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The recent development of single cell gene expression technologies, and especially single

cell transcriptomics, have revolutionized the way biologists and clinicians investigate

organs and organisms, allowing an unprecedented level of resolution to the description

of cell demographics in both healthy and diseased states. Single cell transcriptomics

provide information on prevalence, heterogeneity, and gene co-expression at the

individual cell level. This enables a cell-centric outlook to define intracellular gene

regulatory networks and to bridge toward the definition of intercellular pathways

otherwise masked in bulk analysis. The technologies have developed at a fast pace

producing a multitude of different approaches, with several alternatives to choose from

at any step, including single cell isolation and capturing, lysis, RNA reverse transcription

and cDNA amplification, library preparation, sequencing, and computational analyses.

Here, we provide guidelines for the experimental design of single cell RNA sequencing

experiments, exploring the current options for the crucial steps. Furthermore, we provide

a complete overview of the typical data analysis workflow, from handling the raw

sequencing data to making biological inferences. Significantly, advancements in single

cell transcriptomics have already contributed to outstanding exploratory and functional

studies of cardiac development and disease models, as summarized in this review. In

conclusion, we discuss achievable outcomes of single cell transcriptomics’ applications

in addressing unanswered questions and influencing future cardiac clinical applications.

Keywords: heart, gene expression, single cell, cellular landscape, transcriptomics, qRT-PCR, RNA-seq

INTRODUCTION

Each single cell of our body has a unique position in space and time and is, therefore, exposed
to a unique set of specific signals and stimuli. However, until recently, our capacity to
study single cells was limited to handfuls of genes or proteins and the vast majority of
gene expression studies were done in bulk. Single-cell gene expression analysis started with
the development of methods to study targeted transcripts including quantitative RT-PCR
(1–3) but also single-molecule FISH that allows to maintain the spatial information (4–
7). Approximately a decade later, the first paper proving the feasibility of single cell RNA-
sequencing (scRNA-seq) was published, evidencing its superiority to single cell microarrays
in the study of single mouse blastomeres, with 75% more genes detected and a level
of resolution permitting the identification of more than 1,700 previously unknown splice
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junctions (8). Thus, a new era started and a complete change
of perspective, permitting the analysis of gene expression and,
consequently, cell function and intercellular networks from a
cell-centric viewpoint.

There has been rapid development of technologies to reduce
noise, improve sensitivity and, notably the throughput for single
cell transcriptomics (9–17). Indeed, the number of high-impact
studies using scRNA-seq is rapidly growing in many fields.
Pioneering studies were conducted on developing embryos, even
at the pre-implantation stage, circulating cells and also solid
tissue including human disease samples such as cancer (8, 9,
14, 18–23). The first single cell gene expression studies on the
heart relied on single cell qRT-PCR and scRNA-seq studies lagged
for a few years (24, 25). The initial work focusing on cardiac
development as well as adult heart demonstrated feasibility with
some useful explorative studies and more recent ones proving
the unique value of single cell studies in identifying pathways’
dysregulation in disease models (26–29).

The advantages of single cell gene expression analysis offsets
any associated technical difficulty. Three fundamental features
can be defined at the single cell level for the expression of
each gene and, more relevantly for patterns of gene expression
predicting a specific cell type: prevalence, heterogeneity, and co-
expression. In particular, for single cell transcriptomics based
on each cell’s own global gene expression, the classification of
cell types is uniquely quantitative and data-driven, allowing the
discovery of markers defining a tissue or cell type without prior
knowledge (17, 19, 30–38). In fact, the sensitivity and specificity
of whole-transcriptome signatures is above technical noise and
biological variability, and therefore is sufficient to discriminate
novel and rare cell types and previously unappreciated markers
during development, and disease progression (14, 17, 19, 22, 36–
42).

The use of scRNA-seq to unravel heterogeneities, identify
novel cell populations and organize cellular hierarchies,
represents the first explorative phase enabling a dynamic vision
with functional implications that would otherwise be masked
in bulk analysis (17, 21, 36–39, 42–46). From a computational
perspective, the elaboration of this rich information using
unsupervised clustering reliably allows to group cells according
to their subtype or state, as shown in experiments deconvoluting
the cellular composition of complex tissues (brain, spleen,
intestine, ear, retina, and tumors) but, also, to characterize
transitions along pseudotemporal trajectories and reconstruct
lineage decisions (37, 41, 47–51). Indeed, integrated data analysis

Abbreviations: CM, CardioMyocyte; DE, Differentially Expressed; ERCC,

External RNA Controls Consortium; FACS, Fluorescence-Activated Cell Sorting;

FISH, Fluorescent In Situ Hybridization; GRN, Gene Regulatory Network; HCA,

Human Cell Atlas; iCM, Induced Cardiomyocytes; iPSC, Induced Pluripotent

Stem Cell; LCM, Laser Capture Microdissection; MARS-Seq, MAssively parallel

RNA Single cell sequencing; mESC, Mouse Embryonic Stem Cell; MSC,

Mesenchymal Stem Cell; PCA, Principal Component Analysis; qRT-PCR,

Quantitative Real Time PCR; RPKM, Reads Per Kilobase per Million; RPM, Reads

Per Million; SCRB-seq, Single-Cell RNA Barcoding and sequencing; scRNA-seq,

Single Cell RNA-sequencing; Smart-Seq, Switch Mechanism At the 5’ end of

RNA Templates sequencing; snRNA-seq, Single Nuclei RNA-sequencing; tSNE,

T-distributed Stochastic Neighbor Embedding; UMI, Unique Molecular Identifie;

ZIFA, Zero-Inflated Factor Analysis.

entails subsequent deconstruction/reconstruction iterations
to define the regulatory and signaling mechanism governing
cellular decision that result in the definition of specific cell types
and/or functional states. Remarkably, single cell transcriptomics
allows the investigation of gene regulatory networks, which can
be seen as the ensemble of active transcription factors and the
genes they target (52), aiming to predict the effect of disruptions
and manipulations to such network. In addition, previously
masked by whole-tissue or pooled cell analysis, scRNA-seq
also demonstrated the bimodal (on/off) distribution of gene
expression in individual cells (22, 53). Ultimately, as described in
more detail below, inferences go beyond the boundaries of single
cells permitting the extrapolation of intercellular regulatory gene
networks (38, 54–56).

In summary, single cell transcriptomics provides a global and
unbiased view of tissues’ cellular demographics from bottom up,
both at steady-state and in dynamic processes like development,
differentiation, and progression of disease. In the first section,
we provide a detailed overview of the practicalities to design
single cell RNA-seq or targeted gene expression experiments,
and discuss methods including computational analysis; in the
second part we cover the advancements brought by these
new technologies in the cardiac field, the foreseeable successes
in resolving ambiguities of heart biology and the potential
applications in clinical settings.

EXPERIMENTAL AND COMPUTATIONAL
APPROACHES FOR SINGLE CELL GENE
EXPRESSION ANALYSIS

Design of Single Cell Transcriptomics
Experiments
Single cell RNA-seq technologies involve a number of steps
(Figure 1) employing different strategies for cell capture, reverse
transcription, cDNA amplification, and the increasing number of
options available raises practical questions for first-time users.

The first decision concerns the number of cells to be captured
and the transcriptome coverage needed, i.e., the number of
genes detected per cell. The numbers required for an accurate
representation of the reality will vary according to the specific
biological context and the heterogeneity expected within the cell
population under study. For example, if the objective is to capture
all the cell types present in a tissue, it is advisable to consider
methods that yield thousands of single cells, even with lower
coverage per cell, because differences between cell-types involve
somany genes that even a shallow characterizationwill be enough
to distinguish them (57). On the other hand, if the focus of the
study is the in-depth characterization of a specific cell-type that
shows subtle differences in “state,” capturing more genes per cell
can be more informative and accurate (57), even if only hundreds
of cells are analyzed.

