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Pericytes are mural cells surrounding blood vessels, adjacent to endothelial cells.

Pericytes play critical roles in maturation and maintenance of vascular branching

morphogenesis. In the central nervous system (CNS), pericytes are necessary for

the formation and regulation of the blood-brain barrier (BBB) and pericyte deficiency

accompanies CNS diseases including multiple sclerosis, diabetic retinopathy, neonatal

intraventricular hemorrhage, and neurodegenerative disorders. Despite the importance

of pericytes, their developmental origins and phenotypic diversity remain incompletely

understood. Pericytes express multiple markers and the origin of pericytes differs by

tissue, which may cause difficulty for the identification and understanding of the ontogeny

of pericytes. Also, pericytes have the potential to give rise to different tissues in vitro but

this is not clear in vivo. These studies indicate that pericytes are heterogeneous in a

tissue- and context- dependent manner. This short review focuses on recent studies

about identification of pericytes, heterogeneous origin of pericytes during development

and in adults, and the differentiation capacity of pericytes, and pericytes in pathological

settings.
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INTRODUCTION

Pericytes are mural cells surrounding blood vessels and embedded within the basement membrane
of the vasculature and adjacent to endothelial cells (1). Pericytes cover microvessels such as
arterioles, venules and capillaries, while large-diameter vessels like arteries and veins are covered
by vascular smooth muscle cells (VSMCs), the other type of mural cells. Mural cells are
known to play fundamental roles in vascular network formation: pericyte coverage is critical
for vascular stability and structure. In the central nervous system (CNS), pericytes play an
essential role in the maturation and maintenance of the blood brain barrier (BBB) (2–4), which
is established by the interaction between the microvessels (endothelial cells and pericytes) and
surrounding astrocytes within the neurovascular unit. The BBB is a diffusion barrier which
blocks the inflow of various molecules and toxins from blood to brain, but not all CNS
vessels equally contribute to the BBB: several areas of the brain including the pituitary gland,
pineal gland, subventricular zones and choroid plexus are not protected by the BBB. The
diversity of the BBB architecture and function remains largely unexplored. Given that pericyte
density, morphology, and function vary in different vascular beds (5), these observations may
reflect their heterogeneous characteristics. In this review, we give an overview of pericytes with
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a focus on their heterogeneity. A more objective definition of
different subsets of pericytes may help to shed light on novel
therapeutic approaches for neuro-vascular diseases associated
with pericyte loss such as stroke and Alzheimer’s disease.

IDENTIFICATION OF PERICYTES

Morphological characteristics of pericytes were defined by
electron microscopy: pericytes possess a cell body with a
prominent nucleus and contain a small amount of cytoplasm
with several long processes covering the endothelial wall.
Pericytes are embedded in the basement membrane where
they interact with endothelial cells: pericyte-endothelial cell
interaction enhances basement membrane assembly (Figure 1).

Although the ultrastructural characteristics of pericytes has
been well studied using electron microscopy, pericytes remain
a relatively poorly defined cell type, without highly specific
markers available for their identification (6). The following
markers have been used as pericyte markers, but no general
pan-pericyte molecular marker has been discovered because of
their heterogeneous distributions and functions in various tissues
(2, 5, 7). We should note that these markers are also expressed
by other cell types including perivascular fibroblasts, VSMCs
andmacrophages. Chondroitin sulfate proteoglycan4/neural glial
antigen 2 (NG2) is expressed on the surface of pericytes during
angiogenesis (8, 9), but is also expressed on glial precursor
O2A cells in the CNS, which generate either oligodendrocytes
or astrocytes in vitro. Platelet-derived growth factor receptor
beta (PDGFRβ) (10, 11) is one of the most widely studied
molecular marker expressed in pericytes. PDGF-B/PDGFRβ

signaling is essential for pericyte proliferation and recruitment
to blood vessels. Alpha smooth muscle actin (αSMA) (12),
desmin (13), and vimentin (14) are contractile filaments.
Regulator of G protein signaling 5 (RGS5) (15, 16) is a
GTPase activating protein for Giα and Gqα, and the expression
pattern of RGS5 overlaps with expression pattern of NG2
and PDGFRβ. CD146, also known as melanoma cell adhesion
molecule (MCAM) has been used as a marker for pericytes
and VSMCs as well as endothelial cells (17). Recent studies
suggest that CD146 regulates PDGFRβ activation and involves
in BBB integrity (18) and is essential for pericyte recruitment
(19). CD13/aminopeptidase N (APN) (20) is a membrane-bound
metalloprotease which was originally identified as a myeloid
cell marker (21). CD13 has been used as a surface marker for
brain pericytes (22, 23). Overall, current immunohistochemical
approaches to identify pericytes use antibodies against these
proteins, depending on tissue and microvessel types. The
expression of these markers varies depending on developmental
stages, organs, pathological situations, and in vitro or in vivo
conditions. Therefore, anatomical characteristics combined with
at least two molecular markers are important to define pericytes.
Indeed, recent studies have revealed that double PDGFRβ-
EGFP and NG2-DsRed fluorescence reporter expression patterns
are valuable for pericyte/mural cell identification of the CNS
tissues (24, 25). Although the expression of αSMA is known
as a marker for both pericytes and VSMCs, capillary pericytes

