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Exercise has a myriad of physiological benefits that derive in part from its ability to

improve cardiometabolic health. The periodic metabolic stress imposed by regular

exercise appears fundamental in driving cardiovascular tissue adaptation. However,

different types, intensities, or durations of exercise elicit different levels of metabolic

stress and may promote distinct types of tissue remodeling. In this review, we

discuss how exercise affects cardiac structure and function and how exercise-induced

changes in metabolism regulate cardiac adaptation. Current evidence suggests that

exercise typically elicits an adaptive, beneficial form of cardiac remodeling that involves

cardiomyocyte growth and proliferation; however, chronic levels of extreme exercise

may increase the risk for pathological cardiac remodeling or sudden cardiac death.

An emerging theme underpinning acute as well as chronic cardiac adaptations to

exercise is metabolic periodicity, which appears important for regulating mitochondrial

quality and function, for stimulating metabolism-mediated exercise gene programs

and hypertrophic kinase activity, and for coordinating biosynthetic pathway activity. In

addition, circulating metabolites liberated during exercise trigger physiological cardiac

growth. Further understanding of how exercise-mediated changes in metabolism

orchestrate cell signaling and gene expression could facilitate therapeutic strategies to

maximize the benefits of exercise and improve cardiac health.
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INTRODUCTION

Exercise promotes general metabolic wellness (1–3), improves mental health (4, 5), builds and
preserves musculoskeletal function (6), and increases lifespan (7–10). These beneficial effects of
exercise are related, in part, to enhanced function and health of cardiovascular tissues as well
as to increased resistance of the heart to injury (11, 12). The magnitude of risk reduction for
cardiovascular disease and survival afforded by exercise parallels that of not smoking (10, 13).
Moreover, exercise is a core component of cardiac rehabilitation regimens, and, in patients
with heart disease, it reduces cardiovascular morbidity and mortality (14–18). Nevertheless, the
molecular mechanisms by which exercise improves cardiovascular health and prevents tissue injury
remain unclear.

The recurrent deviations in whole body homeostasis caused by exercise drive adaptations in
several organs, including brain, liver, adipose tissue, skeletal muscle, and, the topic of this review—
the heart (6, 19). The idea thatmetabolic perturbations are important for attaining exercise-induced
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health benefits is consistent with a paradigm suggested first by
Galen (c 129–210 CE), who recognized that not all movement
is exercise and that exercise is most beneficial when vigorous,
with “the criterion for vigorousness [defined by a] change in
respiration. . . those movements which do not alter respiration
are not called exercise” (20). Hence, with Galen, a definition of
exercise and the overarching tenet that the salutary effects of
exercise require significant deviations in metabolism first became
apparent. Although several reviews cover the knownmechanisms
by which exercise regulates the health and adaptation of the
heart and vasculature [e.g., (12, 21–25)], we highlight in this
short review knowledge of how cardiac metabolism changes
with exercise as well as recent findings of how exercise-
induced changes in metabolism may drive cardiac remodeling.
Specifically, we address the following questions:

(1) What kinds of exercise elicit changes in cardiac structure and
function?

(2) How does cardiac metabolism change during exercise?
(3) How might exercise-induced changes in metabolism

promote cardiac adaptation?

WHAT KINDS OF EXERCISE ELICIT
CHANGES IN CARDIAC STRUCTURE AND
FUNCTION?

Cardiac adaptations associated with exercise were first
documented in 1899. Physical examination using auscultation
and percussion revealed that Nordic skiers (26) and university
rowers (27) had increased cardiac dimensions. The latter
study highlighted that “the period of greatest enlargement
corresponded to the period of the most arduous work,” (27)
which provided an early indication that relatively high workloads
correspond with exercise-induced cardiac growth. Later studies
using electrocardiography and chest radiography identified
functional and structural cardiac changes caused by exercise
(28–31). Subsequent echocardiographic studies further described
the degree and proportional features of the exercise-remodeled
heart [reviewed in (32)]. Collectively, these studies laid the
groundwork for understanding how repetitive bouts of exercise
stimulate adaptive changes in the heart.

