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Previously considered a degenerative process, cardiovascular calcification is now

established as an active process that is regulated in several ways by lipids, phospholipids,

and lipoproteins. These compounds serve many of the same functions in vascular and

valvular calcification as they do in skeletal bone calcification. Hyperlipidemia leads to

accumulation of lipoproteins in the subendothelial space of cardiovascular tissues, which

leads to formation of mildly oxidized phospholipids, which are known bioactive factors

in vascular cell calcification. One lipoprotein of particular interest is Lp(a), which showed

genome-wide significance for the presence of aortic valve calcification and stenosis. It

carries an important enzyme, autotaxin, which produces lysophosphatidic acid (LPA),

and thus has a key role in inflammation among other functions. Matrix vesicles, extruded

from the plasma membrane of cells, are the sites of initiation of mineral formation.

Phosphatidylserine, a phospholipid in the membranes of matrix vesicles, is believed to

complex with calcium and phosphate ions, creating a nidus for hydroxyapatite crystal

formation in cardiovascular as well as in skeletal bone mineralization. This review focuses

on the contributions of lipids, phospholipids, lipoproteins, and autotaxin in cardiovascular

calcification, and discusses possible therapeutic targets.
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SIGNIFICANCE OF CARDIOVASCULAR CALCIFICATION

Previously considered a degenerative process, cardiovascular calcification is now established
as a regulated process (1–3) in which vascular and valvular mesenchymal cells undergo
osteogenic differentiation (4–8). Clinically, vascular calcification is considered pathognomonic of
atherosclerosis. In the coronary arteries, the degree of calcification has been shown to correlate
closely with the degree of atherosclerotic plaque burden (9). The presence of calcium deposits in
atherosclerotic lesions also appears to increase the risk of intraplaque hemorrhage (10), in which
mechanical disruption within a lesion tears microvessels, causing bleeding. The bleeding expands
the lesion, so that it may abruptly encroach on the artery lumen causing stenosis or occlusion, which
result in ischemia or infarction.
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In the aortic valve, calcification carries especially high risk of
mortality. Calcific aortic valve disease (CAVD) affects 13% of the
population over 65 years of age in the US. Of those who develop
symptoms, half die within 2 years (11). Even in the absence
of hemodynamically significant obstruction of left ventricular
outflow, CAVD is associated with greater risk of cardiovascular
events (12). The high morbidity and mortality are due to leaflet
stiffening, retraction, and stenosis, which limit valve opening and
closing, increasing outflow resistance and oxygen demand, while
impairing myocardial perfusion and oxygen supply. Currently,
the only options are surgical or trans-catheter interventional
replacement of the valve. Awide range of factors andmechanisms
are now known to also mediate CAVD, including those in the
general categories of hyperlipidemia, inflammation, oxidation,
diabetes, apoptosis, hyperphosphatemia, and mechanical forces
(13–20). Many of these may act in sequence or in concert,
but others are independent (21). This review focuses on the
contributions of lipids and the interconnections among lipid
metabolism, inflammation, and osteogenesis.

BIOMECHANICAL CONSIDERATIONS

Although the mechanisms are not entirely clear, mechanical
stresses on the cardiac valves and artery walls, including
oscillatory shear on the endothelium and cyclic strain on the
valvular interstitial cells and vascular smooth muscle cells,
have been implicated in the pathogenesis of cardiovascular
calcification (22–24). Cumulatively, these stresses may promote
cardiovascular calcification, as they do in skeletal bone, whether
through cellular injury leading to dystrophic calcification, or
mechanotransduction-related osteogenic differentiation of cells.
With regard to lipids, biomechanical stresses may lead to
endothelial injury or increased permeability where low shear
and oscillatory flows have the capacity to promote accumulation
of plasma lipoproteins, such as low-density lipoprotein (LDL)
and lipoprotein(a) [Lp(a)]. The severity of calcification in the
mitral valve does not correspond with that in the aortic valve,
consistent with early work showing that the aortic valve calcifies
10 years earlier than the mitral valve (25). The reason for
the mismatch remains unclear, but it suggests a relationship
to shear stress or pressure, given that they are exposed to the
same oxygen levels and flow volume. Once valve disease begins,
the mechanical triggers are likely to worsen. Merryman and
Schoen have clarified this reciprocal nature of the interaction
betweenmechanical forces and tissue: while hemodynamic forces
affect tissue properties, changes in tissue properties also affect
hemodynamic forces (24). Computational models of the valve
have been used successfully to predict these interactions (26).

