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In response to pathophysiological stress, the cardiac tissue undergoes profound

remodeling process that incorporates the elimination of dying resident cells,

compensatory hypertrophy of functional cardiomyocytes, growth and remodeling of

the vascular compartment and formation of a fibrotic scar. Accumulating evidences

indicate that cardiac remodeling is, at least in part, controlled by a complex crosstalk

between cardiomyocytes and macrophages. The strategic location of abundant

macrophages to the proximity of cardiomyocytes suggest that they could regulate

the fate of cardiomyocytes in the injured heart. As such, macrophages appear as

critical support cells for cardiomyocytes and play central roles in cardiac hypertrophy,

fibrosis and remodeling. Notably, the cardiac tissue expands heterogeneous population

of cardiac macrophages through local proliferation of resident macrophage as well as

recruitment and differentiation of blood-derived monocytes. It has also been suggested

that cardiac-resident macrophages display distinct functional properties from that of

monocyte-derived macrophages in cardiac tissue. Furthermore, macrophages are an

overflowing source of biological entities with non-canonical roles on cardiac conduction

or cardiomyocyte proliferation by regulating action potential diffusion or cardiac cell

cycle reentry. Alternatively, stressed cardiomyocytes can trigger the release of a

broad repertoire of instructive signals that can regulate macrophage number, skew

their phenotype and therefore direct their beneficial or deleterious actions. In this

review, we highlight recent discoveries describing how the intricate dialogue between

cardiomyocytes and macrophages can shape the deleterious or healing signaling

mechanisms in the injured cardiac tissue.

Keywords: heart, inflammation, macrophages, heart failure, myocardial infarction

Pathological conditions (hypertension, heart valve disease, myocardial infarction, cardiomyopathy)
result in cardiomyocyte hypertrophy and cardiac remodeling progression associated with
systolic and diastolic dysfunction. This adverse ventricular remodeling precipitates the
occurrence of heart failure, arrhythmia, or sudden death. Hypoxia, neuro-humoral activation,
and mechanical stress initiate multiple signaling pathways leading to cardiomyocyte death
and hypertrophic growth of surviving cardiomyocytes. Nevertheless, the heart also entails
different types of non-myocyte cells, including vascular cells, fibroblasts and inflammatory
cells. Notably, emerging evidences indicate that cardiac remodeling is regulated by direct
and indirect communications between cardiomyocytes and inflammatory cells. In response to
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pathophysiological stress, the abundance of inflammatory cells
and particularly, that of macrophages, and their proximity
to cardiomyocytes, position them to critically regulate
cardiomyocyte homeostasis in the injured heart. As such,
macrophages appear as critical support cells for cardiomyocytes
and play central roles in cardiac hypertrophy, fibrosis and
remodeling. In this review, we highlight recent advances, mainly
related to experimental observations, in our understanding
of the decisive interaction between macrophages and
cardiomyocytes.

ORIGIN OF CARDIAC MACROPHAGES

During early gestation, around embryonic day 7, primitive
hematopoiesis occurs and macrophages expand in the extra-
embryonic yolk sac. Subsequently, erythromyeloid precursors
emerge from the yolk sac, and generate fetal macrophages. The
onset of vascularization is associated with erythromyeloid
precursors migration to the fetal liver. Concomitantly,
hematopoietic stem cells (HSCs) arise from the aorta-gonad-
mesonephros and migrate to the fetal liver. In the perinatal
period, bone marrow serves as a major reservoir of HSCs and
synthesizes the complete repertoire of immune cells (1).

The development of genetic fate-mapping techniques allows
to classify and track distinct macrophage subsets, and when
associated with parabiotic and adoptive-transplant studies,
permits to discern the origin of tissue macrophages. Using
this combination of methods, it has become obvious that most

of cardiac macrophages derives from precursor of embryonic
origin, but not from circulating monocytes after birth (2).
Murine cardiac macrophages (CD45+CD11b+F4/80+CD64+ or
CD68+) are further categorized by expression of CCR2 (C-C
chemokine receptor type 2), MHC-II (major histocompatibility

complex II), and the lymphocyte antigen 6 complex (Ly6C).
High and low expression of Ly6C can be used to discriminate