do not express αSMA (12): capillary pericytes in embryonic
skin express only NG2 and PDGFRβ but not αSMA (26).
In contrast, capillary pericytes in tumors do express αSMA
(27).

Genetic mouse models including transgenic markers,
fluorescent reporters and lineage tracing lines are valuable
tools to trace the pericyte lineage during development and in
pathological conditions: nuclear β-galactosidase reporter (28) as
well as emerging fluorescent reporter and lineage tracing lines
using the promoter of PDGFRβ (24, 29), NG2 (24, 30, 31), or
Tbx18 (32) are available. Alternatively, a fluorescent Nissl dye
specifically labels brain pericytes and enables the imaging in the
live mouse (33).

DEVELOPMENTAL ORIGIN OF PERICYTES

The developmental origin of pericytes is heterogeneous, and
much remains to be deciphered. Most commonly described, and
best understood is their origin from mesenchymal stem cells
(34). Chick-quail chimera analysis (35, 36) and genetic lineage
tracing experiments using neural crest-specific Cre recombinase
lines such as Wnt-1-Cre and Sox10-Cre mice in combination
with a Cre-mediated reporter line demonstrate that neural crest
contributes to pericytes in the face, brain, and thymus (36–40).
Using similar genetic lineage tracing experiments, the origin of
pericytes in the gut (41), lung (42), and liver (43) in mice has been
traced to themesothelium, a single layer of squamous epithelium.
In the heart, the epicardial mesothelium gives rise to coronary
pericytes and VSMCs (44–46). Recent studies have demonstrated
that some endocardium also contributes to coronary pericytes
(47). These studies clearly indicate that the origin of pericytes is
heterogeneous in a tissue- and context- dependent manner.

We have recently revealed that myeloid progenitor cells
differentiate into a subset of pericytes in the ectoderm-
derived skin and brain during development (Figure 2) (26).
Using high-resolution whole-mount imaging and a series of
genetic lineage tracing experiments with hematopoietic cell-
specific Vav-Cre and myeloid cell-specific CD11b-Cre lines in
combination with a Cre-mediated fluorescent reporter line,
we found that the developmental sources of pericytes are
heterogeneous and some pericytes are derived from myeloid
progenitors in the developing skin and brain. Mutant mice
lacking myeloid lineage exhibit defective pericyte development.
Moreover, TGF-β promotes the differentiation of myeloid
progenitors into pericytes in vitro and in vivo. In a similar
line of research, some CD31+ F4/80+ macrophages contribute
to cerebrovascular pericytes during embryogenesis (48).
Insight into the heterogeneous origins of pericytes will have
important implications for understanding the establishment
of the organ-specific vascular networks during embryonic
angiogenesis. Moreover, whether pericytes of different
origins have different functions in these tissues remains to
be elucidated.

It is an intriguing question of whether pericytes of
heterogeneous origins at embryonic stages remain in adult: one
possible scenario is that a subtype of pericytes may become
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FIGURE 1 | Morphology of pericytes. (A) Schematic image of pericyte-endothelial cell interaction. (B) Whole-mount immunostaining of mouse embryonic skin with

antibodies to pericytes (NG2, red) and endothelial cells (PECAM-1, blue) at embryonic day (E) 15.5. Pericytes are semicircular shape and cover blood vessels. (C) Triple

immunostaining of E15.5 mouse embryonic brain with antibodies to pericytes (NG2, red; PDGFRβ, green) and endothelial cells (PECAM-1, blue). Scale bars, 50µm.