Whether calcium deposits promote plaque rupture or stability
is controversial. While plaque rupture into the lumen has been
found to occur more often in non-calcified areas of plaque in
patients who died from coronary obstruction, the sectioning
process itself may disrupt the plaque, especially in areas of
lipid pools, where the histologic processing usually removes
the lipid. As an alternative, magnetic resonance imaging can
detect intraplaque rupture in living patients. Lin et al. performed

MRI of carotid arteries in over 100 living patients, and found
a strong link (O.R. ≥ 10) between the presence of any type
of calcium deposits (whether multiple, surface, or mixed) and
intraplaque hemorrhage, after adjusting for age, LDL, maximum
wall thickness, and maximum soft plaque thickness, suggesting
that calcium mineral deposits promote biomechanical rupture
(10). An engineering analysis suggests that the rupture stress is
highly concentrated at calcium deposits on the edges that face the
direction of stress (27).

In clinical discussions of calcification, the concept of stability
is widely used, without careful distinction between its two
meanings. Lesion stability may be clinical or biomechanical.
Clinical stability refers to the presence and time course of
patient signs and symptoms of vascular stenosis or occlusion,
such as ischemia, angina, transient neurological symptoms, or
infarcts. Biomechanical stability refers to the relative values of
tissue mechanical strength vs. tissue mechanical stresses, which
is often indirectly inferred from images showing distribution
of lesion components, which, as an aside, may improve with
machine learning techniques (28). Although these two meanings
of stability relate in that biomechanical instability often leads to
clinical instability, in investigations pertaining to the effects of
treatments on lesions, the two should be clearly distinguished.

LIPIDS

The association of serum LDL-cholesterol levels with vascular
calcification in patients is well-established (29), and the
association is even stronger when the average cholesterol levels
are integrated over many years (30). In mice, hyperlipidemia
consistently leads to calcification of the aortic root within a few
weeks (31). Serum lipidomic analysis in humans has identified
fatty acid metabolic markers for cardiovascular calcification. For
instance, patients with high coronary calcium scores have more
20:4 fatty acyl chain lipid species and less 18-carbon fatty acyl
chain phosphatidylcholines in their serum (32). Bioinformatics
approaches have identified phospholipid phosphatase 3 as a
key gene in calcific valve disease (33). In vascular cell culture,
oxidized lipids induce rapid mineralization (34). As evidence
for their importance, use of lipoprotein-deficient serum in the
culture medium prevented formation of calcified nodules in
the in vitro model of vascular cell calcification (35). Neutral
lipids accumulate in the sub-endothelial layer of arteries (36).
With time, these lipids undergo non-enzymatic modification
by the action of products of cellular metabolism (37), such as
mildly oxidized phospholipids. These oxidized phospholipids
are known to promote calcification in vitro through multiple
mechanisms. They induce inflammatory cytokines (7), including
TNF-alpha, which promotes calcification in part by enhancing
BMP-2 activity through inhibition of its inhibitor, Smad6 (7).
Modified phospholipids also stimulate calcification by impaired
phagocytosis of apoptotic bodies (38). The elastin layer of
the artery wall is often the first site of hydroxyapatite crystal
formation, especially the ends of fragments, and this may relate
to its association with lipids. Elastin is known to act as a sponge
for fatty acids (39) and to have high affinity for lipids, LDL, and
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calcium (40). Thus, pathogenic factors involved in atherogenesis
are also involved in calcific disease of the artery wall.

Lipids are also involved in CAVD. As in atherosclerosis,
lipid accumulation progresses with age in aortic valves (25,
41). Neutral lipids accumulate in the fibrosa (36). The lesion
area, which is usually at the base of the valve leaflet, shows
substantial displacement of elastin and thickening of the fibrosa
(42). Calcified valves contain sub-endothelial accumulations of
lipoproteins ApoB and Apo(a) (36, 42). The earliest calcium
deposits are found adjacent to lipoproteins in the deeper regions
of the fibrosa along the aortic annulus (42). Lipoprotein deposits
are known to undergo non-enzymatic oxidation, and oxidized
lipids activate T lymphocytes leading to expression of the
oxidized lipid receptor, LOX-1, and proinflammatory cytokines
(43, 44). Consistent with this, activated T lymphocytes are also
found in the fibrosa layer of the stenotic valves adjacent to
calcium deposits (36, 45–47). Even sphingolipid accumulation
is associated with calcific valve disease, as seen in patients with
Gaucher’s sphingolipid storage disease (48). Broadly speaking,
it is generally accepted that the mechanisms underlying CAVD
are similar to those of atherosclerosis, but they have distinct
features, which remain to be clarified. In bioprosthetic valves,
lipids also deposit in the spongiosa layer, and the observed
lipids (phospholipids, oleic acid, triglycerides, and unesterified
cholesterol) are thought to act as nucleation sites for mineral
crystals (49).

