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Vascular tissue engineering is an area of regenerative medicine that attempts to

create functional replacement tissue for defective segments of the vascular network.

One approach to vascular tissue engineering utilizes seeding of biodegradable tubular

scaffolds with stem (and/or progenitor) cells wherein the seeded cells initiate scaffold

remodeling and prevent thrombosis through paracrine signaling to endogenous cells.

Stem cells have received an abundance of attention in recent literature regarding the

mechanism of their paracrine therapeutic effect. However, very little of this mechanistic

research has been performed under the aegis of vascular tissue engineering. Therefore,

the scope of this review includes the current state of TEVGs generated using the

incorporation of stem cells in biodegradable scaffolds and potential cell-free directions

for TEVGs based on stem cell secreted products. The current generation of stem

cell-seeded vascular scaffolds are based on the premise that cells should be obtained

from an autologous source. However, the reduced regenerative capacity of stem cells

from certain patient groups limits the therapeutic potential of an autologous approach.

This limitation prompts the need to investigate allogeneic stem cells or stem cell secreted

products as therapeutic bases for TEVGs. The role of stem cell derived products,

particularly extracellular vesicles (EVs), in vascular tissue engineering is exciting due

to their potential use as a cell-free therapeutic base. EVs offer many benefits as a

therapeutic base for functionalizing vascular scaffolds such as cell specific targeting,

physiological delivery of cargo to target cells, reduced immunogenicity, and stability under

physiological conditions. However, a number of points must be addressed prior to the

effective translation of TEVG technologies that incorporate stem cell derived EVs such

as standardizing stem cell culture conditions, EV isolation, scaffold functionalization with

EVs, and establishing the therapeutic benefit of this combination treatment.
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INTRODUCTION

Vascular tissue engineering is an area of regenerative medicine
that attempts to restore defective segments of the vascular
network. One approach to vascular tissue engineering is to
implant biodegradable tubular scaffolds seeded with appropriate
cells. Research has focused on lining the lumen of the scaffold
with endothelial progenitor cells (1–5), self-assembly of vascular
grafts by in vitro culture of fused vascular cell sheets (6–12),
seeding scaffolds with native vascular cells (13–16), progenitor
cells pre-differentiated into vascular phenotypes (17–22) using
biomechanical/biochemical stimuli [as reviewed in Maul et al.
(23)], and pluripotent stem cells pre-differentiated into vascular
phenotypes (24, 25). However, employing native vascular cells,
terminally differentiated progenitor/pluripotent cells, or self-
assembled cell sheets requires extended culture periods and
the use of expensive culture media that is often derived
from xenogeneic sources. Seeding biodegradable scaffolds with
undifferentiated stem (and/or progenitor) cells initiates scaffold
remodeling through paracrine signaling to endogenous cells
(26, 27). Seeding vascular scaffolds with stem cells also bypasses
many of the aforementioned limitations due to the fact that a
sufficient number of implant-ready cells can be acquired from
a single harvest, therefore eliminating the time and resources
spent culturing or differentiating cells. The motivation for this
review is that stem/progenitor cells have received an abundance
of attention in recent literature regarding the mechanism of their
paracrine therapeutic effect. However, this parallel research has
yet to translate fully to the field of vascular tissue engineering.
Therefore, the scope of this review includes the current state
of TEVGs generated using the incorporation of stem cells in
biodegradable scaffolds and potential cell-free directions for TEVGs
based on stem cell secreted products (Figure 1).

STEM CELL BASED TEVG STUDIES

Numerous studies have demonstrated that implanting
biodegradable vascular scaffolds, seeded with stem cells from
a variety of sources, triggers the development of functional,
immuno-compatible, native-like vascular replacements
(Table 1). Bone marrow mononuclear cells (BM-MNCs)
have been employed in numerous preclinical (26, 28–31, 33, 36–
38, 43, 44) and clinical studies (28, 32, 51, 52). BM-MNCs are
a heterogeneous population comprised of mesenchymal stem
cells (MSCs), endothelial precursor cells, mature endothelial
cells, hematopoietic stem cells, monocytes, CD4+ T cells, CD8+
T cells, B cells, and natural killer cells (26). Recently, it has
been shown that BM-MNCs have a dose dependent effect on
scaffold development when implanted as an inferior vena cava
interposition in a mouse model whereby increasing BM-MNC
number increased graft patency and decreased the number of
infiltrated macrophages (42). Purified MSCs have also been
employed in vascular tissue engineering and are obtained from
various sources. MSCs are adherent adult progenitor cells with
the ability to self-renew and differentiate into a variety of cells
with a more specialized function [as reviewed in Huang and Li

