alkaline Phosphatase (ALP), Osteopontin (SPP1), Osteocalcin 
(BGLAP) (47) resulting in calcified ECM. Apart from promoting 
inflammation, OxLDLs and Lp(a) can also directly activate VICs 
through LPAR1  (38, 39) and TLR activation (52, 77–79), This 
interaction contributes to trigger GAG accumulation, in a positive 
feedback loop, and upregulates osteogenic gene expression through 
BMP2 and IL6 expression (38, 42, 80).

Different molecular mechanisms are involved in VICs osteogenic 
differentiation and shared with bone formation (81, 82). Stimulation 
of VICs culture with OxLDLs and hypercholesterolemia animal 
model have been used to investigate signaling pathway underlying 
osteogenic differentiation. Also studies in klotho null mice have been 
useful to investigate AoV calcification with minimal inflammation 
(83).BMP2, along with osteogenic gene expression, are the usual 
markers measured to assess VICs osteogenic differentiation. BMP 
signaling is increased in human CAVD illustrated by increased 
BMP2, BMP4 ligands and phosphorylation of Smad1/5/8 (82, 84, 
85). Downregulation of Smad6, an inhibitor of BMP signaling, 
enhance BMP signaling (84, 86). Inhibition of osteogenic gene 
expression and calcific nodule formation by targeting Alk3, BMP 
receptor type-1A, strongly indicate that LDN-193189, a small 

molecule inhibitor of BMP signaling, should be used to prevent 
calcification in late stage of CAVD (85).

Mutation in Notch1 and its association with BAV and AoV 
calcification highlighted the role of Notch signaling in CAVD 
(87). Later, studies confirms that Notch signaling represses 
osteogenic gene expression (88, 89) and is regulated by NO released 
by endothelial cells (90). Decreased Notch signaling is not just 
observed in patients with mutated Notch1 but also in patients with 
idiopathic CAVD where increased long non-coding RNA H19, 
resulting from hypomethylation, prevents Notch1 expression (91).
The role of prostaglandins has been illustrated in osteogenesis (92, 
93), but only recently in CAVD. Prostaglandins are synthesized 
by COX2, an enzyme highly expressed by VICs in CAVD (94). 
Pharmacological inhibition of COX2 activity with Celecoxib, a 
nonsteroidal anti-inflammatory (NSAID) drugs, is sufficient to 
reduces AoV calcification in Klotho null mice (94). Celecoxib 
is clinically used to treat joint and/or muscle pain(95) but was 
associated with increased cardiovascular risk (96). Cardiovascular 
safety of celecoxib is nowadays controversial (97)  as recent report 
indicate that cardiovascular risk associated with moderate doses of 
celecoxib is not greater than associated with non-selective-NSAID 
ibuprofen (98). Additional research must evaluate the effectiveness 
of COX2 inhibitor in human CAVD.

Non-canonical Wnt5b and Wnt11 ligands are found elevated 
in macrophages of human calcified AoV. Moreover, the ligands 
stimulate VICs, apoptosis and calcium deposits (99). Abundant 
expression of Fzd receptors and co-receptors Lrp5/6 also suggest 
the involvement of canonical Wnt/β-catenin signaling in CAVD 
(81, 100). In vitro, Wnt treatment of VICs inhibit chondrogenic 
differentiation and promote osteogenic gene expression (101, 
102) while Lrp5/6 is required to promote calcification in 
hypercholesterolemia mouse model (103). In Axin2 KO mice, 
increased canonical Wnt/β-catenin signaling promotes ECM 
remodeling and BMP signaling but fails to calcify AoV (104). The 
findings illustrate that Wnt signaling is required but might not be 
sufficient to promote end-stage calcification. These data illustrate 
the importance to further study the role of Wnt signaling in CAVD 
as specific inhibitors are being tested (105).

VIC osteogenic differentiation has been one of the most studied 
process in CAVD due to available cell culture model. However, 
VIC remains a poorly defined cell type. Heterogeneity of VIC 
population is underappreciated during heart valve homeostasis 
and disease. Being able to define which cell type is activated and/
or differentiated across disease is a major goal in order to present 
innovative therapeutic options.

ConCLuSionS

CAVD is a complex multi-step event that involves numerous 
biological processes from lipid accumulation, inflammation to 
osteogenesis. Understanding the underlying molecular and cellular 
processes is crucial in the establishment of therapeutic targets. 
Clinical, histological and animal model studies have allowed better 
characterization of the disease and show the importance of cross-talk 
between lipids, immune cells, VECs and VICs. As a result, putative 
molecular targets with available treatments (Table 1) emerge for each 
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TAbLe 1 |  Putative available therapeutic treatments and molecular targets that 
might affect the pathophysiology of CAVD. In brackets, species where the drug 
effect has been reported.

Putative Therapeutic treat-
ments

Molecular Tar-
gets

biological process

IONIS-APO(a)Rx
IONIS-APO(a)-LRx

Apo(a) Lp(a) level lowering (human)

Alirocumab
Evolocumab
Inclisiran

PCSK9 Lipid lowering (human)

Statins HMG-CoA 
reductase

Lipid lowering (human)
Promotes NO release/
inhibition of calcification 
(rabbit)

Ki16425 LPAR1 Inhibition of calcification 
(mouse)

Sitagliptin DPP4 Inhibition of calcification 
(mouse)

LDN-193189 BMPR1A Inhibition of calcification 
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