inflammatory and reparative macrophages but the use of both
CCR2 and MHC-II is useful to distinguish three separate and
discrete cardiac macrophages pools from different origins. In

steady state, the adult heart contained two resident macrophages
subsets, MHC-IIlowCCR2− and MHC–IIhighCCR2− cells. These
macrophages are separate from the blood monocyte pool and
originate mainly from yolk sac- and fetal liver- embryonic
progenitors (2, 3). The third macrophage pool expresses
CCR2 (MHC-IIhighCCR2+) but is smaller numerically and is
derived entirely from blood monocytes (2, 3). In the steady
state, tissue-resident macrophages constitute the main subset
of cardiac macrophages and are preserved through tissue
proliferation (2). Nevertheless, it has been suggested that self-
renewal of cardiac-resident macrophages declines with aging
and that a substantial pool of cardiac resident macrophages
is replenished by monocyte-derived macrophages, even in the
lack of pathological triggers and inflammation (4). Indeed,
using alternative gating strategy based on MHC-II and CX3CR1
expression, it has been shown that the proliferation capacity of
embryo-derived cardiac macrophages is progressively reduced
from the peri-natal period (4).

Of note, comprehensive transcriptional analysis of resident
macrophages suggests that resident macrophages isolated
from various organs are transcriptionally different from each
other (5, 6). It is therefore likely that the tissue niche provides
instructive signals coordinating macrophage phenotype and
that the cardiac environment shapes the gene repertoire
and controls macrophage-related functions. Furthermore,
alteration of this cardiac niche is expected to affect the
transcriptional network of cardiac macrophages resulting
in a continuum of polarization states in the pathological
heart.

Physiological and pathological settings adjust the number
of each cardiac macrophage pools. Macrophage number
could depend on local expansion of resident macrophage or
recruitment and differentiation of blood-derived monocytes.
In the absence of circulating monocytes, such as in CCR2
deficient mice, resident cells can repopulate the pool of
cardiac macrophages. After transient depletion of macrophages
with clodronate liposomes, circulating monocytes infiltrate
the myocardium and are able to differentiate into long
lasting populations of cardiac macrophages. Furthermore,
CCR2– macrophages disappeared after a cardiac insult and
blood monocytes fully replenish heart macrophages (2, 7).
Hence, after a cardiac insult, it is likely that bone marrow-
derived monocyte populations represent the major cardiac
macrophage substitute. Notably, in the bone marrow, a
CCR2+CD150+CD48− Lineage−Sca-1+c-Kit+ hematopoietic
subset has been identified as the main precursor of myeloid
cells after ischemic insult (8). The cardiac tissue produces
mobilizing factors such as granulocyte/macrophage colony-
stimulating factor or CCL (CC motif chemokine ligand)2 and
CCL7 that act distally to foster monocyte mobilization from
the bone marrow to the blood (9–11). Bone marrow-derived
HSCs lead to the emergence of two principle monocyte subsets
depicted by the expression Ly6C. Classical Ly6Chigh monocytes
appear to originate from Ly6C+ monocyte progenitors, and
non-classical Ly6clow monocytes, which likely differentiate from
Ly6Chigh monocytes, through a Nr4a1-dependent transcriptional
program (12–14). Bone marrow derived Ly6C monocytes are
recruited into the injured cardiac tissue and differentiate to
macrophages. In addition to the bone marrow, the spleen also
acts as a reservoir for Ly6Chigh monocytes and participates
to cardiac macrophage repopulation [(15); Figure 1]. One can
also speculate that additional compartment could participate
to the inflammatory cell influx within the cardiac tissue.
In this line of reasoning, the pericardial adipose tissue has
been shown to contain a high density of lymphoid clusters
(16). The white adipose tissue has also been identified as
a reservoir of mast cell progenitors, that do not originate
from the bone marrow, and are able to home to cardiac
tissue through a stem cell factor dependent signaling (17). The
putative contribution of adipose tissue to the monocyte and/or
macrophage pool remains to be defined. Altogether, these results
indicate that, following the disruption of homeostasis; multiple
complementary pathways could participate to the dynamic
regulation of the heterogeneous population of cardiac resident
macrophages.
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FIGURE 1 | Life cycle of macrophages during cardiac stress. In pathological settings, the stressed cardiac tissue sends mobilizing factors to monocyte reservoirs

including bone marrow and spleen, leading to the emergence of two principle monocyte subsets depicted by the expression of Ly6C (Ly6C High or Low). Circulating

Ly6C positive monocytes are then recruited into the injured cardiac tissue and differentiate to macrophages. Local proliferation of cardiac resident macrophages also

participates to the expansion of cardiac macrophage population. Cardiac-resident macrophages and monocyte-derived macrophages are expected to display distinct

functional properties precipitating or preventing adverse ventricular remodeling. CSF, colony-stimulating factors; GM-CSF, granulocyte macrophage colony stimulating

factor; EVs, extracellular vesicles.