(53)]. Furthermore, MSCs secrete a variety of angiogenic and
arteriogenic growth factors and cytokines (as discussed in section
Allogeneic MSCs). Recent literature suggests that MSCs could be
renamed Medicinal Signaling Cells to emphasize that MSCs do
not differentiate at the site of injury (and are therefore not true
stem cells), but rather signal to endogenous cells to regenerate
and/or replace the injured/absent tissue (54). Bone marrow
derived MSCs (BM-MSCs), purified from BM-MNCs, have
demonstrated favorable preclinical findings in TEVGs (45–47).
Similarly, adipose derived MSCs (ADMSCs) (48, 55) and muscle
derived MSCs (49, 56) have been used in TEVG studies. Studies
employing pericytes are also included in this review (50) as
they have been shown to express MSC markers and display the
capacity for tri-lineage differentiation [as reviewed in Crisan et
al. (57)].

AUTOLOGOUS STEM CELLS

Numerous preclinical (28–31, 38) and clinical studies (32, 51,
52, 58) have used autologous stem cells as a cellular base for
vascular scaffolds. Autologous stem cell studies have focused
on restoring vascular integrity in pediatric/young patients with
congenital heart defects and have demonstrated favorable long
term clinical results (32). However, a combination of in vitro
and in vivo studies has demonstrated the diminished regenerative
potential of stem cells in vascular tissue engineering when
harvested from elderly or diabetic patients (Figure 2). The
ability of ADMSCs to prevent acute thrombosis and encourage
graft remodeling in a murine model is reduced when cells are
harvested from elderly or diabetic patient groups and seeded
on a PEUU scaffold (48) using established methods (60, 61).
Furthermore, the ability of ADMSCs from elderly or diabetic
patients to encourage smooth muscle cell migration and secrete
factors that promote fibrinolysis is also decreased (48, 59).
The work of Krawiec et al. therefore highlights the limitations
of an autologous stem cell approach as many of the patient
groups in need of regenerative therapies are elderly and/or
diabetic e.g., coronary/peripheral bypass patients and end stage
renal disease patients. Furthermore, the diminished regenerative
potential of elderly/diabetic stem cells may expand to include
more degenerative conditions. However, the inherent limitations
of an autologous stem cell approach can be largely bypassed by
using allogeneic MSCs harvested from young healthy donors.

ALLOGENEIC MSCs

MSCs are an appropriate candidate for allogeneic stem cell
therapies as they are immune evasive. MSC immune evasion
can be partially attributed to their low expression of major
histocompatibility complex (MHC) class I antigens and freedom
from expression of MHC class II antigens which are both
associated with immune rejection (62, 63). Similarly, the MSC
secretome has been shown to suppress immune response by
inhibiting T cell proliferation and monocyte maturation and
also by promoting regulatory T cells and M2 macrophages (64).
Although allogeneic MSCs have not yet been investigated as a
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FIGURE 1 | Current methods and future perspectives for stem cell-based tissue engineered vascular grafts.

cellular base for TEVGs, the use of allogeneic fibroblasts for
generating vascular grafts by self-assembly has been proven
safe for use in humans as arteriovenous fistulas following
devitalization (12). The use of allogeneic fibroblasts highlights
the premise of employing allogeneic cells in vascular tissue
engineering. Furthermore, other fields of tissue engineering have
employed allogeneic MSCs to safely and effectively regenerate
bone (65–67), cartilage (68–70), skin (71, 72), and nerve (73).