Acute Cardiac Responses to Exercise
Increases in physical activity require changes in the distribution
of oxygen and nutrients throughout the body. The increased
work and ATP turnover of skeletal muscle (6) are facilitated by
several integrated changes including physiological adjustments
in ventilation and cardiac output as well as markedly decreased
vascular resistance in skeletal muscle (19). During aerobic
exercise, changes in cardiac function occur immediately and are
typically associated with several phases. Heart rate and stroke
volume increase upon heightened levels of physical activity,
and together they augment cardiac output in a relationship
defined by the Fick equation (32, 33). After a prolonged period
of moderate to high intensity aerobic exercise (e.g., >20min),
cardiac output is maintained; however, heart rate tends to
increase further and stroke volume begins to drop due to

cardiovascular drift, a phenomenon thought to be associated
with vasodilation, hyperthermia, increased blood flow to the
skin, decreased filling time, and decreased plasma volume (34–
37). Coordinated changes in vascular function combined with
sustained augmentation of cardiac function integrate to increase
blood flow to skeletal muscle, with cardiac output distribution to
working muscle tracking with exercise intensity (38) (Figure 1).

Whereas the cardiac responses to endurance exercise are
directly associated with the use of oxygen for ATP production
in skeletal muscle, resistance exercises are more anaerobic
in nature. In addition, resistance exercise generally increases
blood pressure, which is due in part to mechanical restriction
of blood flow during static contraction. These features of
resistance exercise result in markedly different cardiac responses
as compared with aerobic exercise. The modest increase in
cardiac output initiated by resistance exercise is predominantly
due to increases in heart rate, with virtually no change in stroke
volume (39, 40). A higher number of repetitions increases heart
rate and thus leads to larger increases in cardiac output (41).With
heavy weightlifting, the heart must also deal with spikes in blood
pressure, which can transiently reach levels of 320/250 mmHg
(42) or higher. The degree to which blood pressure changes
during resistance exercise appears to be a function of the degree
of effort, muscle mass, and the breathing patterns commonly
performed during strength training (i.e., the Valsalva maneuver)
(41, 43).

Chronic Effects of Exercise on the Heart
Repetitive bouts of strenuous exercise can promote
mild cardiac hypertrophy and/or chamber enlargement
(32, 44, 45), which is typically reversible upon
prolonged cessation of exercise (46–48) (Figure 2). The
type and intensity of exercise determines the nature and degree
of exercise-induced cardiac remodeling, with hemodynamic
changes during exercise providing a stimulus for growth and
chamber adaptation. Isometric or static exercises—commonly
grouped as strength training (e.g., weightlifting, wrestling)—
involve brief, intense periods of increased peripheral vascular
resistance with little to no change in cardiac output and are
associated with mild concentric hypertrophy and a normal to
mildly enlarged left atrium. The increase in cardiac wall thickness
appears largely caused by the parallel addition of sarcomeres
within cardiomyocytes. In contrast, prolonged isotonic or
dynamic aerobic exercise—generally termed endurance exercise
(e.g., long distance running, cycling, rowing, or swimming)—
requires sustained elevations in cardiac output and is typically
associated with normal or diminished peripheral vascular
resistance. Endurance exercise promotes eccentric left ventricular
hypertrophy, right ventricular dilation, and biatrial enlargement
[(49, 50) and reviewed in (32) and (51)]. Addition of
cardiomyocyte sarcomeres in series predominates in this form of
hypertrophy. Nevertheless, exercise-induced cardiac remodeling
caused by endurance training has been suggested to be phasic
in nature, with one study showing an initial concentric LV
hypertrophy giving way to later eccentric LV hypertrophy (52)
and another suggesting early increases in chamber size followed
by later increases in wall thickness (53).
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FIGURE 1 | Exercise-mediated changes in cardiac function and in the tissue distribution of cardiac output. (A) Generalized schematic of cardiac responses to a

moderate to intense, 1 h session of aerobic exercise. (B) Distribution of cardiac output at rest and with increasingly intense levels of exercise. Data are adapted from

Plowman and Smith (38).

Although regular, intensive endurance exercise can decrease
resting and submaximal heart rates [e.g., (44, 54)], the effects of
exercise on other indices of cardiac function are less conspicuous.
A meta-analysis of athletes participating in endurance, strength,
or combined dynamic and static sports showed nomajor changes
in systolic or diastolic function between sport type or when
compared with control subjects (55). However, several studies
have identified changes in diastolic function in exercise-adapted
subjects. For example, endurance exercise appears to enhance
diastolic function modestly (54, 56–61). In contrast, strength
training could actually diminish diastolic function, as evinced
by studies showing impairment of LV relaxation in American
football players (61). In general, in the rested state, individuals
that engage in regular exercise do not show remarkably
different ejection fractions or fractional shortening values when
measured by conventional echocardiography under resting
conditions (54, 62–65); however, more subtle changes captured
by tissue Doppler and speckle-tracking echocardiography suggest
modestly enhanced systolic function in exercise-adapted subjects
(66–68).