The number of cells that can be captured might also be
conditioned by the available tissue size and/or the abundance of
the cell types of interest. Approximate estimation of the number
of cells required for a given experiment can be based on prior
knowledge about the biological setting; alternatively, a more
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FIGURE 1 | Workflow summarizing the critical steps of a typical single cell

RNA-sequencing experiment.

precise estimate of expression mean levels and dispersion as
well as dropout rate can be obtained by specialized tools like
powsimR (58), that predicts power and sample size requirements
to detect differential expression by fitting a polynomial regression
to data provided by the investigator, or applying user-generated
parameters.

To choose the method for single cell isolation and capturing,
the desired experimental outcome needs to be weighed against
the availability and source of tissue and/or cells. Indeed, the
source of cells, ranging from 2D cell cultures, to small cell
aggregates, tissue sections, small fresh or frozen biopsies and
large tissue samples, crucially determines the process to follow
(Table 1). The availability of tissue sections and the need to
preserve tissue structure and single cell localization, restricts the
choice to laser capture microdissection (LCM) (59–61). This is
a time consuming and very low throughput method, requiring
staining to define cell boundaries and/or types which is useful

to capture single cells in a specific micro-niche (62). Direct
single cell trapping from the tissue was used in a variety of
settings, including to study the unique identity of mouse and
humanmotor neuronal populations based on their position along
the spinal cord and most importantly to uncover the paracrine
effects of mesenchymal stem cells (MSCs) on the myocardium of
infarcted mouse hearts (63, 64).

All other techniques require a single cell suspension to
be used as input. In this regard, it is important to consider
that mechanical and/or enzymatic cell isolation can affect cell
viability and potentially gene expression profiles, thus, exposure
to enzymes (e.g., trypsin or collagenase) and higher temperatures
should be minimized. A number of different methods are
available to capture single cells (Table 1 and Figure 2).

Micromanipulation allows to manually pick single cells in
suspension derived from culture or tissue using an inverted
microscope and glass micro-pipettes (67, 69). Even if this method
is time consuming, it can be useful to isolate single cells from
samples with very few cells, such as early embryos or for large
cells like CMs that cannot be unbiasedly selected by current flow
sorters or most microfluidic apparatuses, and finally can be also
used to select single nuclei (69). The purity of cells obtained will
depend greatly on the operator.

The use of flow cytometry for cell capturing has the advantage
of selecting and sorting single cells based on their expression of
surface markers, fluorescent reporter proteins and/or fluorescent
dyes defining their functional status (e.g., viability markers,
cell cycle staining), allowing single cell multi-parametric, high
throughput sorting into plates (e.g., followed by Smart-seq2)
or in a tube for droplet-based methods, Massively parallel
RNA single cell sequencing (MARS-Seq) (21), or virtually any
other scRNA-seq application. Additionally, unique advantage
of FACS is to perform index sorting, allowing the record of
the fluorescence information of each parameter analyzed for
each single sorted cell and to index it with the position of
the sorted event. This enables the retrospective interrogation of
flow cytometric parameters of unbiasedly sorted cells for which
gene expression profiles has been acquired, providing a deeper
understanding of the mechanisms involved in the function of
that given cell, and potentially leading to the identification of
new markers for populations of interest (70, 71). Importantly,
FACS efficacy, accuracy and purity of >95% has been widely
demonstrated (72, 73). The major limitation appears to be
the relatively large amount of starting cells required (more
than 10,000) and the size of sortable cells (19). Indeed, larger
cells cannot be accurately and unbiasedly selected by FACS
nor by most droplet-based methods. This is an important
limitation for the study of single CMs, which reach a length
of 150µm in healthy hearts and even longer in certain disease
states. A relatively new instrument, ICELL8, has the capacity
to process cells of any size, although with medium throughput
[up to 1,800 cells (68)]. The system is based on the use
of a nano-dispenser that delivers cells to a chip containing
5,184 nanowells, each one preloaded with oligos which contain
oligo-dT, barcodes and unique molecular identifiers (UMIs;
as described in the next section); it integrates imaging to
discriminate wells containing a single cell vs. multiplets and
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FIGURE 2 | Schematic representation of single cell RNA sequencing experimental pipelines. FACS (with or without Index Sorting), microfluidics and microdroplets are

the main methods used for single cell capture. Notably, FACS can be performed as a preparatory step before the other capture techniques. CEL-Seq2, Smart-seq2,

10X Genomics and Drop-seq are shown. Single cell capture is followed by lysis and reverse transcription using oligo-dT primers, which also introduce UMIs (lilac),

barcodes (light blue), adapters (cyan), the T7 promoter (red) or PCR primers (dark blue and magenta), as shown in each specific method. Smart-seq does not include

early barcoding. Second-strand synthesis in performed by poly(A) tailing (CEL-seq2) or by template-switching (in the other methods). The cDNA is then amplified

linearly by IVT using the T7 promoter, or exponentially by PCR. During library preparation, the amplified molecules are fragmented by physical (CEL-Seq2) or

enzymatic means (Smart-seq2, 10X and Drop-seq). Fragments are ligated with adaptor sequences required for cDNA amplification (yellow and cyan) and sequencing

(orange and gray); in CEL-Seq2, this requires an initial RT step. The resulting sequencing libraries allow UMIs counting or full-length coverage. UMI, unique molecular

identifier; Bc, barcode; IVT, in vitro transcription. Undulating lines represent RNA, solid blocks DNA, ovals enzymes, dotted lines sequencing reads. For more details,

see https://teichlab.github.io/scg_lib_structs/.
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TABLE 1 | Comparison of the main features of commonly used single cell capturing techniques.

Plate-based

(13, 16)

Valve-based

microfluidics (65)

Droplet-based

microfluidics (66)

LCM (63) Micromanipulation

(67)

ICELL8 (68)

Need for dedicated

equipment

No Yes Yes Yes No Yes

Samples Cells in

suspension or

dissociated

Cells in

suspension or

dissociated

Cells in

suspension or

dissociated

Tissue sections Cells in

suspension or

dissociated

Cells in

suspension or

dissociated

Volume Microliter Nanoliter Nanoliter Nanoliter Microliter Nanoliter

Starting cells (minimum) >10,000 Thousands 2,000-10,000 NA Any Hundreds

Number of cells

captured

Hundreds Hundreds Thousands Tens Tens Hundreds

Need for dedicated equipment refers to the necessity for equipment exclusively designed for single cell RNA-seq capturing; samples refers to the source of single cells; volume indicates

reaction size; starting cells reports the typical minimum number of cells required (NA, non applicable); number of cells captured refers to the typical number of events selected by the

indicated technique.

live/dead cells based on labeling with fluorescent dyes (68).
Alternatively, large cells can be investigated by single nuclei RNA-
seq (snRNA-seq), which was reported as sensitive and specific
for the identification of CMs subtypes and an effective mean
to profile expression dynamics in previously inaccessible frozen
tissue (69, 74).

Additional approaches for capturing single cells are
microfluidic-based devices and their combination with micro-
droplets methods. Microfluidic systems enable sorting into
individual compartments, and in the case of the valve-based
Fluidigm C1, visual inspection is possible before further
processing of the cells (12, 65). The device requires an input of
minimum 1,000 cells with a throughput of 96 cells per chip and
cell recovery can be low (67, 75).