Clinical studies of allogeneic MSCs in the broader field of
cardiovascular disease have also presented convincing evidence
to suggest that allogeneic MSCs are minimally immunogenic and
induce an equivalent therapeutic response when compared to
autologous MSCs. The POSEIDON randomized trial compared
the safety and efficacy of allogeneic MSCs to autologous
MSCs in patients with ischemic cardiomyopathy. The trial
results found that transendocardial delivery of allogeneic MSCs
did not stimulate significant donor-specific immune reactions
and was also associated with a reduction in left ventricle
volume and an increase in ejection fraction comparable to
treatment with autologous MSCs (74). It has also been
demonstrated that transendocardial injections of allogeneic
MSCs produce a dose dependent reduction in major adverse
events in chronic heart failure patients (75). Furthermore,
adventitial administration of commercially available allogeneic
MSCs to the coronary arteries of myocardial infarction (MI)
patients showed that allogeneic MSCs were well tolerated,
with no serious adverse events, and significantly increased
both ejection fraction and ventricular stroke volume (76).

The safety and therapeutic efficacy of administering allogeneic
MSCs to treat MI has also been demonstrated separately
in both large (77) and small animal preclinical models
(78). Combined, the preceding evidence supports the premise
of employing allogeneic vascular cells as a cellular base
for developing TEVGs and also the safety and efficacy
of administering allogeneic MSCs to treat cardiovascular
conditions. The use of allogeneic MSCs is therefore one potential
future direction for stem cell based TEVGs that has yet to be fully
investigated.

REMODELING PROCESS OF STEM CELL
SEEDED VASCULAR SCAFFOLDS

Despite the great success of directly incorporating stem
cells in vascular tissue engineered scaffolds, evidence
supporting a paracrine mechanism as the main effector
of stem cell therapy indicates the potential of employing
stem cell secreted products as a more straightforward,
cell-free therapeutic base for tissue engineering (Figure 1).
Compelling evidence for the paracrine effect of stem
cells in vascular tissue engineering is that remodeling of
implanted vascular scaffolds is mediated by an inflammatory
process (26, 27, 42), and that seeded stem cells signal the
recruitment and moderation of the immune cells that trigger
the required inflammatory process in a paracrine manner
(26, 27, 35).
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TABLE 1 | Studies that have implanted scaffolds seeded with stem cells as vascular grafts.

References Type Origin Model Source Implant Duration Patency

(28) BM-MNC Canine Beagle dog Auto IVC 2 years 100%

(29) BM-MNC Canine Beagle dog Auto IVC 4 weeks 100%

(30) BM-MNC Canine Beagle dog Auto IVC 6 months 100%

(31) BM-MNC Ovine Lamb Auto IVC 6 months 100%

(32) BM-MNC Human Human Auto CPC 5.8 years 100%

(33) BM-MNC Human Immunodeficient mouse Xeno IVC 6 months 100%

(26) BM-MNC Human Immunodeficient mouse Xeno IVC 24 weeks 100%

(27) BM-MNC Murine C57BL/6 mouse Syng IVC 2 weeks 68%

(34) BM-MNC Human SCID/bg mouse Xeno IVC 10 weeks 100%

(35) BM-MNC Murine C57BL/6 mouse Syng IVC 6 months 100%

(36) BM-MNC Murine C57BL/6 mouse Syng IVC 4 weeks 100%

(37) BM-MNC Murine C57BL/6 mouse Syng IVC 7 months 72% Survival

(38) BM-MNC Ovine Lamb Auto IVC 6 months 100%

(39) BM-MNC Ovine Lamb Auto IVC 6 months 100%

(40) BM-MNC Murine C57BL/6 mouse Syng IVC 2 weeks 78% (Filter Group)

(41) BM-MNC Unclear C57BL/6 mouse Unclear IVC 8 weeks Unclear

(42) BM-MNC Murine C57BL/6 mouse Syng IVC 2 weeks 95% (10 × 106 cells Group)

(43) BM-MNC Murine C57BL/6 mouse Syng IVC 2 weeks 88.9%

(44) BM-MNC Ovine Lamb Syng/Auto CaVC 6 months 25%

(45) BM-MSC Canine Beagle dog Auto AA 6 months 100%

(46) BM-MSC Human Nude mouse Xeno CA 35 days 100%

(47) BM-MSC Human Athymic rat Xeno CA 60 days 100%

(48) ADMSC Human Lewis rat Xeno AA 8 weeks 100%

(48) ADMSC Human Lewis rat Xeno AA 8 weeks 100%

(49) MD-MSC Rat Lewis rat Syng AA 8 weeks 65%

(50) Pericytes Human Lewis rat Xeno AA 8 weeks 100%

BM-MNC, Bone Marrow Mononuclear Cells; Auto, Autologous; IVC, Inferior Vena Cava; CPC, Cavopulmonary connection; Xeno, Xeongeneic; Syng, Syngeneic; CaVC, Caudal Vena

Cava; AA, Abdominal Aorta; CA, Carotid Artery.

