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Long non-Coding RnAs in vascular 
inflammation
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United States

Less than 2% of the genome encodes for proteins. Accumulating studies have revealed 
a diverse set of RNAs derived from the non-coding genome. Among them, long non-
coding RNAs (lncRNAs) have garnered widespread attention over recent years as 
emerging regulators of diverse biological processes including in cardiovascular disease 
(CVD). However, our knowledge of their mechanisms by which they control CVD-related 
gene expression and cell signaling pathways is still limited. Furthermore, only a handful 
of lncRNAs has been functionally evaluated in the context of vascular inflammation, 
an important process that underlies both acute and chronic disease states. Because 
some lncRNAs may be expressed in cell- and tissue-specific expression patterns, 
these non-coding RNAs hold great promise as novel biomarkers and as therapeutic 
targets in health and disease. Herein, we review those lncRNAs implicated in pro- and 
anti-inflammatory processes of acute and chronic vascular inflammation. An improved 
understanding of lncRNAs in vascular inflammation may provide new pathophysiological 
insights in CVD and opportunities for the generation of a new class of RNA-based 
biomarkers and therapeutic targets.
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intRoduCtion

Accumulating studies highlight that inflammatory processes and traditional cardiac risk factors may 
cooperatively contribute to vascular disease leading to the development of cardiovascular events 
(1). A variety of systemic inflammatory diseases such as rheumatoid arthritis (RA), systemic lupus 
erythematosus, psoriatic arthritis, and medium to large vessel vasculitis are associated with an 
increased risk of atherosclerotic events and premature cardiovascular disease (CVD) (2). Interestingly, 
acute inflammation (e.g., sepsis) also significantly increases the risk of future cardiovascular events (3). 
Although these diseases differ in their autoimmune and/or inflammatory nature, atherosclerosis may 
represent a common response with local vascular inflammation in subintimal and perivascular layers. 
Over decades, a progressive inflammatory multistep process in lesion-prone regions of the arterial 
vasculature develops by different disease-specific upstream insults (1, 4). However, our understanding 
of the pathophysiological links between systemic inflammatory diseases to vascular inflammation 
remains poorly understood. The recent recognition that as much as 70–90% of the genome is 
pervasively transcribed at some point during development has opened new opportunities to address 
these questions (5–7). Most of those transcripts are non-coding measuring greater than 200 nucleotides 
in length and display mRNA-like processing properties. This class of non-coding RNA (ncRNA) is 
known as long ncRNAs (lncRNAs). Whereas the number of ~19,000 human protein-coding genes has 
plateaued, the number of lncRNAs keeps increasing annually. However, it should be pointed out that 
lncRNAs have a low cross-species conservation rate and many lncRNAs have extremely low expression 
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levels per cell (8–10). Nevertheless, lncRNAs have emerged as 
powerful regulators of nearly all biological processes by mediating 
epigenetic, transcriptional, or translational control of target genes 
due to their polyvalent binding properties to RNA, DNA, and 
protein as well as acting as molecular sponges for other transcripts 
and miRNAs (11). The subcellular localization pattern can provide 
additional insights into the mechanistic role for lncRNAs. Other 
considerations include whether the lncRNA acts in cis or trans 
and whether the RNA product itself is essential for fulfilling its 
function or if its transcription per se that underlies its function (12). 
However, the role of lncRNAs in vascular inflammation and CVD 
is just emerging (13). This review will summarize recent findings 
that provide mechanistic and translational insights of lncRNAs in 
acute and chronic vascular inflammation in the context of CVD.

ACute infLAMMAtion

The acute inflammatory response is induced as a first line of defense 
against microbial infection and other “non-self ” stimuli. Antigen-
presenting cells express different receptors, of which the Toll-like 
receptor (TLR) family is best characterized. TLRs are especially 
sensitive to microbes products such as LPS, lipoproteins, and 
nucleic acids (14). Once activated, these receptors trigger complex 
signaling cascades resulting in changes in expression of hundreds 
of genes involved in immunity and inflammation. TLRs have been 
implicated in destabilizing plaques leading to atherothrombosis 
in the vessel wall. For example, TLR4 enhances macrophage 
responses to lipids and inflammation, whereas TLR2 potentiates 
inflammation more broadly in the vessel wall in both macrophages 
and vascular cells, an effect that may lead to superficial erosion of 
atherosclerotic lesions (15, 16). Recent studies have connected a 
range of acute inflammatory processes to lncRNA expression and 
found that lncRNAs can regulate the acute inflammatory response, 
opening new avenues for exploring pathophysiological insights 
that may lead to improved disease stage-specific diagnostics and 
therapeutic interventions.