In macrophage-depleted mice, infarct healing is impaired, and
myocardial rupture occurs suggesting a net beneficial role of
the heterogeneous population of cardiac macrophages in cardiac
repair (18–20). Resident macrophages are expected to display
functional properties distinct from that of monocyte-derived
macrophages. Transcriptional analysis revealed that monocyte-
derived macrophages synchronize cardiac inflammation, but are
less efficient in antigen processing and clearance of dying cells (2).
In particular, CCR2+ macrophages contain distinct components
of the NLRP3 inflammasome and are instrumental in IL-1β
release (2). On the same note, chemoattractants CXCL (C-X-
C motif chemokine ligand)2 and CXCL5 produced by CCR2+

resident macrophages have been shown to specifically contribute
to the initial neutrophil extravasation into the ischemic area
(21). Inhibition of monocyte and monocyte-derived macrophage
recruitment improves outcome after acute MI and myocardial
infarction-induced heart failure. Conversely, cardiac-resident
macrophages (MHC-IIlowCCR2− and MHC-IIhighCCR2−) seem
to display robust proangiogenic and mitogenic properties,
suggesting a reparative potential for these macrophage subsets
[(22); Figure 1].

Nevertheless, it must be acknowledged that there is no
consensus to harmonize the phenotypic classification of
macrophages, which induces uncertainty in the characterization
as well as function of the distinct sub-populations of cardiac
macrophages. An ambiguity amplified by the use of enzymatic
digestion methods designed to isolate cardiac inflammatory cells
that alter the levels of cell-surface markers and by the shared
expression of some markers such as CD11b, Ly6C or F4/80 on
dendritic cells or myeloid derived suppressor cells (23).

Although macrophages are clearly present in human
heart (24), information regarding their function, origin and
heterogeneity in steady state and pathological conditions are
lacking. Nevertheless, two distinct populations of macrophages
have been identified in left ventricular myocardial specimens
from patients with dilated and ischemic cardiomyopathies
(25). CCR2+ and HLA-DR High (the human homolog of
MHC II) macrophages are monocyte-derived cells with specific
pro-inflammatory potential whereas CCR2– and HLA-DR High
macrophages are resident cells with reparative properties [(25);
Table 1].

MACROPHAGES AND OUTSIDE-IN
SIGNALING WITHIN CARDIOMYOCYTES

Canonical Role of Macrophages
The interaction between macrophages and cardiomyocytes
hypertrophy and survival has been studied in experimental
model of acute injury (mainly acute myocardial infarction) or
heart failure following pressure overload, hypertensive treatment,
or myocardial infarction. Whatever the incentive stimulus, the
failing heart contains increased number of macrophages that
expand by both local proliferation of resident macrophage and
further recruitment and differentiation of circulating monocyte
(2, 7, 26, 27). Interactions of cardiac macrophages with other
non-myocyte cells including inflammatory cells, vascular cells
and fibroblasts shape the dysfunctional heart. These cardiac
macrophages also secrete factors that directly or indirectly
alter the cardiac extracellular matrix network. Hence, the net
impact of cardiac macrophages on cardiomyocyte likely relies
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TABLE 1 | Immunophenotypic properties of different subsets of embryo- and monocyte-derived cardiac macrophages.