FIGURE 2 | Heterogeneity in the origin of pericytes. Pericytes in both endoderm and mesoderm-derived organs, such as lung, liver, gut, and heart have mesoderm

origin (orange). Pericytes in the aorta region have several origins: secondary heart field, neural crest, and somite (asterisk). Previous studies have demonstrated that

ectoderm-derived neural crest give rise to pericytes in brain and thymus (green). Our group has recently shown that mesoderm-derived myeloid progenitor cells

differentiate into pericytes in ectoderm-derived organs such as skin and brain through TGF-β signaling during development.

dominant in adult. Moreover, adult tissue-resident progenitors
contribute to pericytes in pathological situations. Indeed,
mesenchymal stem cells generate pericytes after radiation therapy
(49), while mesenchymal tumors such as bone and soft tissue
sarcomas can be derived from pericytes (50). Glioblastoma stem
cells generate pericytes to support tumor growth (51). Defining
the origin of adult tissue pericytes needs the development of a
cell-type specific inducible Cre recombinase line such as CreER.
Transient Cre activity produces fluorescent reporter positive
cells at a defined developmental time point and then allows
for the tracking of their progeny in adults. The inducible
lineage tracing experiment also allows us to examine whether
pericytes of different origins could differentially contribute to the
neovascularization processes in pathological conditions such as
tumor angiogenesis and wound healing.

PERICYTES IN ADULT AND DISEASES

Pericytes have been reported as a component of stem cell
niches and mesenchymal stem cells. In the bone marrow,
NG2+ pericytes in arterioles promote hematopoietic stem cell
(HSC) quiescence and are important for HSC maintenance
(52). Likewise, NG2+/Nestin+ pericytes associate with portal
blood vessels in fetal liver and are required for the HSC niche
(53). In the adult brain, neural stem cells (NSCs) located in
the largest germinal region of the forebrain, the ventricular-
subventricular zone (V-SVZ). Endothelial cells and pericytes in
the V-SVZ form the NSC niche, and V-SVZ pericytes secrete
diffusible factors that increase the proliferation and enhance
neuronal differentiation (22). In vitro differentiation capacity
of pericytes into mesenchymal cell types (e.g., adipocytes,
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chondrocytes, osteoblasts, fibroblasts, VSMCs) has been proven
in a multitude of studies (54–58). Pericytes facilitate repair
process after myocardial infarction in the heart (59, 60), while
pericytes regenerate injured and dystrophic skeletal muscles
(61). In vivo lineage tracing experiments have reported pericytes
as progenitors of white adipocytes (62), follicular dendritic
cells (63), odontoblasts (mesenchyme-derived dentine producing
cells) (64), and skeletal muscle (61). Differentiation capacities
of pericytes into neurons, astrocytes, and oligodendrocytes have
been also reported (56). In addition, pericytes have been reported
to play a major role as fibroblast progenitors in fibrotic responses
(65).

Cardiac pericytes have been studied as a therapeutic target
after injury. Cardiac pericytes account for up to 5% of the
total non-cardiomyocyte cell population (66). Recent studies
identified microvascular pericytes in the human ventricular
myocardium and demonstrated that human cardiac pericytes
express mesenchymal stem/stromal cell markers including CD44,
CD73, CD90, and CD105 (58). Indeed, cardiac pericytes
have the capacity to differentiate into mesodermal lineage:
osteo-, chondro-, and adipogenesis, but no potential for skeletal
myogenesis in vitro (58). Many cardiac diseases are associated
with fibrosis, an accumulation of fibroblasts and an excess of
extracellular matrix proteins which may affect the architecture
and function of the organ or the tissue. Pericytes have been shown
to contribute to fibrosis organ-dependently (67): NG2+/Nestin−

type 1 pericytes are recruited and accumulated in the ischemic
interstitial space around fibrotic tissue but do not contribute to
fibrosis (67).

However, a series of lineage tracing experiments with
Tbx18CreERT2 line, which is selectively expressed by pericytes
and VSMCs in multiple adult organs, has revealed that adult
pericytes of heart, brain, skeletal muscle and fat depots do
not behave as multipotent progenitors in aging and different
pathological situations such as a high-fat diet and injury. In
addition, pericytes do not contribute to fibroblasts in fibrotic
responses (32). These results are in contrast to the previous
studies that demonstrated the multipotent potential of pericytes.
The discrepancies might be explained by the differing methods
used in the studies to identify pericytes as well as the different

behavior of in vitro and in vivo pericytes. The population of
pericytes which can differentiate into mesenchymal cell types
may vary by organ and developmental stage in vivo. It is also
possible that pericyte differentiation requires stem cell-like cells
of non-pericyte origin (64).

CONCLUSION

The absence of any single marker to identify pericytes
complicates the study of the ontogeny and the differentiation
capacity of pericytes. Much remains to be elucidated regarding
how and when the origin of pericytes in an organ is determined
and whether pericytes have potential for differentiation in vivo.
There are questions about how pericytes derived from different
origins behave when they co-exist in a tissue: do they show
identical gene expression patterning and behavior in adult
tissues under normal and pathological conditions? Future studies
using pericyte-specific lineage tracing mice and precise gene-
expression profiling will pave the way for the understanding of
the spatial-temporal pericyte behavior in vivo andmay contribute
to new therapeutic strategies for diseases associated with pericyte
loss and/or dysfunction.
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