Metastasis-associated lung adenocarcinoma transcript 1 
(MALAT1) is a conserved lncRNA whose expression correlates 
with many human cancers. Recent data also indicate its significance 
in immunity, and specifically in acute inflammation (17). MALAT1 
expression is increased in LPS-activated macrophages (17), cardiac 
microvascular endothelial cells (CMVEC), and in the hearts of rats 
with sepsis (18). Knockdown of MALAT1 increases the LPS-induced 
expression of TNFα and IL-6 in macrophages. Mechanistically, 
MALAT1 interacts with NF-κB in the nucleus to inhibit its DNA 
binding activity, and consequently decreases the production of 
inflammatory cytokines (17). MALAT1 was also found to interact 
with the polycomb protein EZH2 in CMVECs in response to 
LPS activation (18). In a recent study, MALAT1 expression 
was increased by LPS stimulation in murine cardiomyocytes 
and in cardiac tissue of a mouse sepsis model (19). MALAT1 
overexpression enhanced TNFα production on LPS-stimulated 
cardiomyocytes, while MALAT1 siRNA had an inhibitory effect, 
via serum amyloid antigen 3 (SAA3), an inflammatory ligand that 
can stimulate IL-6 and TNFα production, as observed in other cells 
such as endothelial (20) and mouse liver cells (21). Cardiomyocytes 

transfected with MALAT1 siRNA were less susceptible to LPS-
induced cell apoptosis, suggesting that MALAT1 induction is a 
mechanism of cardiomyocyte apoptosis or injury in response 
to sepsis (19). Collectively, MALAT1 differentially regulates 
inflammatory responses in a cell-specific manner.

lincRNA-Cox2, is a lncRNA neighboring the Ptgs2 (Cox2) 
gene, recently discovered as a key regulator of inflammatory 
responses mediating both the activation and repression of 
distinct classes of immune genes (22). LPS stimulation induced 
lincRNA-Cox2 expression in both dendritic cells and bone-
marrow derived macrophages (BMDM) in a similar pattern as 
Ptgs2 (22, 23). lincRNA-Cox2 expression is induced by LPS in 
a MyD88- and NF-κB–dependent manner and lincRNA-Cox2 
silencing/overexpression in BMDM regulates important immune 
genes such as TNFα, IL-6, CCL5, SOCS3, and STAT3 (22). Several 
mechanisms have been described for lincRNA-Cox2, including 
interaction with heterogeneous nuclear ribonucleoprotein 
(hnRNP) A/B and A2/B1 (22), degradation of IKB-α in the 
cytosol, and assembly into the SWItch/Sucrose NonFermentable 
(SWI/SNF) complex, thereby acting as a co-activator of NF-κB 
or inducing SWI/SNF-associated chromatin remodelling (24, 
25). In a recent study, lincRNA-Cox2 modulated TNFα–induced 
transcription of the IL-12b gene by promoting the recruitment 
of Mi-2/nucleosome remodeling and deacetylase (Mi-2/NuRD) 
repressor complex to the IL-12b promoter region (26). Taken 
together, rapid activation of lincRNA-Cox2 may regulate a range 
of acute inflammatory signaling pathways.

THRIL (TNFα and hnRNPL related immune-regulatory 
LincRNA) or linc1992, is a lncRNA that regulates TNFα 
expression through a negative feedback mechanism. THRIL 
binds specifically to heterogenous nuclear ribonucleoprotein L 
(hnRNPL) and forms a functional THRIL–hnRNPL complex 
that regulates transcription of the TNFα gene by binding to its 
promoter. THRIL is also required for expression of many immune-
response genes and regulators of TNFα expression. Clinically, 
THRIL expression correlated with the severity of symptoms in 
patients with Kawasaki disease, an acute inflammatory disease 
of childhood (27). This study provides strong evidence that 
THRIL is required for induction of TNFα expression and plays 
an important role in acute inflammation and innate immunity. 
Further studies will be of interest to verify these findings in other 
inflammatory contexts, including chronic inflammation such as 
atherosclerosis or diabetes.