Cardiac remodeling in response to exercise appears also
to involve processes beyond cardiomyocyte hypertrophy. For
example, exercise increases levels of circulating progenitor
cells (69–75) and cardiac-resident stem/progenitor cells (76–
79), which have been implicated in augmentation of vascular
density and cardiac repair (80–82). It appears that both
resistance and endurance exercises activate progenitor cells
[e.g., (83, 84)] and that exercise duration and/or intensity are
important in the amplitude and kinetics of their activation (85–
88). While the extent to which progenitor/stem cell subtypes
regulate physiological cardiac growth remains unclear, their
exercise-mediated activation is consistent with the angiogenesis

and coronary vascular remodeling (25, 89, 90) and the improved
responses to injury (91, 92) associated with exercise-induced
cardiac remodeling. In addition, exercise promotes modest
cardiomyocyte proliferation (78, 93), which may be important
for physiological cardiac adaptation as well as for understanding
the mechanisms that trigger cardiomyogenesis in the adult,
mammalian heart.

Potential Deleterious Effects of Exercise
on the Heart
Although too little exercise is currently a much more serious
health problem than too much exercise (94), the popularity of
intense exercise (e.g., ultramarathon, CrossFit) has increased
remarkably over the past 30 years (95–98). High levels of
exercise can transiently increase the risk of acute cardiovascular
events such as sudden cardiac death, and it can acutely
diminish cardiac function, cause atrial fibrillation, trigger
arrhythmias, and lead to pathological remodeling of the heart
and vasculature [reviewed in (95)]. Exercise may also markedly
change right ventricular morphology and function, contributing
to arrhythmogenesis (99). Although young individuals that
die during exercise commonly bear inherited or conditional
abnormalities such as hypertrophic cardiomyopathy (100),
older individuals more commonly die during exercise as a
consequence of acute coronary thrombosis and myocardial
infarction (101). Nevertheless, sudden cardiac death during
exercise is relatively rare and has been estimated to occur in 1
per 15,000–18,000 formerly asymptomatic adults per year (102,
103).

Prolonged endurance exercise can promote “cardiac fatigue,”
characterized by decreased cardiac output and ejection fraction
(104, 105), although changes in cardiac function typically recover
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FIGURE 2 | Exercise-induced cardiac growth. Aerobic and resistance exercise elicit different forms of physiological cardiac remodeling. Hypertrophic responses are

primarily eccentric in nature for aerobic exercise and concentric in nature for resistance exercise. LA, left atrium; LV, left ventricle; LVWT, left ventricular wall thickness;

RA, right atrium; RV, right ventricle.

within 2 days after exercise (106). Acute decreases in cardiac
function could be due to multiple factors including decreased
sensitivity to catecholamines, blood volume redistribution
leading to decreased venous return, and cardiomyocyte
damage (95). With respect to the last possibility, mild cardiac
injury during intense exercise (e.g., marathons, triathlons) is
suggested by elevated levels of circulating cardiac troponins
[reviewed in (95)], which are typically used to diagnose
acute myocardial infarction (107), and exercise intensity is a
strong predictor of elevated circulating cardiac troponin levels
(108). Other biochemical indicators of cardiac dysfunction,
such as B-type natriuretic peptide (BNP) and its cleaved
N-terminal fragment (NT-proBNP) may be elevated up to
10-fold after endurance exercise events, but typically return
to baseline levels within a few days [reviewed in (95)]. It
is hypothesized that exercise-induced BNP/NT-proBNP is
indicative of mild myocardial injury (109) or may be a
physiological phenomenon important for cardiac adaptation
(110). Endurance exercise may also promote myocardial
fibrosis and increase coronary artery calcification (95), although

the clinical significance of these effects in athletes remains
unclear.

HOW DOES CARDIAC METABOLISM
CHANGE DURING EXERCISE?

The heart has a high energy demand, which requires continuous
ATP generation to sustain contractile function, ion homeostasis,
anabolic processes, and signaling (111–114). In normoxia,
the heart fuels ATP turnover by generating >95% of its
ATP from mitochondrial oxidative phosphorylation, with the
remaining 5% derived from substrate level phosphorylation
in glycolysis (113, 115). Although the majority of generated
ATP supports contractile function, relatively large quantities
of ATP are also necessary to maintain ionic homeostasis
through ion pumps (116, 117). Below we review some
fundamental aspects of cardiac metabolism, followed by the
acute metabolic changes in the heart caused by exercise
(Figure 3).
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FIGURE 3 | Cardiac metabolism at rest and during exercise. The heart uses numerous substrates for energy provision, with the predominant sources for ATP

production being fatty acids, glucose, and lactate. During exercise, lipolysis in adipose tissue and glycolysis in working skeletal muscle increase the circulating levels of

fatty acids and lactate, respectively, which are used by the heart to fuel increased energy demands. *Other = ketone bodies, pyruvate, acetate, and branched chain

amino acids.