LIPOPROTEIN(a) [LP(a)]

Lp(a) received increased attention in this field in 2013, when
Thanassoulis and colleagues reported that a genetic variant in
the LPA locus encoding Lp(a) showed genome-wide significance
for the presence of aortic valve calcification and stenosis across
multiple racial and ethnic groups (50). Lp(a) levels have also
been associated with cardiovascular risk in a subgroup of patients
statins in a clinical trial (51). Lp(a), a lipoprotein particle similar
to LDL, is unique in that the apoB-100 protein spanning it has
a covalent, disulfide, bond with a glycoprotein, apolipoprotein(a)
[apo(a)].

Epidemiologically, Lp(a) levels have a significant positive
relation with serum levels of matrix GLA protein (MGP), a
known inhibitor of bone morphogenetic protein-2 (BMP-2) (52).
If this association were due to Lp(a) induction of MGP, then one
would expect Lp(a) to have an inhibitory effect on BMP-2 and an
inverse association with vascular calcification. However, Lp(a) is
positively associated with coronary calcification, suggesting that
the high levels of MGP associated with Lp(a) are due to a negative
feedback loop. Patients with the most progression of coronary
calcification detected by electron-beam computed tomography
(EBCT) imaging also had the highest levels of Lp(a), and patients
with the highest levels (>30 mg/dL) of Lp(a) also had the greatest
progression of coronary calcification in hypercholesterolemic
patients undergoing statin therapy (53).

Calcified human aortic valves have an abundance of Lp(a),
and in vitro studies have shown that exposure to Lp(a) can
promote the chondro-osteogenic phenotype in human aortic

valve interstitial cells (54). Interestingly, however, the association
of Lp(a) with cardiovascular calcification may be explained by
its potential role as a delivery vehicle for pro-calcific and pro-
inflammatory factors to sites of endothelial injury. One of its
components, apo(a), is a homolog of plasminogen, and as such,
can bind to exposed fibrin at areas of denuded or injured
endothelium. For unknown reasons, Lp(a) is a preferential carrier
of oxidized phospholipids (55), and also carries the important
enzyme, autotaxin (56), which is discussed in more detail below.
Thus, via Lp(a), these compounds may be targeted to sites of
endothelial injury, such as occurs on mechanically stressed aortic
valve leaflets or atherosclerotic plaque, thereby potentiating the
calcification process in these lesions.

AUTOTAXIN AND LYSOPHOSPHATIDIC
ACID

One potential therapeutic target for cardiovascular calcification,
lysophosphatidic acid (LPA), is a derivative of oxidized
phospholipids, and a potent proinflammatory factor (57, 58). It
is produced from lysophosphatidylcholine (LPC) by the action of
autotaxin, a lysophospholipase, and another potential therapeutic
target. Lp(a), together with autotaxin activity and LPA, are found
in human CAVD where they colocalize with oxidized LDL and
calcium deposits (56). Autotaxin is also produced and secreted by
VICs, and its expression is associated with inflammatory markers
in VICs (56). It is widely thought to be involved in calcific
atherosclerosis and valvulopathy, but clinical trials have not been
completed.

Autotaxin and LPA are also actively considered therapeutic
targets in other forms of chronic inflammation, such as
idiopathic pulmonary fibrosis and arthritis, as well as in
multiple sclerosis and cancer, where it is upregulated (59–61).
Genetic deletion of the autotaxin gene is embryonically
lethal due to vascular and neuronal defects (62–64).
Coincidentally, autotaxin also functions as a phosphodiesterase,
ectonucleotide pyrophosphatase/phosphodiesterase-2 (ENPP2)
(65). Autotaxin is structurally similar to ectonucleotide
pyrophosphatase/phosphodiesterase-1 (ENPP1), a nucleotide
pyrophosphatase that generates pyrophosphate, a potent
inhibitor of calcification (66). ENPP1 deficiency underlies
disorders of ectopic calcification (66, 67). The main structural
difference between the two ENPPs is that autotaxin has a
lipid-binding pocket and open tunnel, presumably for the
fatty acid chain, whereas ENPP1 does not (66). Autotaxin
has a rapid turnover (68), and interestingly, in breast tumors,
blocking LPA production with a competitive autotaxin inhibitor
decreased expression of Nrf2, multidrug-resistant transporters,
and antioxidant genes (69), possibly as a feedback response.
Autotaxin is known to be bound and inhibited by bile salts
(70), raising interesting questions of whether it has any
relation to why the famous “Paigen diet” which features the
addition of the bile salt, cholate, to a high-fat diet doubles
the severity of atherosclerosis (71). From the standpoint of
calcification, it is intriguing that, like its relative, ENPP1,
autotaxin has the capacity for producing pyrophosphate, an
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inhibitor of calcification, raising questions about possible pro-
and anti-atherogenic effects of autotaxin inhibition.