The combination of microfluidics with micro-droplet
methods (droplet-based microfluidics) offer even more
advantages, such as lower sample consumption and
contamination risks, ultimately, reducing volumes of reagents
used and therefore costs (11, 76). Drop-seq was one of the
first methods developed that enabled highly parallel analysis
of individual cells by RNA-seq via encapsulation of cells in
nanoliter droplets with DNA-barcoded beads allowing to analyse
44,808 cells from the retina and identify 39 transcriptionally
unique cell types (77). Similarly, the indexing droplets (inDrop)
method is based on capturing cells in barcoded nanoliter droplets
which, in this case, contain a hydrogel carrying photocleavable
combinatorially barcoded primers. The system was initially used
to demonstrate a heterogeneous differentiation potential after
leukemia inhibitory factor withdrawal in thousands of single
mouse embryonic stem cells (78). Within this space, the 10X
Genomics system is of recent development and is becoming a
first choice for many researchers because of its flexible workflow
and high-throughput (66). This micro-droplets system is based
on the encapsulation of 500 to 20,000 single cells (or nuclei)
thanks to their solution to generate nano-droplets. The process
has a capturing efficiency of more than 50% thanks to single
Poisson distribution loading and is significantly faster compared
to inDrop or Drop-Seq allowing to capture eight samples
within minutes with massive throughput results (66). One

potential disadvantage is the risk of capturing cells’ doublets
(or multiplets), nevertheless, contamination’s rates of the
preparations can be empirically predicted mixing cells derived
from different species or, in the absence of internal controls, a
more challenging approach is to use computational methods
(21, 22, 66, 77, 79). This system has been used in many areas of
research demonstrating the power of single cell transcriptomic
analysis, which goes well-beyond the mere cataloging of novel
cell types. For instance, in a recent study of nearly 100,000 single
cells from human lung cancer, 52 stromal cell subtypes were
defined, including novel subpopulations hitherto considered
to be homogeneous and for which novel functional roles
were identified (30). These included fibroblasts expressing
different collagen sets, immunomodulating endothelial cells,
and disease associated changes in T-cell subtypes pointing
to novel immunotherapy targets as well as new biomarkers
(30).

In summary, decision-making for the best suited cell
capturing platform requires the evaluation of four parameters:
number of cells needed to answer a given biological question,
transcriptome coverage needed, input of cells vs. cells’ availability,
cell size (67, 79).

Reverse Transcription and cDNA
Amplification: Available Options
After the isolation and lysis of single cells, scRNA-seq requires
the conversion of their RNA into cDNA and its amplification
to generate libraries with a signal above sequencing sensitivity
threshold. Following single cell capturing and consequent cell
lysis, virtually all protocols select poly-adenylated RNA and
generate cDNA by using poly-(dT) primers (Figure 2). Smart-

seq (switching mechanism at 5
′

-end of RNA template) does
not include early barcoding. Thus, it requires each sample to
be processed individually, but has the advantage of enabling
full transcript sequencing obviating to coverage biases caused
by incomplete reverse transcription that occurs using poly(A)
tailings (8, 14, 31, 80) (Figure 2). In 10X Genomics, long
fragments of DNA (>50 kb) are encapsulated in a droplet, where
they are labeled with semi unique barcode for sequencing by
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Illumina technology (66). The barcode presence determines the
relative spatial orientation of the tags, creating a map with
linked reads, in order to combine information from several
tags. Sequencing of this small material requires amplification
that can be performed by either polymerase chain reaction
(PCR) or in vitro transcription (IVT). PCR allows for improved
sensitivity, but does not retain strand information (13, 14).
The optimisation of Smart-seq2 from Smart-seq increased the
sensitivity and library yield as well as reduced the costs and
the duration of the process down to 2 days (13, 16). Drop-
seq was shown to allow the analysis of 10,000 single cells
within 12 h, being among the fastest and more cost-efficient,
especially to analyse large number of cells (77, 79). The CEL-Seq
method was the first to use IVT, obviating to the requirement
for a template-switch step and related reduced efficiency (9).
Second generation CEL-Seq2, with optimized primers, reagents,
clean-up, and library preparation steps has higher sensitivity,
lower hands-on time and costs as well as being adaptable to
various platforms, including Fluidigm C1, Drop-seq and inDrop
(20). The major limitation remains the lack of information on

most instances of splicing because of the 3
′

-bias (20), which
can be overcome barcoding individual cells and pooling them
for a linear amplification using only one RT round (9, 20).
Ensuring full-length coverage across mRNA is essential to
analyse alternative splicing forms as well as identification of
single-nucleotide polymorphisms, regardless of the orientation

of amplification (at the 3
′

- or at the 5
′

-end) (14, 81). Ideally,
the samples can be barcoded during RT reaction, such as in
CEL-Seq, or during the following step of sequencing and library
preparation (Smart-seq/Smart-seq2). In order to reduce noise
created by duplets and improve efficiency in gene expression
analysis, UMIs have been introduced as internal validation
controls; thus, randomly barcoding each individual mRNA
molecule during the reverse transcription reaction can be used
to determine the absolute amount of mRNAs in a targeted single
cell (12, 20, 22, 42, 77, 78).

The choice of the ideal method needs to take in consideration
sensitivity, accuracy, precision, power, and efficiency of the
cDNA conversion and its amplification plus the throughput
of the libraries generated. Work was done to compare
methods in parallel experimentally and computationally (79,
82). An integrated framework to analyse scRNA-seq methods
performances was developed by comparing 15 protocols
computationally from 28 published single cell studies and 4
protocols experimentally (82). Sensitivity in detection of gene
expression, tested using spike-ins, was generally high and largely
dependent on sequencing depth. Nevertheless, accuracy did not
depend as much on sequencing depth and was lower in CEL-
seq, and MARS-Seq, possibly because of higher performance
variability of these methods (82). Importantly, endogenous RNA
was shown to be much more efficiently captured and amplified
than ERCC spike-in molecules with consequent underestimated
measures of sensitivity (82). Obviating to the limitations of a
comparison based on exogenous spike-ins, captured at lower
efficiency than endogenous transcripts, a comparison based
on endogenous mRNAs found Smart-seq2 to be the most
sensitive and accurate method. Indeed, Smart-seq2 has a lower

drop-out rate and detects a common set of over 10,000 genes
in more cells compared to UMI-based methods. However,
CEL-Seq2, Drop-seq, MARS-Seq, and SCRB-seq (single-cell
RNA barcoding and sequencing) have lower amplification
noise (79). Finally, as cost can be a factor in deciding
which approach to choose, Drop-seq is more cost-efficient
for transcriptome quantification of large cell numbers, while
MARS-Seq, SCRB-seq, and Smart-seq2 have higher efficiency
when analyzing fewer cells as shown by power simulations
(79).

A Few Considerations About Sequencing
Depth
As mentioned above, sequencing depth is an equally important
aspect of the design. Higher depth clearly allows a higher
resolution in describing the cellular landscape under study based
on single cell gene expression with an upper limit determined
by the technology in use. Ultra-low coverage sequencing
(<10,000 reads/cell) have been used to identify cell types in
heterogeneous tissues, however, this number heavily relies on
the diversity of the cellular landscape under investigation and
finer distinctions and resolution of the genes set explaining
variation require moderately shallow sequencing depth (50,000
reads/cell) (65). Recently, a comparison of different single cell
RNA-seq technologies based on the detection of exogenous spike-
ins, showed that sensitivity (the minimum number of detectable
RNA molecules) is strongly affected by sequencing depth, with
only a slight improvement after 106 reads/cell and saturation at
∼4.5 × 106 reads/cell (82). These data suggest that one million
reads per cell is a good target. On the other hand, accuracy
(the correlation between known input molecules and quantified
expression values) showed saturation at 250,000 reads/cell.

Computational Methods for Single Cell
Transcriptomic Analysis
The increase in protocols and applications for single cell RNA-
sequencing has been paralleled by the development of amultitude
of computational tools and methods for single cell data. Some
methods initially designed for bulk analyses can be applied to
single cell experiments. However, single cell data tend to be
noisier given the small amount of starting material, and several
specific tools have been developed [reviewed in Stegle et al.
(83)]. Here, we give an overview of the most common tools
and methods employed in single cell transcriptomics’ workflow
analysis (Figure 3). We will not cover, however, tools and
pipelines developed to be used in conjunction with proprietary
technologies and systems (e.g., Cell Ranger by 10X Genomics
or Singular by Fluidigm). Finally, we point the reader to
the exhaustive archive at https://github.com/seandavi/awesome-
single cell, which contains an exhaustive list of tools for single
cells analysis, plus links to several in-depth tutorials, journal
collections, and various resources.