The role of inflammation in vascular graft remodeling was
initially demonstrated through observations that host monocyte
and macrophage infiltration precedes the repopulation of
scaffolds with vascular cells (26). Subsequently, it was
demonstrated that peak macrophage infiltration coincides
with the formation of functional vascular tissue and that
depleting the host of macrophages completely inhibits
the formation of neo-tissue (27). Furthermore, the role of
modulating host immune cells was demonstrated by preventing
host monocytes from secreting pro-inflammatory factors,
through inhibition of TGF-β receptor 1, which significantly
increased unseeded scaffold patency relative to untreated
controls (79). Functionalization of vascular scaffolds to
locally release TGF-β1 inhibitor was proven to be as effective
as seeding BM-MNCs in promoting graft patency (41).
Therefore, both recruitment and modulation of host immune
cells are required to ensure the formation of a functional
neo-vessel.

Evidence for the paracrine role of seeded stem cells in
vascular scaffold remodeling is that seeded BM-MNCs reside
in the scaffold for <7 days in vivo and are not incorporated

into the developing neo-vessel (26, 35). Rather, the transient
presence of BM-MNCs significantly increases the recruitment
of host immune cells (monocytes and macrophages) compared
to unseeded controls, partially through the secretion of MCP-
1 (26). Subsequently, functionalization of vascular scaffolds
to locally release MCP-1 was proven to be significantly
more effective than seeded BM-MNCs in recruiting host
monocytes (26). Furthermore, BM-MNCs have been shown
to suppress the expression of M1 macrophage phenotype,
the presence of which has been shown to decrease graft
patency and remodeling (27). Seeded stem cells therefore
modulate both the infiltration and phenotype of the host
immune cells that mediate the vascular remodeling process
in a paracrine manner through the secretion of bioactive
products.

The concept of moving toward a cell-free approach by
employing stem cell secreted products is to preserve the
formation of neo-tissue while also removing the potential
safety, regulatory, and practicality issues of cellular incorporation
such as the use of stem cells with damaged/mutated DNA,
undesirable trans-differentiation of persistent stem cells, and
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FIGURE 2 | Combination of in vitro and in vivo studies that demonstrate the diminished regenerative potential of stem cells in vascular tissue engineering when

harvested from elderly or diabetic patients. (A–D) The ability of ADMSCs from elderly or diabetic patients to encourage smooth muscle cell migration and secrete

factors that promote fibrinolysis is decreased (48, 59). (E–G) The ability of ADMSCs to prevent acute thrombosis and encourage remodeling when seeded on a PEUU

scaffold implanted in a murine model is reduced when harvested from elderly or diabetic patient groups (48). Adapted from Krawiec et al. (48, 59) with permission from

Mary Ann Liebert, Inc.

micro-vessel clotting in the case of stem cell relocation (80).
It is important to note that TEVGs formed using cell secreted
products may be better described as Tissue Regenerative Vascular
Grafts to reflect the departure from the traditional cell based
paradigm.

MSC SECRETED FACTORS/CONDITIONED
MEDIA

Stem cells, particularly MSCs, secrete a range of bioactive
products that have an indirect or trophic effect on
surrounding cells (81) and it has been proposed that
these MSC-secreted bioactive products could replace
MSCs as a therapeutic base for cell-free vascular tissue

engineering (26, 41). One such manner of moving toward
a cell-free approach is to utilize MSC conditioned media
(MSC-CM) as it has been frequently demonstrated that
MSCs secrete trophic factors into their surrounding
media. However, the use of MSC-CM in vascular tissue
engineering has demonstrated poor initial results. Scaffolds
incubated over-night in BM-MNC-CM, following over-
night incubation of the cells in serum-free media at
5% O2, exhibited poor patency rates in vivo which were
comparable to PBS incubated scaffolds (patent: 2/10 vs. 6/25)
(43).