Some Fundamental Aspects of Cardiac
Metabolism
Oxidation of fatty acids is the primary contributor to ATP
production in the heart, with catabolism of lactate, glucose,
ketones, and amino acids fulfilling the remaining energy demand
(118–120). This ability of the heart to use a myriad of
substrates has led to classification of the heart as a metabolic
“omnivore” capable of modulating substrate utilization in a
manner dependent on numerous factors, including substrate
availability, hormonal stimuli, and myocardial demand. Isotopic
labeling studies in humans indicate that 84% of the FFAs entering
myocytes are oxidized, with ∼16% entering the triacylglycerol
(TAG) pool (121). This TAG pool may contribute to ∼10% of
cardiac ATP production (122, 123) and also plays a central role
in signaling and gene expression (124). Although fat oxidation
supplies 40–70% cardiac ATP (125–131), it is also less efficient,
which is due in part to fatty acid-induced uncoupling of oxidative
phosphorylation (123, 132). The relative ATP yield of fats appears
dependent on chain length, with long chain fatty acids yielding
∼4mol ATP/mol acetyl CoA and the shortest chain fatty acid, i.e.,
acetate, costing 2mol of ATP/mol of acetyl CoA (133). Acetate
is usually low in circulation (i.e., below 0.2mM) and is unlikely
to contribute meaningfully to metabolism in the normal heart;
however, high alcohol consumption can increase circulating

acetate levels to low millimolar concentrations (134, 135) and
may under extreme circumstances contribute to cardiac energy
deficits (136–139).

Substrates such as glucose, lactate, and pyruvate are generally
more efficient energy sources for the heart. In the normal
mammalian heart, glucose metabolism via glycolysis supplies
approximately 2–8% and glucose oxidation contributes up to
30% to the ATP yield (125). Interestingly, carbon deriving
from nearly half of the glucose extracted by the heart is
allocated to ancillary pathways of glucose metabolism, which
are important for energy storage (glycogen) or biosynthesis
of cellular building blocks (e.g., nucleotides, phospholipids,
amino acids) (140–145). Lactate is also a major fuel source
for the heart, contributing up to 15% of ATP production
(125). Lactate tracer studies indicate that the heart is a net
lactate consumer (140, 146–148) and that only ∼13% of
glucose extracted by the heart is converted to lactate (140).
Moreover, arterial lactate concentration correlates positively
with myocardial lactate uptake and oxidation (141, 149, 150).
In humans, lactate is a significant contributor to cardiac
ATP production (141, 146), and, in dogs, it can account

for up to 87% of cardiac substrate oxidation (151). In rat

heart, high lactate levels contribute to nearly 40% of ATP
production (150). The myocardium can also use pyruvate readily
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when extracellular levels are in the millimolar range; however,
circulating concentrations of pyruvate are typically less than
150µM (118), which make it an unlikely source of myocardial
energy in vivo.

Ketone bodies such as acetoacetate and β-hydroxybutyrate
have received recent attention due to their potential importance
in heart failure (152–154); however, should circulating ketone
bodies become highly abundant, the normal heart would be
expected to increase ketone body oxidation as well. Early
studies showed that high concentrations of ketone bodies (e.g.,
1–10mM) can account for nearly 80% of cardiac oxygen
consumption (155), and that ketone body provision has
a pronounced inhibitory effect on glucose (143, 156, 157)
and fat catabolism (158, 159). Interestingly, when provided
alone, ketone bodies appear to cause contractile failure (160–
162); however, their availability in the presence of other
substrates such as glucose may increase efficiency of the
working heart (163). Such findings have advanced the idea
that ketone bodies are a “superfuel” that enable efficient ATP
production (164, 165). Although it has been suggested that 5–
15% of ATP production in normal heart is via ketone body
oxidation (125), this would depend on the levels of circulating
ketones, which in the healthy, fed state are typically less
than 500µM. Although it remains to be clarified whether
constitutively high levels of ketone bodies or their oxidation
are healthy for the heart (166), ketone diets and ketone
body supplements have been suggested to improve exercise
performance and augment cardiac energy provision (167,
168).