Raw Sequencing Data Processing
Following demultiplexing, the earliest steps of the analysis
pipeline (Figure 3) include assessing the quality of the data and
preparing them for downstream analyses by filtering out low
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FIGURE 3 | Computational analysis pipeline. The analysis can be broadly divided into three main stages (raw data processing, refinement and biological analysis),

each including several steps. Initial QC and trimming can be performed iteratively, multiple times. Light blue boxes indicate optional steps. Details are given in the text.

QC, quality control; DE, differentially expressed; GRNs, gene regulatory networks.

quality or contaminating reads and trimming adapters, primers,
and low quality portions of the reads. Although trimming can be
bypassed if the quality of the raw data is satisfactory, it generally
allows for a faster and more accurate alignment.

Popular tools used at these stages include FastQC (https://
www.bioinformatics.babraham.ac.uk/projects/fastqc/) for
quality control and Cutadapt (https://cutadapt.readthedocs.
io/en/stable/guide.html) for trimming [alternative methods
are reviewed in Conesa et al. (84)]. Some tools, like AfterQC
(85), perform multiple operations (QC, filtering, trimming);

also, while the steps mentioned above are performed on each
sample separately, some tools are able to complete operations
on multiple samples at once, such as SequenceImp (86), or to
aggregate multiple outputs from a large number of samples in a
unified report, such as MultiQC (http://multiqc.info).

Alignment and Detection of Transcripts
After the initial processing and QC, alignment to the genome or
transcriptome is performed in order to detect and quantify the
transcripts in each cell. The choice of aligning to the genome
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or the transcriptome depends on the users’ specific objectives.
Nevertheless, in both cases, if spike-ins were used, their sequence
must be added to the appropriate reference before alignment.
Aligning to the transcriptome is usually faster but only feasible
when dealing with well-annotated species such as Homo sapiens
or Mus musculus, and even then, it cannot obviously discover
new transcripts, although it grants the possibility to characterize
isoforms. On the other hand, alignment to the entire genome
can count both known and unknown transcripts but requires
“splicing aware” tools to correctly detect splicing junctions. STAR
is a widely used program for transcripts alignment to the genome
that allows the discovery of non-canonical splicing patterns and
chimeric transcripts (87).

UMIs can be directly used to count transcripts when
alignment to the genome is performed (Figure 3); otherwise,
expression levels need to be quantified by counting the reads
aligned to each gene (HTSeq or featureCounts) (88, 89).
Additional feature counting is not required if full length
transcripts were sequenced allowing to use pseudo-aligners, such
as Salmon (90) and Kallisto (91), that have lower requirements in
terms of computational resources, resulting in a faster alignment,
and are more robust to sequencing errors.

Filtering
Once sequencing data have been aligned to the reference and
transcripts are counted, several filtering steps are necessary to
remove outliers or low-quality data, which might include wells
containing zero or multiple cells, or broken or dead cells. The
scater package (92) for the R environment (https://www.R-
project.org/) is a useful tool to handle single cell data, perform
filtering steps and preliminary exploration on the data. Some
per-sample metrics are used as measures of sample quality, most
notably the number of reads mapped (also referred to as library
size or sequencing depth), the number of features (genes or
transcripts) detected, and the percentage of reads mapping to
mitochondrial genes or to spike-ins (when these are included in
the design). Mapped reads and detected features should produce
near-normal distributions, but the absolute values depend on
the protocol used. Increased mitochondrial RNA content is
usually associated with dead cells, however, cells with increased
mitochondrial content and activity, as cardiac muscle cells, might
physiologically produce a higher percentage of reads mapping
to mitochondrial genes. The distribution of these metrics alone
allows to spot outliers; however, more sophisticated approaches
that considers both technical and biological features (such as
genes upregulated or downregulated in broken cells) are available
(93). Importantly, filtering data originating from doublets or
aggregates of more cells can be coupled with demultiplexing,
as done by demuxlet (94), or use methods based on the
read counts, such as cellity, DoubletDecon (95), DoubletFinder
(96), and DoubletDetection (https://github.com/JonathanShor/
DoubletDetection).

Normalization and Removal of
Confounding Effects
Normalization is required to remove systematic technical
variation and ensure accurate inferences of expression levels.

Theoretically, external spike-ins, which are added in the same
amount to each cell, could be used to detect artificial variation
introduced by the procedure (97). Although this approach is
reliable in some instances (98), inconsistencies among replicates
have prompted the need for alternative methods, also needed
when no spike-ins are used.

Normalization designed for bulk RNA-seq relies on
endogenous transcripts, global scaling, and scaling factors
such as reads per million (RPM) or reads per kilobase per
million (RPKM) (99) performs inconsistently for single cell data
analysis, particularly when sequencing depth is low. Moreover,
global scaling does not accommodate for transcripts specific
biases deriving from systematic variation in the relationship
between read counts and sequencing depth in scRNA-seq. To
overcome this limitation and avoid over- or under-correction
of some transcripts, SCnorm (100) splits transcripts in classes
based on the dependence between counts and sequencing depth,
then estimates a scaling factor for each class and normalizes the
classes separately.

Besides library size, batch effects arising from sample
processing should be minimized with an appropriate
experimental design, for instance introducing replicates or with
a balanced design including different conditions/individuals on
the same plate or sequencing lane. Notably, to integrate data
sets that are produced in different laboratories and at different
times, reduction of batch effects is critical to avoid compromising
the interpretation of data. Dimensionality reduction methods
such as principal component analysis (PCA) can help detecting
batch effects. Scater can plot PCAs and estimate the correlation
between PCs and technical variables such as batch, plate, or
replicate, as well as detected features or library size (92).

Once confounding factors have been identified, these need to
be removed, for instance using control genes (or spike-ins) or
negative control samples for which the covariates of interest are
constant via the RUVSeq package (101), or by leveraging a subset
of the population shared between batches (102).

While it might hold biological interest per se, cell cycle stage is
another possible confounding factor: individual cells are typically
not synchronized, and fluctuations in gene expressions across
the cell cycle might mask or inflate cell heterogeneity, with an
effect not limited to known cell cycle genes (103). Cell cycle stage
can be treated as a latent variable, and accordingly modeled and
corrected for, improving the identification of cell populations and
the identification of correlated patterns of expressions across cells
(103). A different approach, implemented in the cyclone tool,
uses a set of six predictors to explicitly assign cell cycle stage to
each cell, for G1, S, and G2/M phases (104).

Post-normalization Processing
Further post-normalization processing is required to tackle the
main technical features of single cell RNA sequencing: noise
and sparsity (abundance of missing values). Variability in the
efficiency of RNA capture, retrotranscription, and sequencing
can introduce technical noise which might mask the biological
signal of interest. Modeling the contribution of noise allows to
remove it or use it to select genes which are less affected by it.
Endogenous oscillating genes, given their predictable nature, can
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FIGURE 4 | The cellular cardiac landscape: expected deliverables and improvement using single cell and spatial transcriptomics. Single elements used to construct

the figure were taken from https://smart.servier.com/ and minor modifications (e.g., color) were applied.

be used to estimate technical noise (105). A different approach
to model experimental noise and the dependence between noise
and read count is to use external spike-ins that are added in fixed,
identical quantity to each sample and should only be subject to
technical variability (97, 106, 107).

To improve signal-to-noise ratio, feature selection can
be applied. Although, this is not compulsory, it reduces
computational times, and is required by some tools used in
further steps. Feature selection can take advantage of spike-ins:
after estimating the effect of noise using spike-ins, selection of

Frontiers in Cardiovascular Medicine | www.frontiersin.org 9 November 2018 | Volume 5 | Article 167

https://smart.servier.com/
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Massaia et al. Single-Cell Transcriptomics for Heart Studies

genes with a significantly higher variability than that expected
by the effect of noise alone, are used to study the heterogeneity
across cells and make inferences on their biological relevance
(106). Another approach to feature selection is based on the rate
of dropouts, genes that are highly expressed in some cells and
not detected in others, a less noisy measure than gene expression
variability (108, 109).