ChRoniC infLAMMAtion

Chronic inflammation is a major contributing factor to vascular 
events, including atherosclerotic plaque development, plaque 
erosion, aortic aneurysm, and ischemic myocardial damage. 
Inflammation disturbs the homeostasis of the endothelium, 
leading to endothelial dysfunction, which is amongst the earliest 
processes involved in atherosclerotic initiation (28). The early 
response is characterised by activation of endothelial cells 
(ECs), triggered by biochemical (e.g., IL-1β, TNFα, oxLDL, 
etc.) and biomechanical stimulation in the form of disturbed 
blood flow [Rev by (29)]. Consequently, expression of adhesion 
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molecules (e.g., VCAM-1, ICAM-1, E-Selectin) and secretion 
of membrane-associated chemokines (e.g., MCP-1, fractalkine) 
fosters the recruitment of monocytes and different types of T 
cells to the vessel wall (14–17). Chronic endothelial activation 
leading to the loss of endothelial integrity increases the risk 
for atherosclerosis. This is often observed in patients with RA, 
an autoimmune disease that causes chronic inflammation of 
the joints and systemically in the vasculature (30). A strong 
relationship exists between RA and atherosclerosis, but causality 
remains unclear.

Spurlock et al. identified that the expression of the lncRNA 
lincRNA-p21 is significantly lower specifically in patients with RA 
compared to healthy subjects. No dysregulation of lincRNA-p21 
could be observed in systemic lupus erythematosus and Sjörgen’s 
syndrome (31). Interestingly, lincRNA-p21 could be restored to 
normal levels in RA patients treated with methotrexate (MTX), 
which is the most commonly used anti-rheumatic drug with anti-
inflammatory properties (32). In vitro analysis of Jurkat T cells 
confirmed the induction of lincRNA-p21 by MTX (31). Initial 
work discovered lincRNA-p21 as a repressor of p53-dependent 
transcriptional responses. Silencing of lincRNA-p21 affected 
the expression of hundreds of genes known to be repressed by 
p53, which could be rescued by inhibiting p53, suggesting that 
lincRNA-p21 functions as a downstream repressor for p53. This 
transcriptional repression by lincRNA-p21 is mediated through 
an interaction with hnRNP-K (33). Because p53 expression 
levels positively correlated with lincRNA-p21 expression in RA 
patients, basal lincRNA-p21 expression may be p53-independent 
in PBMCs. In addition, lincRNA-p21 was initially described to be 
regulated by p53 in the context of DNA damage response (33). To 
investigate whether specific inhibition of either ATM or DNA-
PKcs, two key upstream regulators of the DNA damage response 
(34, 35), could restore lincRNA-p21 or p53 expression, inhibition 
studies were performed. Indeed, MTX-mediated induction of 
p53 and lincRNA-p21 was blocked in Jurkat T cells treated with 
NU-7441 (i.e., inhibitor for DNA-PKcs), whereas there was no 
effect using low concentration of KU-55933 (inhibitor for ATM). 
Furthermore, using in vitro NF-κB luciferase reporter assays, 
silencing of lincRNA-p21 abrogated MTX-mediated inhibition 
of NF-κB activity. This effect could be simulated by using the 
NU-7441 inhibitor, demonstrating a link between lincRNA-p21 
and DNA-PKcs-mediated regulation of NF-κB pathway (31). This 
finding is consistent with previous reports, demonstrating that 
DNA-PKcs is a regulator of inflammation by phosphorylating 
p50, a member of the NF-κB pathway (36). Collectively, these 
findings suggest that MTX decreases the NF-κB pathway by 
increasing lincRNA-p21 levels through a DNA-PKcs-dependent 
mechanism (31).

Stuhlmüller et al. described high expression levels of 
the lncRNA H19 in synovial tissues and isolated synovial 
macrophages or synovial fibroblasts (SFB) from donor 
samples of RA patients compared to control subjects. H19 
was also induced in SFB from RA ex vivo using multiple pro-
inflammatory stimuli such as TNFα, IL-1β, or PDGF-BB. 
Whether elevated levels of H19 in RA reflects its role as a 
biomarker of inflammatory stimuli or as a pathogenic mediator 
remains unknown (37, 38). Future studies will be required 

to further define the functional role of lncRNA H19 in RA 
pathogenesis and CVD.