Despite the discouraging results observed by Best et al,
free injections of MSC-CM to treat MI have exhibited pre-
clinical success. Intracardial administration of CM from
BM-MSCs, under hypoxic conditions, and overexpressing the
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survival gene Akt1, significantly decreased infarct size and
apoptosis in a murine model of MI (82). Intravenous and
intracoronary administration of CM harvested from human
embryonic stem cell (hESC) derived MSC was associated with
a 60% reduction in infarct size, improvements in systolic
and diastolic cardiac performance and increased capillary
density in an infarct porcine model (83, 84). Furthermore,
co-administration of MSC-CM and the parent ADMSCs
synergistically increased neovascularization of infarcted
myocardium compared to saline control in a porcine model of
MI (77).

Culture conditions of MSCs can greatly alter the content
of MSC-CM (85), therefore optimization of culture conditions
could generate a more effective therapeutic. Exposing BM-
MSCs to hypoxic conditions has been shown to induce a
>1.5 fold increase in an array of angiogenic/arteriogeneic
cytokine genes; furthermore, administering the same MSC-CM
to a murine model of hind limb ischemia enhanced collateral
flow, improved limb function, reduced auto-amputation, and
attenuated muscle atrophy when compared with control media
(86). Forming spheroids of BM-MSCs (25k cells) using
the hanging drop method has been shown to increase the
production of anti-inflammatory agents TSG-6 and PGE2
compared to dissociated MSCs, and the administration of the
resulting MSC-CM attenuated macrophage phenotype in vitro
and significantly lowered inflammation in a mouse model
of peritonitis (87, 88). Exposing MSC spheroids to hypoxic
conditions and inflammatory stimuli further enhanced the

secretion of PGE2 and VEGF (85) and encapsulating MSC
spheroids in unmodified or RGD modified fibrin gels has also
been shown to increase MSC secretion of VEGF and PGE2
(89–91). However, recent findings suggest that MSCs seeded
onto macroporous scaffolds secrete significantly higher levels
of pro-angiogenic factors compared to MSCs encapsulated in
fibrin gels (92). Furthermore, culturing ADMSCs on electrospun
fibers produces significantly higher levels of anti-inflammatory
and pro-angiogenic cytokines compared to those cultured on
plates (93). Combined, the preceding evidence suggests that
culturing MSC spheroids in 3D hypoxic environments, and
exposing cells to an inflammatory stimulus, enhances the anti-
inflammatory and pro-angiogenic potential of the resulting
MSC-CM.

Providing a therapeutic effect using MSC secreted factors
or MSC-CM is limited by the difficulties in delivering
these products to the intended cell type and also by their
short residence time in vivo which necessitates high initial
concentrations. These limitations can largely be overcome by
employing only the extracellular vesicles (EVs) secreted by
stem cells. EVs offer many benefits as a therapeutic base for
functionalizing vascular scaffolds such as cell specific targeting
via the presentation of surface/membrane proteins (94, 95),
physiological delivery of cargo to target cells (96, 97), reduced
immunogenicity and stability under physiological conditions
including protection of cargo from enzymatic degradation
(98) and bypass of compliment activation (95, 99, 100).
The potential of employing EVs as a therapeutic base for

FIGURE 3 | Exosomes (30–200 nm) are released by cells when intracellular multi-vesicle bodies form via invaginations of the cell membrane and are selectively loaded

with endosomes containing protein, mRNA and miRNA. Fusion of the multi-vesicle body with the cell membrane releases these endosomes as exosomes.

Micro-vesicles (200–1,000 nm) are released via direct outward budding of the cell membrane and contain protein, mRNA and miRNA. The loading of microvesicle

cargo is less selective than exosomes and membrane proteins are more reflective of the parent cell membrane due to direct budding.
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functionalizing vascular scaffolds is explored in the following
section.