The abundance of dropouts (or sparsity) is a relevant feature
of single cell RNA-seq data, and can be alleviated by imputing
missing values using the information from co-expressed genes,
or from similar cells, with several tools developed to recover
the “true” expression signal (110, 111). Interestingly, a recent
comparison of several imputation methods (112) concludes that
no imputation method outperforms all the others in every
situation.

Clustering: The First Step for a Solid
Biological Analysis
One of the key aims of single cell approaches is the identification
of different cell populations. When the biological background is
well-known, checking expression profiles of knownmarker genes
will help retrieve known cell types. This approach requires the
application of dimensionality reduction methods such as PCA
or t-distributed stochastic neighbor embedding (tSNE) to the
refined gene expression counts, in order to identify and visualize
subgroups. However, PCA usually requires assumptions that do
not hold with scRNA-Seq analyses, and tSNE is better suited for
visualization purposes, but is not appropriate for dimensionality
reduction in preparation of further analyses (113). An alternative
dimensionality reduction approach, specifically tailored to the
high proportion of dropouts in single cell RNA-sequencing, is the
zero-inflated factor analysis (ZIFA) which specifically models the
dropout probability (114).

The identification of unknown and possibly rare
subpopulation without prior knowledge, on the other hand,
requires unsupervised approaches. Generally speaking, these
methods compute one or more measures of “distance” between
samples (115), then group cells based on their differences or
similarities, as described by these distances. Different strategies
can then be employed: hierarchical clustering, for instance,
organizes cells in a tree structure according to their “distance,”
following an agglomerative or divisive algorithm. K-means
approaches, on the other hand, assign cells randomly to a
predetermined number k of clusters, then adjust the assignment
iteratively reassigning cells to the closest cluster, until no
more reassignment is obtained. It is important to note that
all clustering methods require some a priori decision from
the observer, be it the height where the tree should be cut in
hierarchical clustering, the k number of clusters or neighbors
in k-means, the density parameters in density-based clustering,
or the number of neighbors for each cell when constructing
a graph. This depends on how fine or coarse is the cell types’
definition required to address the biological question. This
can switch from a smaller number of well-differentiated
clusters, representing cell types or abundant populations, or
a larger number of clusters reflecting small differences and

highlighting rare sub-populations, and fine changes in cell
states (109).

Biological Analysis Beyond Clustering and
Toward Functional Inferences
The ultimate goal of identifying cell subgroups is the biological
inference that can be drawn from it. This typically consists
in identifying genes which are differentially expressed (DE)
across cell populations, and notably pointing to marker genes
specifically associated with one of the identified clusters. Some
clustering tools also perform these tasks; for instance, SC3 (116)
automatically determines DE genes and marker genes using non-
parametric statistics. Rather than simply testing for different
expression levels, methods such as SCDE (117), explicitly
model, and keep into account, the probability of undetected
genes.

Well-beyond this initial descriptive step a number of
functional inferences can be generated on dynamic processes,
including intracellular gene regulatory networks but also on
intercellular mechanisms. Even when single cell experiments
only take a snapshot of a process, the cells can theoretically be
reordered along a “trajectory,” sometimes called “pseudotime,”
where each cell represents a different state of the progression
(118), allowing the identification of transcriptional dynamics and
differentially expressed genes across cell types/states. Trajectory
inference methods include a dimensionality reduction stage and,
possibly, clustering followed by a trajectory modeling stage (119).
Some methods, such as, TSCAN (120), infer a linear trajectory,
while others, including Monocle, its new implementation
Monocle2 (121), and K-Branches (122), reconstruct a branching
trajectory. Not all methods aim to a unidirectional trajectory:
Oscope (105), for instance, infers oscillatory trajectories, aiming
to identify oscillating genes and reproduce periodic signaling
pathways such as those taking place in embryonic development
(123).

Dimensionality reduction is a key step of trajectory inference,
and indeed a family of tools for dimensionality reduction,
diffusion maps (124), inherently reconstruct a trajectory.
Importantly, diffusion maps have been adapted to single cell
RNA-seq by accounting for uncertainties and missing values
(125), as implemented in the R package destiny (126). These
are used to identify the diffusion-space direction which most
probably represents true biological effects. An exhaustive list of
pseudotime ordering algorithms is found at https://github.com/
agitter/single-cell-pseudotime.

Systematic computational analysis of the molecular
interrelationships between cells in single cell populations
studied can be performed by predicting and visualizing cell-cell
communication based on the creation of a repository of curated
ligands and receptors, which draws on existing resources and the
literature (26, 127) using the biomaRt R package (128).

The acquisition of transcriptomic data at the single cell
level has enormous potential to infer gene regulatory networks
(GRNs). These can be viewed a set of genes active in a specific
moment or condition, and the set of transcription factors
activating them (52). A first class of approaches, such as BTR
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(129) and LEAP (130), requires cells to be ordered across different
time points or in pseudotime trajectories, and reconstructs a
network as a sequence of activations of transcription factors,
aiming to predict the effect of perturbations of such sequence. A
second class of methods, such as SCENIC (131), uses cells from
steady states, leveraging co-expression patterns and representing
GRNs as global networks, leading to the identification of key
regulators for different cell states even on snapshot-type datasets
and independently of any temporal or pseudotemporal ordering.

Recently, the remarkable development of technologies like
spatial transcriptomics, a technology used to spatially resolve
RNA-seq data (132), or FISH-based techniques (133), requires
the integration of spatial information with mRNA profiling of
single cells. SpatialDE allows to fully integrate spatial information
and the detection of differential expression (134), enabling the
identification of linear or periodic expression patterns, clustering
genes based on their spatial expression patterns, and describing
tissues on the basis of marker genes’ expression patterns (132).

In summary, the computational approaches available allow
for unprecedented biological functional inferences and highlight
the need for the development of teams including wet-lab
biologists, computational biologists and clinicians to exploit the
technologies and data available in understanding cardiac disease.

Before moving to the review of scRNA-seq applications to
cardiac studies, a short overview of single cell qRT-PCR as a rapid
platform to study the expression of tens of genes in hundreds
of single cells is discussed. Methods for cell selection are similar
to the ones reported above for scRNA-seq. The major advantage
of single cell qRT-PCR is the ability to go from cell isolation to
analyzed results in less than a working day; on the other hand,
scRNA-seq methods tend to be considerably more expensive and
laborious, also considering the much higher requirements for
data storage and computational power for data analysis. (25, 135).
In deciding which approach to use, one shold consider that single
cell qRT-PCR is useful to analyse up to a few hundreds cells,
while scRNA-seq allows to survey up to tens of thousands of
cells. Moreover, single cell qRT-PCR is tipically used to test the
expression of tens of pre-selected genes, while scRNA-seq detects,
in theory, the whole transcriptome, with the general limitation of
sequencing depth. Albeit, full-length sequencingmethods such as
Smart-seq2 are potentially able to discriminate between different
isoforms, most of the methods currently used, such as 10X
Genomics, only produce a count of transcripts sequencing UMIs,
with no isoform discrimination.

A series of qPCR assays were used to compare gene
expression profile of different cells from cardiac lineages
(cardiac progenitors, smooth muscle cells, CMs, endothelial
cells, fibroblasts) with embryonic stem cells (mESCs), using the
detected profiles to later classify unselected E10.5 cells and finely
compare in vitromESC- and in vivo embryo-derived cardiac cells.
These studies highlighted a propensity of Nkx2-5+ progenitors
from in vitromESC to become smoothmuscle cells or CMs, while
the ones from embryos had preferential differentiation toward
CMs or endothelial cells (24).