Amino acids have a relatively minor role in ATP production
in the heart; however, they are essential for processes such
as protein synthesis and cell signaling. In particular, branched
chain amino acids (BCAAs; comprising leucine, isoleucine, and
valine) are major amino acids taken up by the heart, with
uptake dependent primarily on circulating BCAA concentration
(169). Because they are essential amino acids, their intracellular
levels are largely dependent on import, with the L-type amino
acid transporters and bidirectional amino acid transporters
likely contributing to their abundance in the heart (170–172).
BCAA catabolism contributes to less than 5% of myocardial
oxygen consumption (173), in part because the heart expresses
relatively low levels the branched chain aminotransferase
enzyme and the branched chain α-keto acid dehydrogenase
complex (174, 175). Nevertheless, BCAAs are important
regulators of mTOR, which coordinates anabolism and processes
such as proliferation, survival, and autophagy (176). Indeed,
high intramyocardial levels of BCAAs are associated with
cardiac hypertrophy and heart failure (177–179), and recent
findings indicate that intracellular accumulation of BCAAs,
via a glucose-KLF15-BCAA degradation axis, is required for
mTOR activation and cardiomyocyte hypertrophy (180). High
intracellular levels of BCAAs may negatively influence cardiac
health by inhibiting mitochondrial metabolism (179, 181–
183).

Glutamine, a “conditionally essential” amino acid, also
appears to regulate the metabolism and health of the heart.
In particular, it can activate mTOR in cardiomyocytes (184),
and it can protect the heart from injury (185–188). Although

many proliferating cells use glutamine as an oxidative fuel
(189–191), the normal heart appears to produce glutamine
by amidation of glutamate rather than oxidize it for energy
provision (169, 192). Nevertheless, glutamine can augment
myocardial oleate oxidation and triglyceride formation (193)
as well as activate the hexosamine biosynthetic pathway
(HBP) (194, 195).

Cardiac Intermediary Metabolism in
Exercise
An acute increase in workload during exercise has robust effects
on the metabolism of striated muscle (196). In the heart,
exercise increases contractile power and oxygen consumption up
to 10-fold above resting rates (24, 123). Changes in substrate
utilization and ATP production during exercise are a product
of the integrated effects of physiologic cues that occur with
changes in circulating hormones, metabolic substrates, and
hemodynamics.

An increase in myocardial workload is accompanied
by increases in the catabolism of multiple substrates, in
particular, fatty acids and lactate (141, 149, 197–200). During
exercise, hormone-activated lipolysis in adipose tissue increases
circulating FFA to levels up to 2.4mM (201), which enhances
FFA uptake and utilization (121, 147, 202). However, heightened
levels of circulating FFAs are only partially responsible for
increasing fatty acid oxidation because higher cardiac workloads
appear sufficient to increase fat oxidation in the heart (203).
Cardiac TAG utilization rates also increase considerably
with exercise (198) and appear to be further stimulated by
lactate availability, suggesting that lactate may stimulate
TAG turnover (204). Furthermore, after exercise adaptation,
genes responsible for fatty acid transport and catabolism are
elevated, which may help optimize fat utilization in the heart
(205–207).

Similar to free fatty acids, plasma lactate levels increase
during exercise. The increase in lactate is dependent on
the type of exercise, with intense exercise (e.g., 60–80% of
VO2max) resulting in large increases in arterial lactate levels
(208). During intense exercise, circulating lactate levels can
increase 5–10-fold (to nearly 10mM), which is primarily due
to lactate extrusion by skeletal muscle. Under these conditions,
the contribution of lactate to total oxidative metabolism may
account for 60–90% of substrate utilization (149, 151, 209,
210). Although low to moderate intensity exercise (e.g., 40%
of VO2 max) does not increase circulating lactate levels
remarkably (141), the contribution of lactate oxidation to
overall myocardial oxidative metabolism is higher than that
compared with the sedentary state (141). Lactate may also
enhance fat oxidation in the heart (199), which would increase
the capacity of the heart to generate ATP under high
workloads.

Although circulating levels of glucose are fairly stable
compared with levels of lactate and FFAs, weightlifting and
prolonged endurance exercise can decrease arterial glucose
concentrations (201, 211), whereas high intensity aerobic exercise
may increase blood glucose levels (197). Hemodynamic changes
and increases in local and circulating catecholamines can
increase the oxidation of stored glucose (glycogen) (212).
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Although moderate intensity exercise and increases in cardiac
workload have been associated with elevations in myocardial
glucose uptake and oxidation (141, 197, 199, 200), elevations
in circulating concentrations of competing substrates such as
lactate and FFAs may decrease glucose catabolism (197–199,
213). Moreover, studies in both humans and animal models
suggest that exercise can lower oxygen extraction ratios for
glucose and decrease glucose uptake and utilization (198,
213). Recent findings suggest that relatively prolonged, intense
endurance exercise can decrease glucose catabolism in the
heart by diminishing the activity of phosphofructokinase (214,
215). Collectively, these findings suggest that exercise can
acutely increase or decrease both circulating glucose levels and
myocardial use in a manner dependent on the type, intensity, or
duration of exercise.