MSC DERIVED EXTRACELLULAR
VESICLES

EVs are cell-derived phospholipid membrane based nano-
particles that present with functional surface/membrane proteins
and contain protein and RNA species that dynamically reflect
the state of the parent cell and tissue (101). EVs are produced
by most cells in the body (102, 103) and serve to transmit
biological signals, transfer proteins/nucleic acids, and induce
biological effects on target cells via surface receptor interactions,
membrane fusion or endocytosis of the EVs by the target cell
(96, 97). EVs can be categorized into three classes based on their
cellular origins. Exosomes (30–200 nm) are released by cells when
intracellular multi-vesicle bodies form via invagination of the cell
membrane and are selectively loaded with endosomes containing
protein, mRNA and miRNA. Fusion of the multi-vesicle body
with the cell membrane releases these endosomes as exosomes
(104). Micro-vesicles (200–1,000 nm) are released via direct
outward budding of the cell membrane and contain protein,
mRNA, and miRNA (Figure 3). The loading of microvesicle
cargo is less selective than exosomes and membrane proteins are
more reflective of the parent cell membrane due to direct budding

(103). Apoptotic bodies (1,000–5,000 nm) are released by cells
upon fragmentation of the plasma membrane during apoptosis
(105). The term EV is used here to refer exclusively to exosomes
and microvesicles as apoptotic bodies are distinct in activity and
content (106).

EVs can be isolated from cell culture supernatant via
density-based, size-based, precipitation, immunoaffinity, and
microfluidic based techniques [as reviewed in Li et al. (107)].
Although ultracentrifugation remains the gold standard, each
technique has inherent advantages and limitations regarding
process speed/cost and EV yield/functionality. Once isolated,
guidelines have been published by the International Society
for EVs regarding minimum standards for EV characterization.
These guidelines require that EV size, concentration and
morphology be determined in addition to screening for EV
enriched markers and quantifying the co-precipitating protein
levels to assess the purity of the EV isolate (108).

MSC-EVs have already shown regenerative potential and have
also been credited with many of the therapeutic effects seen
during the treatment of cells and tissues with MSC-CM (109,
110). Furthermore, MSCs are regarded as the optimal source
for obtaining therapeutic EVs due to their immunomodulatory
properties (111), their high expansion capacity/potential for
immortalization (112) and the large numbers of EVs that
they secrete relative to other cells (100). Although not yet
employed in the field of vascular tissue engineering, other

FIGURE 4 | MSC derived extracellular vesicles have been previously shown to reduce intimal hyperplasia in murine models of vein grafting relative to vehicle and

fibroblast microvesicle controls (118), increase angiogenesis in murine matriplug models relative to vehicle control and parent cells (119), and also to reduce infarct size

in murine models of MI in a manner similar to the parent cells (124). EXO, exosomes; MV, microvesicles and APO, apoptotic bodies. Images and data adapted from

Liu et al. (118), Sahoo et al. (119), Bian et al. (127), and Osteikoetxea et al. (131) with permissions. *denotes statistically significant differences at p < 0.05.
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areas of tissue engineering have begun to utilize EVs such
as bone regeneration (113), adipose tissue regeneration (114),
and wound healing (115, 116). Furthermore, the functional
relevance of EVs in regenerative medicine (such as promoting
cell viability, angiogenesis, extracellular matrix interactions, and
immunomodulation) has already been highlighted [as reviewed
in De Jong et al. (117)].

Numerous studies have examined the effects of free EV
injections in other areas of cardiovascular research such as vein
grafting, angiogenesis and MI. Liu et al. demonstrated that
the degree of intimal hyperplasia was significantly decreased
following vein graft implantation in a murine model with
multiple intraperitoneal injections of human ADMSC-EVs.
Macrophage presence was also found to be reduced and
significantly decreased expression levels of IL-6 and MCP-1 were
found in ADMSC-EV treated mice compared to controls (118).
MSC derived exosomes have been shown to induce angiogenesis
in vitro through increased endothelial cell migration and tube
formation (119, 120), and also in vivo through increased vessel
formation in murine Matrigel plugs, corneal assays, and cerebral
artery occlusion relative to controls (119, 121–124). Furthermore,
administration of hESC derived exosomes (125), hESC-MSCs
derived exosomes (109, 112, 126), BM-MSC derived EVs (127),
and BM-MSC derived exosomes (128–130) have all been shown
to significantly reduce infarct size in murine models of MI
compared to controls (Figure 4). Interestingly, only intact and
not lysed exosomes demonstrated a therapeutic effect, therefore
suggesting that both exosome mediated delivery, in addition to
exosome cargo, are required to successfully treat cardiovascular
conditions (126).