Data have also been obtained from freshly isolated cardiac
cells of the adult heart. Single cell gene expression analysis for
a selected number of genes was proven to critically augment the

definition of adult cardiac progenitors, candidate cell therapeutic
products and putative in situ cell targets for reparative and/or
regenerative purposes in myocardial ischemia (136). Indeed, the
combination of FACS, clonogenicity assays and single cell qRT-
PCR for about 40 genes on a few hundred of cells permitted
the refinement of adult cardiac Sca1+ cells into four discrete
populations. Sca1+ CD31+ PDGFRa- cells were found to be
enriched for endothelial lineage markers, while Sca1+ CD31-
PDGFRa+ cells precisely track a cardiogenic molecular signature
(25). Importantly, co-expression of Sca1 and PDGFRa with the
side population phenotype, that per se enriches for cardiogenic
and cardioprotective features, allowed to identify a cardiac
subpopulation that is over 30% clonogenic (25).

Interestingly, single cell gene expression was also used to
study the phenotype of human induced pluripotent stem cell
(iPSC) derived CMs, an alternative cell therapeutic product
for myocardial infarction, in a mouse model (137). Combining
molecular imagining techniques, microfluidic single cell profiling
and laser capture microdissection, iPSC-CMs were shown to
contribute to heart repair via an early protective paracrine effect
on the ischemic microenvironment.

As quantitative RT-PCR still represents the gold standard for
gene expression analysis, its application at the single cell level
is a rapid and precise tool to be used alone or in conjunction
with single cell RNA-sequencing, as a preliminary exploration for
selection purposes or as a validation tool (24, 138).

SINGLE CELL STATE-OF-THE-HEART

Single Cell Technologies Provide a Novel
Perspective and Depth of Resolution to
Study the Development of the Cardiac
System
As for many other organs, the first single cell ‘omics studies on
the heart were used to characterize the cardiac cellular landscape
during development. Within this space, the advantages of single
cell transcriptomics analysis include an increased bandwidth
to capture rare cell types like stem and progenitor cells, and
the capacity to study cellular states at the moment when fate
decisions are executed, overcoming limitations of single cell
transplantation experiments or lineage tracing that enable to pick
events only once they have occurred.

Characterization of cardiac progenitors in a very narrow
window of time during early development (embryos of early
allantoic bud, late allantoic bud, early head fold) was possible
using a combination of micromanipulation for cell selection
and single cell qRT-PCR for validation of cells identity,
followed by scRNA-seq (43). The integration of scRNA-seq
data and subsequent validation steps, including lineage tracing
experiments, revealed a rapid dynamic shift of the expression
profile of Tbx5+ cardiac progenitors with diverging patterns
between first and second heart fields CMs’ precursors.

A more complex and comprehensive approach was applied
to study the mesodermal lineage diversification from early
gastrulation (E6.5) to the generation of primitive red blood cells
at E7.75 (51).The combination of FACS for single cell capture and
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Smart-seq2 enabled the profiling of cellular populations that was
previously challenged by the limited cellular material available.
By sequencing ∼1,200 cells, including epiblast cells sorted based
on viability, Flk1+ cardiac mesoderm cells and CD41+ cells that
subsequently appear during blood development (139), it was
possible to define for the first time the transcriptome of single
cells from the developing primitive streak, and a limited number
of visceral endoderm and extra- embryonic ectoderm cells,
primitive streak, neural plate and head fold (51). Unsupervised
clustering isolated ten clusters and correlated marker genes
allowing functional inferences and identification of endothelium,
blood progenitors, primitive erythrocytes or their anatomical
identity (visceral endoderm, extra-embryonic ectoderm,
epiblast, early mesodermal progenitors, posterior, allantoic,
and pharyngeal mesoderm). Here, diffusion maps were used
to make inferences on the transcriptional program underlying
primitive erythropoiesis. Further, given the fundamental role
of the transcription factor Tal1 in the development of all blood
cells, single mesodermal Flk1+ cells from Tal1 mutant embryos
were profiled (51). The combination of loss of function studies
with single cell transcriptomic analysis demonstrated, in contrast
to previous retrospective knock-down and epigenetic studies
(140, 141), that Tal1 promotes hemogenic differentiation of
endothelial cells but does not immediately drive a cardiac
fate. The difference in time of sampling (141) could justify
the differences seen between a precise snap-shot of single
cells transcriptomic profiling (51) vs. potentially confounding
retrospective studies in bulk (140, 141). It is foreseeable that
performing transcriptomic and epigenomic assays (142) in
parallel to profile a high number of single cells in a fine time
course will further clarify the mechanisms of early mammalian
development and more specifically the fate of Flk1+ cells.

From the next stages of cardiac development (E8.5 to 10.5),
profiling of 2,233 single cells using a microfluidics approach
(Fluidigm, C1 single cell Auto Prep System) and Smart-seq2,
combined with unsupervised and supervised clustering allowed
the reconstruction of the precise spatial origins of cardiac cells
solely from their transcriptional profiles (138). Interestingly, a
distilled set of 65 genes was validated and found sufficient to
predict location of cardiomyocytes using a multiplex qRT-PCR-
based approach (24, 138).

The dynamic transcriptional programs unfolding from
midgestion (E9.5) to adulthood (P21) were studied using
spatiotemporal RNA-seq analyses of single cells isolated from
mouse hearts and captured using microfluidics, to delineate
lineage specific transcriptional regulation, including CM
maturation, during heart development (143). Classification of
different cell types at the single cell level with spatiotemporal
resolution allowed the definition of time and chamber
lineage-specific gene programs underlying normal cardiac
development. Further post-natal maturation occurred by P21
with downregulation of calmodulin-interacting proteins, Bex1
and Bex4, previously shown to promote muscle regeneration
(144). Albeit, one should consider the potential bias introduced
by size limits inherent to the microfluidics system used to select
large mature CMs, these datasets are useful to define precise
developmental stages of human and mouse embryonic stem

cells-derived CMs, prompting the utility for characterization of
induced pluripotent stem cells-derived CMs that are becoming
the gold standard in cardiac drug discovery (27, 145). Notably,
analysis of single cells from Nkx2.5+/− murine hearts were
used as a model for congenital heart disease and allowed to
define lineage-specific maturation defects, including expected
changes in the CM lineage but also in the endothelial lineage
compartment. This supports an instructive role of CMs
on endocardium development and predicting underlying
mechanisms associated with human heart malformations.

The experiments herein described prove the advantage of
using single cell transcriptomics in enabling the study of
cellular states at the moment when fate decisions are executed,
contributing to the precise deconvolution of lineage decisions
previously masked by bulk analysis and, especially in early stages,
difficult to study given the paucity of cells available.

Adult Heart and Cardiovascular Disease
Models From a Single Cell Perspective
Compared to other areas of research—until very recently—the
cardiac field has infrequently taken advantage of single cell
technologies to study adult heart cells’ gene expression and,
even less, for epigenetic studies. Although, cells of the adult
heart are not readily accessible, a number of protocols have
been historically described to dissociate single CMs and single
stromal cells. If some skepticism can be raised by the fact
that isolation protocols are lengthy and potential side effects
on gene expression are a deterrent, the use of whole tissue as
comparison and validation experiments obviates any doubt. The
only technical impediment remains the size of adult mature
CMs (∼150µm in length) that limits the use of microfluidic
apparatuses with upper size limits usually around 50µM (except
for ICELL8).