Regular exercise also promotes adaptivemetabolic remodeling
in the heart. Perfusedmouse heart studies suggest that adaptation
to exercise increases the rates of basal glycolysis (214), glucose
oxidation, and fat oxidation (216); however, compared with
hearts from sedentary controls, basal cardiac glycolysis has
been suggested to be diminished in exercise-adapted rats,
despite increases in myocardial glucose and palmitate oxidation
(91). That exercise-induced changes in cardiac metabolic
remodeling are dependent on exercise intensity is suggested
by studies in mice in which moderate-intensity treadmill
regimen showed no effect on basal glucose oxidation, palmitate
oxidation, or myocardial oxygen consumption, whereas a high-
intensity, interval style regimen increased glucose oxidation,
diminished palmitate oxidation, and led to a net decrease in
resting myocardial oxygen consumption (217). The reasons
for discrepancies between studies could be due to model-
specific factors (e.g., rodent strain, type of exercise) or
differences in cardiac perfusion protocols (e.g., substrate
levels, addition of hormones). Circadian rhythm may also
account for disparate findings because it influences cardiac
metabolism (218), stress responses and protein turnover (219),
and inflammatory processes (220). Chronobiology remains
an important consideration for understanding how exercise
influences cardiac biochemistry and physiology (221, 222).

HOW DO EXERCISE-INDUCED CHANGES
IN METABOLISM PROMOTE CARDIAC
ADAPTATION?

Understanding how changes in metabolism regulate cardiac
adaptation to exercise presents a challenge. Metabolic pathways
coordinate not only ATP production and biosynthesis,
but modulate cell signaling and redox state as well (118).
Nevertheless, it is clear that repetitive bouts of exercise elicit
changes in metabolism that are important for coordinating
gene expression in other tissues such as skeletal muscle (6).
The mechanisms by which exercise-induced metabolic changes
may promote cardiac adaptation are reviewed below and are
summarized in Figure 4.

Importance of Metabolic Periodicity in
Cardiac Adaptation
Although episodic changes in metabolism that occur with
exercise are known to play an important role in skeletal muscle
adaptation (6), relatively less is known about how exercise-
induced metabolic periodicity affects adaptive responses in the
heart. Nevertheless, it is clear that periodic bouts of exercise
stimulate metabolic processes in both cardiac mitochondria and
the cytosol. For example, in mice, exercise acutely promotes
fission of cardiac mitochondria, which enhances mitochondrial
function; these mitochondrial changes were shown to occur
in a manner dependent on adrenergic signaling (223). A
relatively intense bout of exercise also decreases the activity
of phosphofructokinase in mouse heart (214); however, upon
adaptation to the exercise regimen and in the rested state
(i.e., 24 h after the last exercise bout), apparent myocardial
phosphofructokinase activity and glycolytic rate were found to
be higher compared with sedentary controls (214). The acute,
exercise-induced decreases in myocardial glycolytic rate appear
important for cardiac growth because low phosphofructokinase
activity brought forth by expression of a cardiac-specific, kinase-
deficient 6-phosphofructokinase/fructose-2,6-bisphosphatase
transgene in mice (GlycoLo mice) appears sufficient to partially
phenocopy the exercise-adapted heart and regulate genes
[e.g., Cebpb, Cited4 (224, 225)] required for exercise-induced
cardiac growth (214). Moreover, activation of the exercise
gene program in GlycoLo mice occurred in the absence
of Akt activation, which is thought to be required for
regulating physiologic cardiac growth (21, 22, 45). These
findings suggest that exercise-induced decreases in glycolysis
are a proximal regulator of the cardiac growth program.
Collectively, these findings indicate that exercise induces
metabolic periodicity in the mitochondrial and cytosolic
compartments, which regulate exercise capacity and myocardial
growth.