Genome wide associated studies (GWAS) have identified 
the INK4b-ARF-INK4a locus located on chromosome 9p21 
with multiple single nucleotide polymorphisms (SNPs) linked 
to coronary artery disease (CAD) (39–41), atherosclerosis (42), 
aortic aneurysm (43), ischemic stroke (41), type II diabetes 
(44) as well as specific cancer subtypes (45, 46). The lncRNA 
ANRIL (Antisense Non-coding RNA in the INK4 Locus) lies 
in opposite direction to the INK4b-ARF-INK4b locus, which 
contains the critical tumour suppressor genes p14ARF, p15INK4b 
and p16INK4a  (47). The SNPs associated with CAD do not 
correlate with well-established CAD risk factors, suggesting 
that this lncRNA is a novel independent driver for vascular 
inflammation. Specifically two ANRIL transcripts (EU741058 
and NR_003529) are significantly increased from patients with 
CAD in human atherosclerotic plaque tissue as well as peripheral 
blood mononuclear cells, whereas the most abundant isoform 
DQ485454 is not differentially expressed (48). Loss-of-function 
studies reduced cell viability of SMCs for siRNAs targeting 
exclusively NR_003529 or both NR_003529 and DQ485454 
isoforms (49). Moreover, ANRIL silencing increased the 
expression level of the antisense transcripts p15ARF and p16INK4b, 
both key regulators for senescence, apoptosis, and stem cell self-
renewal by the retinoblastoma-p53 pathway abrogating PRC-1/2 
binding to their loci (50). Additionally, ANRIL binds directly to 
PRC-1/2 components (i.e., CBX7 and/or SUZ12) supporting its 
role in regulating epigenetics (51). The multiple splice sites of 
ANRIL may result in isoform-specific effects, thus explaining 
some paradoxical findings. For example, an interesting isoform 
is circular ANRIL (cANRIL), which results from exon skipping 
events during RNA splicing (52), adding another layer of 
complexity for the biological understanding of the ANRIL 
locus. cANRIL binds to PES1, an essential 60S-preribosomal 
assembly factor, impairing pre-rRNA processing and ribosome 
biogenesis in SMCs and macrophages. As a consequence, 
cANRIL induces nucleolar stress and p53 activation, resulting 
in the inhibition of proliferation and induction of apoptosis, 
as observed for the linear ANRIL (53). Although ANRIL is 
an independent risk factor for CAD, its functional role in 
vascular inflammation in CVD still requires clarity based upon 
 transcript specificity.

Hu et al. (54) identified increased expression of the lncRNA 
RP5-833A20.1 in human foam cells. Gain-of-function studies 
demonstrated that RP5-833A20.1 reduced cholesterol efflux and 
increased inflammatory cytokines, including IL-1β, IL-6, and 
TNFα in THP-1 macrophages. Mechanistically, RP5-833A20.1 
decreased the expression of NFIA by inducing miR-382–5 
p expression. However, the specific mechanism of how RP5-
833A20.1 regulates miR-382–5 p expression for macrophage 
foam formation and verification of these findings in vivo will 
require further investigation (54).

Recently, Tontonoz et. al. demonstrated that in vivo delivery 
of the liver-expressed liver X receptor-induced lncRNA (LeXis) 
reduced aortic lesion size by Oil-red O staining (55). Since 
LeXis has been previously described to maintain hepatic sterol 
content and levels of serum cholesterol (56), the adenovirus-
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mediated LeXis overexpression in the liver was specifically 
designed using a thyroxine-binding globulin promoter. In line 
with their previous findings, LeXis overexpression reduced total 
serum cholesterol levels (55). This study raises the possibility 
for long-term lncRNA therapy in mice. Future studies that can 
overexpress lncRNAs in the liver or vessel wall may provide a 
novel therapeutic approach for regulating vascular inflammation 
 in CVD.

Recent studies have illustrated increased HOTAIR expression 
in PBMCs and serum exosomes of RA patients, while lower 

expression of HOTAIR was detected in differentiated osteoclasts 
and rheumatoid synoviocytes. Overexpression of HOTAIR using 
lentivirus decreased the expression of IL-17, IL-23, IL-1β, and 
TNFα, and inhibited the activation of NF-κB in LPS-treated 
chondrocytes in a miR-138 regulated manner (57). These 
findings are in line with a previous exploratory study where 
HOTAIR expression was significantly reduced in LPS-treated 
chondrocytes and a RA mouse model (58). However, findings 
from acute inflammatory states such as sepsis are opposite. Using 
a mouse model of sepsis, HOTAIR expression was significantly 

figuRe 1 |  LncRNAs in acute and chronic vascular inflammation. Highlighted lncRNAs from the text are shown along with their targets and biological 
consequences in response to acute (top) or chronic (bottom) vascular inflammation.
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increased in cardiomyocytes. HOTAIR silencing improved 
the cardiac function of septic mice, and markedly decreased 
TNFα production in the circulation and p65 phosphorylation 
in cardiomyocytes (59). These studies highlight a cell-type 
dependent role for HOTAIR in acute inflammation. Future 
studies will be required to identify potential compensatory 
mechanisms that may be activated in cardiovascular cell types 
versus chondrocytes after LPS activation.