Origin of cardiac Mϕ Inflammatory cell signature markers Mϕ signature markers Specific signature markers

Mice Gating strategy 1 Embryo-derived Mϕ CD45+, CD11b+, Auto+, Ly6C– CD64+, Mertk+, F4/80+ MHCII High/Low and CCR2–

Monocyte-derived Mϕ CD45+, CD11b+, Auto+, Ly6C– CD64+, Mertk+, F4/80+ MHCII High and CCR2+

Gating strategy 2 Embryo-derived Mϕ CD11b+, Ly6C Low, CD11c Low-Int CD14+, CD64+, F4/80+, Mertk+ CX3CR1+ and MHCII–

Monocyte-derived Mϕ CD11b+, Ly6C Low, CD11c Low-Int CD14+, CD64+, F4/80+, Mertk+ CX3CR1± and MHCII+

Human Gating strategy 3 Resident Mϕ CD45+ CD14+, CD64+, Mertk+, CD68+ CCR2– and HLA-DR High

Monocyte-derived Mϕ CD45+ CD14+, CD64+, Mertk+, CD68+ CCR2+ and HLA-DR High

Gating strategy 1, 2, and 3 from Epelman et al. (2), Molawi et al. (4), and Bajpai et al. (25), respectively. Mϕ indicates macrophages; Auto, auto-fluorescence; int, intermediate.

on pleiotropic effects involving regulation of distinct and
complementary processes. Furthermore, the molecular cascades
involved in macrophage specific effects on cardiomyocytes
are poorly understood. Nevertheless, the cardiac influx of
macrophages on pressure overload, for example, precedes
signs of hypertrophy and heart failure, suggesting a direct
contribution to cardiomyocyte hypertrophy and survival [(28);
Figure 2].

Considering their abundance, diversity, and phenotypic
plasticity, macrophages represent a major reservoir of cytokines.
Inflammatory signals induce interleukin(IL)6 release by
macrophages and neutralizing IL-6 reduces cardiomyocyte
hypertrophy (29, 30). Acutely, IL-6 also prevents cardiomyocytes
against oxidative stress-induced cellular damages. IL-6 receptor
cooperates with at least one subunit of the signal-transducing
protein gp130. Of note, complete loss of gp130 results in massive
induction of myocyte apoptosis and dilated cardiomyopathy in
response to pressure-overload (31). Alternatively, in chronically
exposed myocytes, IL-6 family signaling reduces the basal
contractility and the beta-adrenergic responsiveness of the
myocytes (32).

Specific subtype of pro-inflammatory CCR2 positive
macrophages is a major purveyor of IL-1β (2). Interestingly, in
a phase 3 trial, the use of canakinumab, an IL-1 β neutralizing
antibody, has been shown to decrease the incidence of repetitive
atherothrombotic event in patients with myocardial infarction
already on state of the art treatment (33). Inflammatory
macrophages also release IL-18, another member of the IL-1
family (34, 35). IL-18 enhances cardiomyocyte hypertrophy
and exacerbates cardiac dysfunction as well as fibrosis in
infarcted and non-infarcted heart (36, 37). IL-18 could also
precipitate adverse ventricular remodeling by reducing capillary
density in the ischemic tissue (38). Toll-like receptor activation

induces the production of tumor necrosis factor (TNFα) from

macrophages. In a genetic heart failure model, TNF-α has
been shown to confer cardioprotection by maintaining normal

intercalated disc structure and mitochondrial integrity as well
as cardiomyocyte function (39). Transforming growth factor
(TGF)β produced by cardiac macrophages triggers extracellular
matrix deposition (40) but is also a direct mediator of the
hypertrophic growth response of the heart (41). Myeloid-derived
growth factor is secreted by macrophages and stimulates

cardiomyocyte survival (42). In addition, macrophages
synthesize IL-10 and leukemia inhibitory factor, which
subsequently abrogate apoptosis of hypoxic cardiomyocytes
(43).

Beyond cytokine production, macrophages are an overflowing
source of biological entities with pro-hypertrophic and
survival potential. For example, Galectin-3, a macrophage-
derived mediator, contributes to cardiac hypertrophy (44).
Removal of micro(mi)RNA-155 in macrophages reduces
cardiac hypertrophy and cardiac dysfunction following
pressure overload (28). Mineralocorticoid receptor deletion
in macrophages abrogates cardiac hypertrophy after aortic
constriction (45) or in the setting of hypertension (46, 47).
Mice with macrophage harboring prolyl hydroxylase
domain protein 2 deficiency display attenuated cardiac
hypertrophy and contractile dysfunction after hypertensive
treatment (48).