It is likely that periodicity in mitochondrial fission and
in intermediary metabolism are interconnected phenomena.
In other cell systems, mitochondrial fission is important for
regulating glucose and lipid metabolism (226, 227). Moreover,
mitochondrial fission is important for regulating mitochondrial
quality control by facilitating distribution of mitochondrial
components to daughter organelles and by culling defective
mitochondria via autophagy (228–230), which is increased
the heart during and early after a bout of exercise (231, 232).
Exercise-induced periodicity in glucose metabolism appears
important for maintaining mitochondrial health because loss
of periodicity, either by constitutively increasing or decreasing
glucose catabolism, leads to mitochondrial dysfunction (214).
Nevertheless, some mechanisms underlying mitochondrial
adaptations to exercise appear to diverge from those required
for cardiac growth (216, 233), which suggest the presence
of distinct circuits by which metabolic changes activate the
exercise gene program versus how they modulate mitochondrial
health.
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FIGURE 4 | Working model of the metabolic mechanisms of exercise-induced cardiac growth. (A) Periodic changes in glucose metabolism and mitochondrial activity

(i.e., metabolic periodicity) occurring with regular exercise promote activation of gene programs responsible for cardiac growth, regulate mitochondrial quality control

and function, activate prohypertrophic kinases, and coordinate biosynthetic pathways, all of which integrate to promote cardiac growth. (B) Exercise increases levels

of circulating cardiac substrates and catecholamines, which orchestrate changes in cardiomyocyte metabolism. Decreases in the phosphorylation of

phosphofructokinase 2 (PFK2) lower phosphofructokinase 1 (PFK1) activity, which decreases glucose catabolism, coordinates ancillary biosynthetic pathways, and

increases the levels of upstream glycolytic intermediates (e.g., glucose 6-phosphate, G6P) as well as increases products in the pentose phosphate pathway (e.g.,

AICAR). Decreases in PFK activity and glucose catabolism appear sufficient to decrease expression of Cebpb and upregulate Cited4, which promote cardiac growth.

In addition, elevated levels of G6P, AMP, and AICAR could activate the prohypertrophic signaling kinase mTOR and AMPK. Catecholamine-triggered signaling

cascades promote mitochondrial fission and upregulate PGC1α, which acutely increase mitochondrial function and chronically elevate mitochondrial abundance and

fatty acid oxidation (FAO) capacity. Last, circulating metabolites (e.g., palmitoleate) may also contribute to exercise-induced physiological cardiac growth.

Metabolic Changes as a Material Cause of
Adaptation
Insight gleaned from bacteria suggest that cells coordinate
growth and function via interconversion of glycolytic metabolites
to biomass (234), which highlights the obvious role of
metabolism as a material cause for structural maintenance and

modification. It is likely that changes in ancillary biosynthetic
pathway activity are also important for coupling the synthesis of
structural materials to activation of the cardiac gene programs

responsible for exercise-induced cardiac adaptation.

Rate-limiting steps of glycolysis, e.g., the hexokinase,
phosphofructokinase and pyruvate kinase steps, are likely
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important for modulating biosynthetic pathways in the heart
(118). These enzymes are regulated at multiple levels, with
allosterism being important for acute changes in activity
(235). In several cell types, the phosphofructokinase step of
glycolysis regulates the pentose phosphate pathway (PPP), which
is important for nucleotide synthesis and redox regulation
(236–239). Modeling studies in the adult heart demonstrate
that phosphofructokinase activity is particularly important for
modulating the activities of the PPP and the polyol pathway
(240). In cardiac myocytes, phosphofructokinase activity
modulates several ancillary biosynthetic pathways, such as
the PPP, the HBP, and the glycerophospholipid synthesis
pathway (GLP) by directly modulating glucose carbon entry
into the pathways and by indirectly regulating mitochondria-
derived molecules important for building block synthesis (e.g.,
aspartate) (145). Furthermore, metabolomic studies indicate
that phosphofructokinase activity also regulates the abundance
of several amino acid and lipid metabolites in the heart (214).
Much less is known about how exercise affects the hexokinase
and pyruvate kinase steps of glycolysis; however, pyruvate kinase
activity has been shown to be elevated in the exercise-adapted rat
(241) and dog (242) heart.

There is relatively little direct knowledge of how other
biosynthetic pathways change with exercise. Transient changes in
readouts of HBP activity, i.e., UDP-N-acetylhexosamines or O-
GlcNAcylated proteins, occur with exercise (243–246). Changes
in the HBP appear important because they may regulate the
function and survival of cardiomyocytes (247, 248) as well as
reparative cardiac cells (249). To our knowledge, nothing is
known regarding how the PPP, GLP, and SBP are influenced
in the heart by exercise. While the PPP and the GLP would
be thought important for regulating redox state, nucleotide
biosynthesis, and phospholipid biosynthesis, the SBP modulates
the levels of methyl donors required for DNA methylation
reactions and could represent a critical link between metabolism,
epigenetic programming, and changes in cardiac structure and
function (250).