Albeit the regenerative capacity of the adult heart is meager,
there is some evidence that induction of CM proliferation
could be a targetable mechanism to induce myocardial self-
renewal and repair after injury (146, 147). The proliferative
potential, especially the capacity to undergo cytokinesis of
CMs in physiological conditions as well as in response to
stress, remains unclear. Confounding factors could be the
methods of analysis but, most importantly, also the absence or
presence of external stimuli that can enhance CMs proliferation
and self-renewal (146, 148–150). Recently, to understand the
proliferative capacity of CMs, single nuclear RNA-seq was
performed in single CMs from healthy and diseased hearts,
including pressure overload failing murine hearts and human
dilated cardiomyopathy failing hearts (151). Heterogeneity of the
myocardial environment in response to stress was uncovered
(151). Through weighted gene co-expression network analysis,
several subgroups of CMs were characterized, including ones
with a gene signature indicative of dedifferentiation and cell
cycle entry. Further, two long intergenic non-coding RNAs, Gas5
and Sghrt, were found in highly interconnected nodal hubs
of gene regulatory networks and, subsequently, confirmed as
essential regulator of CMs’ cell cycle entry and de-differentiation
programmes (151). These data are a first and encouraging
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step toward answering additional fundamental questions: the
functional implications of specific gene expression patterns in the
various CMs subtypes; which subtypes are elicited or depressed in
diverse pathological conditions, including early stages of dilated
cardiomyopathies, hypertrophic cardiomyopathies and ischemic
disease; the physical localization of CMs subpopulations and how
the cellular demographics change in response to stress; finally the
concasual relationships with neighboring non-CMs.

A complementary study focused on the cardiac stromal
compartment and used a 10X Genomics platform to capture and
sequence just over 10,000 non-myocyte cells (26).With a mean of
1,900 genes detected/cell, an expected overall complexity in the
composition of the cardiac non-myocyte cellular compartment
was revealed and a few additional markers and subpopulations
were identified in the fibroblasts compartment and in the
lymphocytes and myeloid lineages (26). Interestingly, clustering
patterns for female and male cells were largely overlapping but
within individual cell types, small levels of sexual dimorphism
was detected for selected genes’ expression, implying a diverse
predisposition of the cardiac stroma response to stress (26).

A further level of complexity was obtained by comparing
scRNA-seq results from healthy vs. post-ischemia mouse
hearts using the SORT-seq protocol, which is essentially
an integration of FACS for single cell capturing and high-
throughput multiplexed linear amplification by CEL-seq2 (29,
48). In this study, cell capturing has two limitations: (1) large
mature CMs have dimensions above the size of the sorting
nozzle, (2) the utilized flow cytometry gates were biased toward
large live cells (29). Thus, the representation of the cell types
was biased, with 71% of CMs vs. the 30% expected, plus a
putative selection of myocytes subtypes due the upper size limits
of the sorter outlet (29). Nevertheless, all main cardiac cell
types were recognized as seen using differential gene expression
analysis and clustering methods. In addition, identification of
new putative markers including ones for specific subpopulations
were pinpointed. Amongst these, Ckap4 was defined as a novel
marker for activated fibroblasts post-ischemia in mouse, and
subsequently confirmed as a marker in human ischemic hearts.
CKAP4 function remains to be clarified, although knock-down
experiments suggested it controls the expression of activated-
fibroblasts genes. Interestingly, in single CMs’ sequencing, up to
84% of reads were coming frommitochondrial genes (29). This is
surely in part dependent on the high enrichment of mitochondria
in CMs; however, while enrichment of mitochondrial related
gene categories are amongst the features characteristic for low
quality cells in a number of independent cellular models, this
is not the case for myocytes (93). Thus, it could be necessary
to establish a specific set of features to determine the quality of
single heart myocytes based on their gene expression.

Single cell transcriptomics analysis was used to characterize
the changes occurring at the single cell level in a mouse model
of cardiac fibrosis (28). Co-expression analysis inherent in single
cell transcriptomics studies allowed to highlight that both IL-11
and its receptor IL11RA are expressed in activated fibroblasts,
the latter defined by a transcriptional profile typical of TGFβ
stimulated cells and by induction of extracellularmatrix encoding
genes (28).

Tissue regeneration using exogenous products, including
iPS-CMs, is a highly sought-after therapeutic approach but much
remains to be understood regarding the level of differentiation,
purity, genomic, and phenotypic stability of induced CMs
especially because, until recently, gene expression studies
were almost exclusively performed on bulk populations.
Reprogramming fibroblasts into induced cardiomyocytes (iCMs)
using combinations of cardiogenic transcription factors (152–
154) offers an interesting alternative to the use of iPS-CMs
to generate newly formed CMs in vitro and then used as cell
therapy, but also for in vivo direct reprograming. To study and
characterize the non-conventional differentiation mechanisms
driving cell conversion to iCMs, single cell approaches are
a suitable option allowing to unpick the heterogeneity of
conversion events and the level of differentiation in single cells.
Single cell transcriptomics analysis of the early stages during
the reprogramming of mouse fibroblasts into iCMs uncovered a
heterogeneous group of cells differentiating at unsynchronized
pace (155). The definition of different cell clusters based
on dimensionality reduction and unsupervised clustering
algorithms was the critical step to make functional inferences.
Some of these were anticipated, like the reconstruction
of differentiation trajectories, the correlation between the
expression of each reprogramming factor and the progress
of individual cells through the reprogramming process, and
the discovery of new surface markers for iCMs (155). Among
other discoveries, the downregulation of factors involved in
mRNA processing and splicing was found to be critical in
reprogramming; interestingly, a specific splicing factor, Ptbp1,
was identified and subsequently functionally validated to be
a critical barrier for the acquisition of CM-specific splicing
patterns in fibroblasts (155). Thus, in this settings scRNA-seq
enabled the identification of targets to enhance reprogramming
efficiency and new markers for the prospective isolation of iCMs
but also demonstrated the immense utility of these methods in
studying further models of programming and reprogramming.

An in vitro system was used to study the dedifferentiation
potential of adult CMs to cardiac progenitor-like cells, using a
genetic cell fate mapping system plus single cells transcriptome
and further methylome analysis (156, 157). The authors reported
a correlation between hyper-methylation of promotor regions
and suppression of cardiac specific genes related withmaturation,
while cell cycle and stemness genes were upregulated suggesting
that CMs’ de-differentiation depends on epigenomic regulation
of the cells transformed into progenitors. Nevertheless, this study
relies on very few single cells and confirmation of the specific
gene expression regulation via epigenetic modulation would
benefit from analysis of the transcriptome and methylome from
the same single cell.

Within the cardiac regenerative medicine space, c-kit+ adult
cardiac progenitors have been proposed as a cell product albeit
controversial data were reported (158). Recently, single freshly
isolated adult c-kit+ CPCs were compared with short-term
expanded cultures by 10X Genomics and SmartSeq2, in parallel
with the meta-analysis of multiple scRNA-Seq datasets, finding
substantial transcriptome alterations in the in vitro expanded
cells (159). This increase in the transcriptome diversity included
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the induction of thousands of genes related to cell cycle and
metabolism, and loss of expression of identity genes, suggesting a
marked change in functional characteristics of in vitro expanded
cells, with important implications to consider when developing
cell therapies than involve previous in vitro expansion.

Altogether, these initial explorative studies both in healthy
and disease hearts demonstrate how single cell transcriptomics
alone has already contributed to uncover novel cell types,
further our understating of candidate cell products for cardiac
cell therapies and most importantly discover novel functional
pathways regulating heart function.

Predicting Achievable Outcomes and
Influencing Future Clinical Applications
Thanks to the immense technological advancements of high-
throughput single cell gene expression analysis and the high-
resolution achieved with scRNA-seq, we can now obtain
information on prevalence, heterogeneity and co-expression at
the individual cell level for virtually the entire transcriptome.
This enables us to get a new perspective on cellular demographics
of the heart and improve intracellular and intercellular pathways
definition, otherwise unthinkable with bulk analysis and in
circumstances where cellular material available is limited.
The almost immensurable amount of data being produced
requires tight integration and interaction of biological and
clinical experts with computational biologists starting from the
initial experimental design. In fact, a dynamic and continued
assessment of data generation and results is necessary to reach
solid conclusions of any single cell ‘omic study.