Non-canonical Role of Macrophages
Cardiac Conduction
Recent work also reveals that resident cardiac macrophages
establish direct connections to cardiomyocytes via connexin 43
gap junctions in the atrioventricular node. In vitro, neonatal
cardiomyocytes cause rhythmic depolarizations in macrophages,
which in turn, alters the electrophysiological properties of
cardiomyocytes. Since macrophages are poorly polarized
cells, their coupling with cardiomyocytes depolarizes them.
While in the “working” cardiomyocytes an increase of the
resting potential inactivates the sodium channels and slows
the conduction, the depolarization of the atrioventricular node
cardiomyocyte depends on the calcium channels, whose voltage-
dependent inactivation is shifted toward higher positive voltages.
Activation of a rhodopsin 2 channel specifically expressed
in macrophages causes sodium entry and depolarization,
improving nodal conduction. Conversely, inactivation of
connexin 43 specifically in macrophages, or the congenital
deficiency of macrophages, affect the propagation of cardiac
electrical impulses, attesting to the existence of a functional
connection between resident macrophages and specialized
cardiomyocytes within the nodal tissue (24). Macrophages
could also regulate conduction abnormalities beyond the
atrioventricular node, including the course of atrial fibrillation
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FIGURE 2 | The cardiomyocyte and macrophage cross-talk in cardiac tissue. The expanded cardiac macrophage population plays an important role in the regulation

of cardiac dysfunction by secreting factors that directly or indirectly alter cardiomyocyte homeostasis. Notably, considering their abundance, diversity, and phenotypic

plasticity, macrophages represent a major reservoir of factors controlling cardiomyocyte hypertrophy, survival and contractility. Furthermore, cardiac macrophages

exert non-canonical roles on cardiac conduction or cardiomyocyte proliferation by regulating action potential diffusion or cardiac cell cycle reentry. Nevertheless, the

communication between cardiomyocytes and macrophages operates in both directions and cardiomyocytes dialogue toward cardiac macrophages to drive their

number, function and phenotype through the release of a broad catalog of macrophage regulating factors. MYDG, myeloid derived growth factor; PS, phosphatidyl

serine; ROS, reactive oxygen species; DNA, deoxyribonucleic acid; REG3β, regenerating islet-derived protein 3-beta.

or ventricular arrhythmias induced by ischemia. Clinically,
atrioventricular block is a common indication for implantation
of cardiac pacemakers, but many cases of atrioventricular
block occur for unknown reasons. Macrophage phenotype
and number are modified after acute myocardial infarction
and heart failure, conditions associated with sudden cardiac
death and ventricular arrhythmias. In this regard, recent
work has shown that diabetic inflammation causes secretion

by resident macrophages of IL-1β, which destabilizes the
electrical activity of cardiomyocytes potentially promoting
the occurrence of ventricular arrhythmias (49). Other cardiac
inflammatory diseases, including Chagas disease, Lyme
disease, and myocarditis, initiate conduction defects. In
these pathological conditions, cardiac macrophages could
also participate to the development of atrioventricular block
in addition to cardiomyocytes and specialized conductive

Frontiers in Cardiovascular Medicine | www.frontiersin.org 5 October 2018 | Volume 5 | Article 134

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Gomez et al. The Cardiomyocyte Macrophage Crosstalk

tissue deregulations. Conduction system development or
genetic abnormalities could also be dependent of cardiac
macrophage-related actions.