In an attempt to elucidate the therapeutic mechanism ofMSC-
EVs, extensive transcriptomic and proteomic characterization
of ADMSC-EVs has been performed and the results compared
to those obtained from the parent MSCs. It has been shown
that ADMSC-EVs contain a similar yet distinct protein, miRNA
and mRNA cargo compared to their parent cells. Specifically,
ADMSC-EVs are enriched for the mi-RNAs miR-183, miR-378,
miR-140, and miR-222; for 255 genes including TRPS1, ELK4,
KLF7, and NRIP1; and for 277 proteins that play important
biological roles including glycoproteins, extracellular matrix
remodeling, blood coagulation, inflammatory response, TGF-
B signaling pathway, and angiogenic proteins. The ADMSC-
EV cargo is therefore enriched to support a range of
functions important to vascular tissue engineering including
extracellular matrix remodeling, angiogenesis, inflammation,
blood coagulation, and apoptosis (132–134). Consequently,
MSC-derived EVs are worthy of future research/therapeutic
focus in this context.

FUTURE OF MSC-EVs IN VASCULAR
TISSUE ENGINEERING

The role ofMSC-EVs in vascular tissue engineering is particularly
exciting due to the need for a cell-free therapeutic base that
can be incorporated into a scaffold and signal to cells in a
paracrine manner to prevent acute thrombosis and encourage

appropriate remodeling. However, a number of points must be
addressed prior to the effective translation of TEVG technologies
that incorporate MSC-EVs:

1. The optimal culture conditions for parent MSCs must
be identified to ensure that the optimal yield of EVs is being
obtained in a safe and repeatable manner. Although this has
been studied extensively for MSC-CM (see section MSC Derived
Extracellular Vesicles), the therapeutic effects of free factors and
EVs in MSC-CM must be de-coupled and culture conditions
optimized to specifically increase the therapeutic efficacy of
isolated EVs.

2. A cheap, reliable and EV friendly method of isolating MSC-
EVs must be identified and implemented to ensure that the
optimal yield of EVs is being obtained in a safe and repeatable
manner. Ultimately, a preferred method of isolating intact EVs
must be identified and scaled so that EV based TEVGs can be
developed into a clinically viable therapy.

3. The optimal method of delivering and retaining MSC-
EVs into a tissue engineered vascular scaffold must be identified
to ensure that MSC-EVs are present in sufficient numbers
and remain intact. Encouraging research has demonstrated
that directly incorporating EVs into a decalcified bone matrix
scaffold is possible and elicits an equivalent neo-vessel formation
response compared to incorporating MSCs alone following
subcutaneous murine implants (113). Furthermore, it has
been shown that cardiosphere derived EVs remain stable
at −80◦C for up to 90 days and that both in vitro and
in vivo bioactivity is preserved following lyophilisation (135).
This suggests that EVs can be directly incorporated into
many forms of scaffold production and therefore exhibit
potential as a therapeutic source in off-the-shelf vascular graft
applications.

4. The in vivo remodeling potential of MSC-EV seeded
vascular scaffolds must be assessed using established
small and large animal preclinical models to determine
if they elicit an appropriate TEVG host remodeling
response.

SUMMARY

One approach to vascular tissue engineering is to implant
biodegradable tubular scaffolds, seeded with autologous stem
cells that trigger the development of functional native-like
vascular replacements. However, stem cells harvested from
elderly or diabetic patients have diminished regenerative
potential in vascular tissue engineering. The inherent limitations
of an autologous stem cell approach can be addressed using
allogeneic MSCs. However, potential safety, regulatory, and
practicality issues of cellular incorporation suggest that a cell-
free approach may be more prudent. MSC-EVs present as one
such cell-free approach and offer many benefits as a therapeutic
base for functionalizing vascular scaffolds such as cell specific
targeting, physiological delivery of cargo to target cells, reduced
immunogenicity, and stability under physiological conditions.
Despite promising findings of EV therapy in the broader field
of cardiovascular research, further work is required to explore
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the full potential of this promising therapeutic in vascular tissue
engineering.
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