The complete exploitation of the value of single cell
transcriptomic results comes from the integration and validation
of these data by orthogonal methods. Validation of the expression
of subsets of genes can be performed by standard techniques
with emphasis on single cell resolution approaches ranging from
gene expression validation with or without spatial resolution
(e.g., single molecule in situ hybridization, single cell qRT-
PCR, respectively), to testing the expression of the proteins
encoded by the genes of interest, by flow cytometry that allows a
higher bandwidth formultiplexing or immunostaining to acquire
localization information. Of note, spatial transcriptomics was
developed in order to retain spatial information related to the
transcriptome of isolated single cells and was elected Method of
the Year 2017 by Nature Methods (160). The protocol requires
tissue sections that are then divided in a mosaic of tiles of
∼100µm of diameter, and uses spatial barcodes permitting the
localization of specific cells and their transcripts by overlaying
haematoxylin & eosin stained sections onto microarrays spotted
with the barcoded topographies (132, 161). The first reported
application of single cell RNA-seq and spatial transcriptomics
was to identify in vivo genes relevant to endocardial epithelial-
to-mesenchymal transformation (162). More recently, spatial
resolution proved to be essential in the identification of SOX9 as
a key regulator of cardiac fibrosis in a mouse model of ischemic
injury and injured human heart (163). Critically, rather than
just allowing to localize the cell types identified by scRNA-
seq, spatial transcriptomics will expedite the reconstruction of

the dynamic architecture of the heart (134). Indeed, changes
of gene expression and especially of transcriptomic profiles can
depend on the reciprocal interactions with adjacent cells, the
migration to a specific tissue site of cells’ subsets and by location-
specific variation of cell “states.” Thus, starting from a single
cells and functional micro-niches of few cells, one can envision
to reconstruct the changes occurring in the cellular landscape
of whole tissues and organs in 3D during specific processes
including development, aging, and disease (134).

Despite the recent explorative studies, the cellular cardiac
landscape, especially human, remains largely unknown
(Figure 4). Most significantly, the integration of single cell
transcriptomic and spatial transcriptomic provides the platform
to reconstruct the cellular demographics of the heart with
spatial resolution. For smaller animals, this will require a shorter
period of time, and although the reconstruction of the entire
human cardiac cellular landscape in 3D will require many
iterations, every step will provide new strategic information.
For example, cardiac muscle scRNA-seq will alone contribute
to the clarification of CMs’ heterogeneities within microniches,
on the epicardial vs. endocardial fronts; as well as chamber
specificities that remain largely unknown. Notably, one of the
therapeutic targets for cardiac regeneration is CMs’ proliferation,
but for clinical translation we still need to: (1) clarify the
true endogenous and spontaneous capacity of human CMs to
re-enter cell cycle and undergo mitosis since results in mouse
remain controversial and (2) define the stimuli that can trigger
or improve their proliferation. Importantly, transcriptomic
analysis of single mononucleated vs. binucleated CMs and
comparison with single nuclei transcriptomics will provide
inferences on their proliferative and differentiation status
(146, 148–151, 164).

The identity and role of cardiac progenitors in the adult
heart remains elusive with a dozen different identifiers already
described, and their relationship and function still unclear (136).
It is expected that an unbiased ‘omic approach will allow to define
their molecular signatures and likely deconvolute their ontogeny
and function in the healthy and diseased heart.

The heterogeneity of vascular cells across organs and within
the same organ or system has been hypothesized for a long
time but the advancements in uncovering of subpopulations
with distinct functions has been slow because of bulk analysis
and largely limited to hypothesis driven studies that can focus
on one gene/pathway at the time. The availability of single
cell transcriptomics and spatial transcriptomics is providing
the right tools to study endothelial cells, smooth muscle cells
and pericytes’ subtypes and functional changes across vessels of
different diameter and function. A recent study proved feasibility
and produced outstanding results by sequencing the vascular
cells of the mouse brain (165) uncovering the transcriptional
basis of the gradual phenotypic change along the arteriovenous
axis and revealing unpredicted differences in the cells’ molecular
signatures with a seamless continuum for endothelial cells vs.
a punctuated pattern for mural ones (165). Importantly, brain
specific features were highlighted for pericytes in comparison to
the lung. These important data provide the evidence for a higher
organizational structure of the vasculature, providing a healthy
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reference for subsequent disease studies, but also provides an
invaluable hypothesis-generating data source.

Although initial scRNA-seq studies in the adult heart have
already contributed to highlighting the role of specific genes in
the fibrotic response after TGFβ1 stimuli (28) and ischemic injury
(29), much remains to be learnt about the identity of fibroblasts,
their function, heterogeneity, anatomical specificity and role in
cardiac homeostasis and disease.

In recent years, a number of studies have investigated the
adaptive and innate immune response following cardiac injury
beyond the response to microbial causes, how these affect repair
and regeneration and their potential manipulation as therapeutic
targets [as reviewed in Prabhu and Frangogiannis (166), Sattler
et al. (167), Toldo and Abbate (168), and Wysoczynski et al.
(169)]. Single cell transcriptomics focusing on immune cells will
provide an invaluable support to decode higher organizational
networks triggered in cardiac disease and in physiological
conditions. Finally, single cell transcriptomics will also contribute
to our understanding on the conductive system of the heart, both
in unbiased studies and targeted analysis.

Studying the developing heart at the single cell level has an
inherent huge power, not only to further our understanding
of the perfect orchestration needed for cells to go from a
primordial linear tube to a four-chamber heart and uncover maps
and trajectories of cellular differentiation but also, importantly,
to discover how lineage-specific gene programs are altered in
congenital heart disease (24, 27, 43, 51, 138). This implies a need
to study and build a developing atlas of the healthy developing
heart in animal models but most importantly in human, and use
this as reference to study and understand the genesis of cardiac
malformations within single cells, and between them.

Two studies have generated independent atlases for mouse
models, providing an initial compendium of single cell
transcriptome profiling representing a new resource for cell
biology (170, 171). Providing gene expression data from 20
anatomical locations, the atlases allow the comparison across
tissues of cell types present in every tissue such as immune
cells and endothelial cells enabling hypothesis generation.
Strikingly the Human Cell Atlas (HCA) initiative has triggered
widespread excitement with its ambitious goals aiming to

describe and define the complete cellular landscape of the
human body (https://www.humancellatlas.org/) (172, 173). This
will be achieved by mapping cells of the human body using a

combination of single cell and spatial transcriptomics, resulting
in datasets that go beyond descriptive features and will
guide functional studies toward the identification of previously
unpredictable subtleties of disease. Effectively, the HCA plans
to integrate leading-edge technologies to: (1) defining the
histological and anatomical position of newly identified cell
types/states; (2) outlining lineage decisions with topographic
and functional insights; (3) recapitulating precise and specific
cell-to-cell interactions including autocrine and paracrine
pathways.

Urgent clinical questions, that would immediately benefit
from an integration of single cell transcriptome studies and
spatially resolved gene expression profiling, include the definition
of the changes occurring within the cellular landscape of the
border zone following myocardial ischemia; the deconvolution
of atherosclerotic plaque’s single cell transcriptomic profiles.
Inferences in ethiopathogenetic mechanisms that are invisible
using standard low resolution and bulk techniques include
proliferation, differentiation, survival as well as ligand/receptor
pairs to infer functional networks. Additionally, transcriptomic
profiling of single cells will undoubtedly enable the definition
of novel biomarkers, including parameters such as frequency
and pattern of gene expression within tissues and/or specific cell
types.

Altogether, these new technologies will not only contribute
to address hypothesis-driven questions but, most importantly,
will broaden our perspective, providing hypothesis generating
platforms to further our understanding on heart function in
health and disease. The auspicable future of cardiac disease
monitoring is based on low-risk, minimally invasive and
disruptive approaches, where multi-‘omics single cell approaches
will play a leading role.
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