Cardiomyocyte Regeneration
Change in monocyte/macrophage gene expression is associated
with decrease in cardiomyocyte proliferation with aging (50).
In the neonatal heart, clodronate liposome-induced phagocytic
cell depletion abrogates heart regeneration. Human fetal and
adult mononuclear phagocytes show distinct pro-inflammatory
features after LPS stimulation (2). Furthermore, it has been
shown that in response to injury, resident CCR2– reparative
cardiac macrophages dominate in the neonatal cardiac tissue and
directly foster cardiomyocyte proliferation (22). Comparative
analyses have been performed in many species revealing
that the regenerative capacity of the cardiac tissue sparsely
exists across the animal kingdom, and seems to correlate
with immature immune system. As an example, zebrafish
exhibits unchallenged ability to regenerate cardiac tissue.
Interestingly, another teleost, the medaka, does not share
this capacity. Comparative transcriptomic analyses following
cardiac cryoinjury in Zebrafish and medaka point to major
differences in immune cell dynamics between these two
models. Delayed macrophage recruitment in zebrafish hampers
cardiomyocyte proliferation and scar resolution. Delayed and
reduced macrophage recruitment is observed in medaka,
along with inefficient cardiac regeneration. Stimulating Toll-
like receptor signaling in medaka activates immune cell
dynamics and galvanizes cardiomyocyte proliferation and scar
resolution (51). During the regenerative process, cardiomyocytes
undergo a transcriptional reversal of cell differentiation program
characterized, at least in part, by recrudescence of embryonic
gene expression. Interestingly, IL-13 has been identified as
a potential upstream regulator of the core network, which
induced cardiomyocyte cell cycle entry, in part by the STAT3
pathway (52). Altogether, these studies provide further insight
into the complex role of the immune response during
cardiac repair, and suggest that macrophage could serve as a
platform to release cytokines and growth factors, promoting
cardiomyocyte proliferation, at least in neonatal mammalian
heart.

CARDIOMYOCYTES AND OUTSIDE-IN
SIGNALING WITHIN CARDIAC
MACROPHAGES

The communication between cardiomyocytes and macrophages
operates in both directions and cardiomyocytes dialogue toward
cardiac macrophages using different languages (Figure 2).

First, dying cardiomyocytes send some “eat me” signals
to stimulate clearance of dying cells and prevent collateral
myocyte loss and infarct expansion. Efficient phagocytic
clearance of cardiac apoptotic cells by macrophages involved
the coordinated role of 2 major mediators of efferocytosis,
the myeloid-epithelial-reproductive protein tyrosine kinase
(MerTK) and the milk fat globule epidermal growth factor

8 (MFG-E8). Macrophage defective for efferocytosis leads
to cardiac dysfunction (53, 54). Interestingly in ischemic
heart, dying cardiomyocytes send unappropriated signals,
such as upregulation of integrin-associated protein CD47
or shedding of macrophage MerTK, that impair phagocytic
removal by cardiac macrophages (55, 56). Notably, resident
MHCIIlowCCR2− cells are characterized by elevated expression
of MerTK and, release pro-reparative cytokines, such as TGF-
β, in response to apoptotic cell engulfment (57). Of interest,
non-professional phagocytes including cardiac myofibroblasts,
have also been shown to efficiently engulf dead cells in the
infarcted heart. These cardiac myofibroblasts secrete MFG-E8
promoting efferocytosis and acquisition of anti-inflammatory
properties (58). Communication between professional and non-
professional phagocytes likely coordinates phagocytosis of dying
cells in the vicinity of the damage (59). As a prototypic
example, in epithelial tissue, following clearance of apoptotic
cells, macrophages release soluble growth factors, such as insulin-
like growth factor 1, which redirect the phagocytosis of neighbor
epithelial cells toward uptake of smaller vesicular components
(60). Nevertheless, the existence of this crosstalk between
macrophages and non-professional phagocytes remains to be
detailed in the pathological cardiac tissue.