Signaling Pathways Influencing Cardiac
Adaptation
Several signaling pathways integrate to modulate cardiac
metabolism and adaptive responses to exercise. Exercise-
mediated increases in catecholamines promote upregulation
of peroxisome proliferator-activated receptor γ coactivator
1 α (PGC1α) via β-adrenergic signaling and activation of
endothelial nitric oxide synthase [reviewed in (21)]. The
actions of PGC1α may be mediated via activation of nuclear
receptors such as peroxisome proliferator activated receptor
α (PPARα) and estrogen-related receptor (ERR) as well as
nuclear receptor factor 1 (NRF1), which are known to
integrate to increase fatty acid oxidation and to promote
mitochondrial biogenesis. Moreover, the metabolic, structural,
and functional changes occurring in the exercise-adapted heart
are influenced by receptor signaling triggered by insulin-like
growth factor-1 (IGF-1) (251, 252) and neuregulin-1 (78,
253), which activate the phosphoinositide 3-kinase (PI3K)/Akt

pathway to promote physiologic cardiac growth (254–257)
or activate a cardiomyocyte proliferative response (78, 258–
260). Interestingly, cardiac glucose metabolism is influenced
by catecholamines (130, 261, 262), IGF-1 (263–265), and Nrg-
1 (265), which suggests that these hormones may provide
additional regulation to acute or chronic metabolic changes
induced by exercise.

Metabolite Signaling
Metabolite signaling is another mechanism that connects
exercise-induced changes in metabolism to cardiac adaptation.
In particular, glucose-derived metabolites regulate the
activities of the prohypertrophic kinases mammalian target
of rapamycin (mTOR) and AMP-activated kinase (AMPK)
(45). The intracellular levels of glucose 6-phosphate (G6P)
regulate mTOR activity in the heart (266–268), and 5-
amino-4-imidazolecarboxamide ribonucleotide (AICAR),
which is an intermediate of the PPP (269), stimulates
AMPK (270). It is anticipated that G6P, AMP, and AICAR
increase in the heart with exercise. Predictions from crossover
theorem (271–274) and modeling studies (240) suggest
that acute decreases in phosphofructokinase activity, such
as occurs during exercise (118), would increase G6P as
well as augment PPP activity, which could increase AICAR
levels. In addition, the large increase in myocardial ATP
demand would be thought to increase intracellular AMP
levels.

Circulating metabolites are also important regulators of
exercise-induced cardiac growth. Hormone-mediated adipose
tissue lipolysis during exercise liberates palmitoleate (C16:1n7),
which promotes cardiac growth potentially by activating G-
protein-coupled receptors (GPCRs), Akt, or nuclear receptors
(275). The cardiac growth-stimulating effect of palmitoleate is
similar to the fatty acid-induced cardiac hypertrophy that occurs
in the python heart after a large meal (276). Interestingly,
FFAs not only increase acutely with exercise (201), but they
appear to remain elevated in the exercise-adapted state as well
(277, 278); hence, they could stimulate the signaling required
to sustain cardiac adaptations. Given that numerous metabolites
have cognate GPCRs (279), it is likely that other metabolites
elevated during or after exercise have important roles to play
in tissue adaptation. Understanding how circulating metabolites
trigger structural and functional changes in the heart could
lead to the development of novel therapies to improve cardiac
health.

SUMMARY

Metabolic changes caused by exercise are important for
cardiac remodeling and adaptation. The integrative metabolic
changes brought forth by exercise combine with changes in
cardiac workload to regulate cardiac metabolism. In particular,
exercise alters levels of competing substrates, and it changes
the abundance of circulating hormones, which cue metabolic
pathways that are critical for transcriptional changes and cardiac
growth. In addition, changes in circulating and endogenous
metabolites can trigger physiologic growth by activating
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prohypertrophic signaling pathways. Nevertheless, numerous
questions remain, including questions of how to optimize
the amount of exercise to produce beneficial, as opposed
to deleterious, effects on cardiovascular health (280) as well
as mechanistic questions of how exercise-induced changes in
metabolism couple the synthesis of structural materials to
activation of the physiological cardiac growth program (118).
While this knowledge is acquired, it appears that wewould be best
served by sticking to the advice of the ancient Greeks—“Exercise
till the mind feels delight in reposing from the fatigue.”—
Socrates.
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