ConCLusions And futuRe 
diReCtions

Despite current prevention interventions and guideline-based 
therapeutics, recurrent cardiovascular events after acute coronary 
syndromes remain elevated at ~10% of patients within one year 
and ~20% of patients within 36 months of initial presentation 
(60, 61). Biomarkers for systemic inflammation such as high 
sensitivity C-reactive protein (hsCRP) has been associated with 
increased risk for cardiovascular events (62). Although the role 
of inflammation in atherosclerosis has been identified over 150 
years ago by Virchow (63), only recently has the “inflammation 
hypothesis” in atherosclerosis been specifically tested with an 
anti-inflammatory drug targeting IL-1β. In the canakinumab 
anti-inflammatory thrombosis outcomes study (CANTOS), 
over 10,000 patients with elevated hsCRP at least 1 month 
post-myocardial infarction were randomized to receive the 
humanized monoclonal antibody canakinumab to neutralize 
IL-1β or placebo on top of usual therapy including statins. 
Impressively, recurrent cardiovascular events were reduced in the 
canakinumab treatment group independent of changes in lipid 
levels (64). As statin therapy lowers both LDL-C and inflammation 
(measured by hsCRP), CANTOS is the first clinical trial showing 
that lowering inflammation alone, without lowering LDL-C, 
significantly reduces cardiovascular events. Additional ongoing 
clinical trials using other anti-inflammatory drugs will likely 
provide further insights and impact clinical decision-making. 
For example, MTX is a widely used anti-inflammatory to treat 
RA patients (32). The cardiovascular inflammation reduction 
trial (CIRT) trial is currently investigating whether low dose of 
MTX administration will reduce the risk of cardiovascular events 
in patients with prior myocardial infraction and either type 2 
diabetes or metabolic syndrome, all associated with chronic 
inflammation ( ClinicalTrials. gov Identifier: NCT01594333) (65). 
Finally, the colchicine cardiovascular outcomes trial (COLCOT) 
will evaluate the long-term treatment of whether colchicine 
reduces rates of cardiovascular events in patients after myocardial 
infarction ( ClinicalTrials. gov Identifier: NCT02551094).

Our understanding of the estimated 50,000 human lncRNAs 
in regulating acute and chronic inflammatory processes in the 
vasculature remains nascent, although accumulating studies 
demonstrate that lncRNAs hold great promise as important 
regulators of vascular inflammation. Apart from their expression 
profile, functional in vivo findings are key to understand their 
true translational value in acute and chronic inflammation of 

the vasculature and links with cardiovascular disease states 
(Figure 1). Furthermore, emerging technical advances provide 
the ability to uncover novel lncRNA interactors (12). ANRIL 
represents a SNP-associated loci, which may bear relevance for 
CVD and other diseases. (39, 66). Sensitive biomarkers have 
emerged for chronic inflammation burden such as CRP, SAA, and 
IL-6 or vascular injury such as sICAM-1, sVCAM-1 and PTX3 
(67). However, these two types of biomarkers tend to correlate 
weakly with each other. Because the expression of some lncRNAs 
track with stage-specific pathophysiological processes and they 
can be measured in serum (68), lncRNAs provide new avenues 
for diagnostics. For example, distinct lncRNAs may shed light 
on inflammatory subsets associated with systemic autoimmune 
diseases (e.g., RA, SLE) versus inflammation localized to the 
vessel wall (e.g., coronary or peripheral artery disease). Recent 
screening efforts of plasma from patients with CAD revealed a 
lncRNA named CoroMarker (AC100865.1) that was significantly 
increased in CAD patients compared to controls (69, 70). It will 
be of interest to examine whether this lncRNA is specific to 
CAD or increased in other chronic inflammatory diseases. While 
their translational value remains to be elucidated, ncRNA-based 
targeting strategies such as using antisense oligonucleotides 
(ASO) have already been approved for food and drug 
administration-approved drugs. Similar to miRNAs, lncRNAs 
are often differentially regulated in a cell-specific manner or in 
response to specific pathophysiological stimuli providing unique 
properties for therapeutic intervention. Challenges remain with 
the efficiency and specificity of delivery, which may be overcome 
by chemical modifications and/or nanoparticle carriers (71, 72). 
For example, ASOs that target liver-specific ligands [e.g., the 
liver-specific asialoglycoprotein receptor (ASGPR)] appear to 
confer strong efficacy and reasonable safety (73). Analogous 
paradigms for ASOs targeting vascular-specific ligands could 
provide novel therapeutics for vascular inflammation.

Collectively, because lncRNAs provide a new layer of control of 
protein-coding genes, lncRNAs may hold promise for uncovering 
novel pathophysiological insights, stage-specific biomarkers, 
and new targets for vascular inflammation in acute and  
chronic disease states.
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