Second, in pathological conditions, activated cardiomyocytes
can release a broad panel of instructive signals that could
control macrophage number and skew their phenotype. For
example, neutrophils and macrophages produce the cytokine
oncostatin M, which galvanizes the cardiomyocytes to produce
the regenerating islet-derived protein 3-β. Subsequently,
regenerating islet-derived protein 3-β improves monocyte-
derived macrophage number in the cardiac tissue (61). Other
molecular entities delivered by hypoxic cardiomyocytes such
as inhibitors of the WNT pathway, radical oxygen species or
the release of cytosolic nucleic acid also modulate the number
and phenotype of cardiac macrophages (62–64). In hypertensive
heart failure model, microarray and immunohistochemistry
analysis revealed a cardiomyocyte specific upregulation of 12/15-
lipoxygenase, a major enzymemetabolizing arachidonic acid into
hydroxy-eicosatetraenoic acids. Cardiomyocyte overexpression
of 12/15-lipoxygenase increases cardiac CCL2 contents leading
to accumulation of inflammatory macrophages and systolic
dysfunction (65). Extensive amount of evidences highlights that
cell-to-cell communication involves extracellular vesicles (EVs).
EVs regulate major biological functions, including inflammation.
Presence of EVs in cardiomyocyte cytoplasm has been revealed
in human hearts. Culture cardiomyocytes are also able to release
EVs in vitro (66). Acute myocardial infarction in mice transiently
enhances EV levels in the left ventricle. Both large (252± 18 nm)
and small (118 ± 4 nm) EVs are produced and mainly emerge
from cardiomyocytes. Of note, large EVs, but not small EVs,
are able to control IL-6, CCL2, and CCL7 release from cardiac
monocytes (67). Hypoxic cardiomyocytes have also been shown
to release high rate of small EVs (mainly exosomes) containing
excessive expression of TNF-α (68). Mixt EV population or
small EVs (mainly exosomes) have emerged as critical agents
of cardiac repair triggered by different type of cell therapy
(69–71). EV-related effects could be mediated by cell-surface
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receptor activation or delivery of multiple components within
the targeted cells. Notably, small EV isolated from cardiosphere-
derived cells are enriched in several miRNAs, such as miR-181b,
and have been shown to specifically target CD68-positive
cardiac macrophages switching their phenotype toward a
reparative state (72). Cardiac EVs have also been identified
in fragments of the interventricular septum obtained from
patients undergoing extracorporeal circulation for aortic valve
replacement suggesting that cardiomyocyte-derived EVs could
constitute a major component of the cardiomyocyte/macrophage
crosstalk (67). One can also speculate that these cardiac EVs
could reach the bone marrow and/or the spleen, where they
could stimulate a distinct myeloid-biased progenitor subset
or monocyte mobilization. Nevertheless, the specific role of
large or small cardiac EVs on different subset of inflammatory
compounds as well as characterization of their core signaling
mediator need to be further explored. Finally, the mechanical
deformation of cardiomyocytes by pathways dependent on
Mitogen Activated Protein Kinases is sufficient to increase the
population of macrophages in the healthy myocardium (26).

FUTURE DIRECTIONS

Hence, cardiomyocytes and macrophages form an interspersed
network and dialogue with each other to profile the multiple
processes shaping the cardiac tissue. In pathological settings, the
exact roles of resident embryonically derived- and monocyte-
derived macrophage subsets on cardiomyocyte homeostasis
remain to be fully defined. Of note, the use of strategies
designed to inhibit CCR2 signaling or endothelial cell-
dependent adhesion is of interest to abrogate monocyte-derived
macrophages upregulation but likely induces non-specific effects
on other inflammatory cell subtypes and, more importantly,
hampers the direct impact of monocytes on cardiac remodeling.
Such side effects may lead to confounding outcomes and
misinterpretation of cardiac macrophages related-actions. For
example, monocyte-derived macrophages likely display both
positive and negative potential on cardiomyocyte and cardiac
tissue. As such, CD206+F4/80+CD11b+ macrophages exhibit
strengthened reparative abilities after myocardial infarction. This

macrophage subpopulation emerges from bone marrow HSCs
through a kinase TRIB1 dependent pathway (73). In addition, IL-
4 administration increases the number of reparativemacrophages
and enhances the post-myocardial infarction prognosis in mice
(73). In the stressed heart, one can also speculate that the
inflammatory landscape could skew the status of cardiac-resident
macrophages from a reparative to a deleterious phenotype.
Therefore, studies using specific resident macrophage depletion
or distinct resident macrophage gene deletion need to be
developed. Nevertheless, cardiac tissue provides a revealing
example where macrophage number and phenotype, duration
of macrophage-related signaling, from acute to chronic, could
balance the protective and pathogenic transition of cardiac tissue.

Inflammation-dependent remodeling process has been
predominantly described in acute injury, such as acute
myocardial infarction. However, the impact of these
inflammatory signalings remain mostly undefined in chronic
pathological settings (74). Notably, further studies need
to explore the mechanisms underlying the direct roles of
macrophages on cardiomyocyte survival and hypertrophy
and if specific macrophage sup-population could regulate the
progression from compensated hypertrophy to heart failure.
Finally, the precise identification of the molecular and cellular
signals send from cardiomyocytes toward macrophages would
likely improve our understanding of cardiac macrophage
physiology and both their beneficial and deleterious actions.
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