The role of autotaxin in disease pathogenesis is supported
by evidence of chronic inflammation and enhanced rates of
breast cancer in autotaxin transgenic mice (72) as well as by
the attenuation of rheumatoid arthritis and pulmonary fibrosis
in mice with conditional deletion of autotaxin (73, 74). A large
number of autotaxin inhibitors have been tested for possible
therapeutic use in inflammatory diseases and cancer (75–81).
Katsifa et al. have shown that 80% reduction of LPA levels is
well-tolerated in autotaxin-null mice or in mice treated with the
autotaxin inhibitor, PF8380 (82).

STATINS

Given the substantial links between lipids and cardiovascular
calcification, it was anticipated that lipid lowering with statins
would be certain to prove to be an effective treatment. Reports
from the 1990’s and 2000’s were supportive of that possibility,
although they were less impressive than expected. In mice, lipid
lowering by genetic techniques inhibited aortic valve disease (83),
but, in humans, the ASTRONOMER trial showed no reduction
of aortic stenosis progression by statin therapy in patients
with mild to moderate disease (84). Several reasons have been
proposed, including the possibility that the disease was already
too advanced by the time of treatment, and that a benefit may be
seen if treatment were to begin at an earlier stage of disease. It
may also indicate that statin treatment has different effects than
genetic manipulation. Moreover, statins tend to increase Lp(a)
levels (85), which, as noted above, may promote human CAVD.
So far, only statins have been tested by a randomized, controlled
trial as a possible medical treatment for aortic stenosis.

Compared with mice, larger animal models may provide more
accurate measurements of stenosis severity, based on Doppler
jet velocity, and may provide physiological conditions more
similar to those of humans. For instance, a hamster model
of hyperlipidemic–hyperglycemic cardiovascular calcification
has been reported (86). In addition, a myocardial infarction-
prone strain of Watanabe heritable hyperlipidemic (WHHLMI)
rabbits develops more severe aortic valve stenosis (almost 50%
reduction) and more evident transvalvular pressure gradients
(almost 50% increase) with thickened and degenerated valve
leaflets as well as calcified nodules and increased expression of
osteogenic factors including Sox9, RANKL, BMP-2, and Runx2
at 30 months of age (86).

In pre-clinical studies, statins were found to reduce
progression of calcification in rats with vascular calcification
induced by vitamin D and warfarin (87), even though the
mechanism of calcification in this pharmacological model is not
known to involve lipids. In non-randomized clinical studies,
when patients without known coronary artery disease were
treated with statins for over a year based on their calcium scores,
a decrease in calcification was reported for those who lowered
their LDL-cholesterol level below 120 mg/dl (88). In a later study,
coronary calcium score progression was significantly reduced,
and reversal was seen in patients whose LDL dropped to below

100 mg/dl (89). Later studies found less benefit, including no
significant effect of 10 years of lipid-lowering therapy on carotid
calcification as measured by MRI (89). Even though prosthetic
valve degeneration is independently associated with dyslipidemia
in patients (90), and even though direct ethanol-extraction of
lipids from bioprosthetic valves reduces their calcification in vivo
(91–93), statin treatment failed to reduce bioprosthetic valve
calcification in patients (94).

In the last decade, compelling evidence is showing the
opposite effect, that statins promote vascular calcification. In
a London-based clinical study of almost 400 patients with
diabetes, Anand and colleagues found that statin treatment was
an independent predictor of progression of coronary calcification
with an OR of 2.3, but not a predictor of acute cardiac events (95).
Some suggested that this unexpected result was attributable to
higher baseline coronary calcium scores or insufficient lowering
of LDL in the statin-treated group (96). However, those potential
confounders were excluded in a later VA Diabetes Trial, in which
Saremi and colleagues, showed the same results: frequent statin
use was associated with accelerated cardiovascular calcification
compared with infrequent use, but incidence of cardiovascular
events with frequent statin use was not significantly different
from those with infrequent statin use over a 4–5 year follow-
up (96). Consistent with this, Puri and colleagues used coronary
intravascular ultrasound to show that statin treatment promotes
coronary atherosclerotic calcification (97). Subsequent reports
have consistently tied statin treatment to increased coronary
calcification. The Rotterdam study of over 1,700 patients showed
statin treatment, at any dosage, was associated with greater
calcification, which increased with duration of statin use (98).
In the PARADIGM study, statin treatment was associated with
more rapid progression of coronary calcification (99). In a
study, all 147 patients on statins had progression of coronary
calcification (53). Statin-induced calcification occurred even in
combination with proprotein convertase subtilisin/kexin type 9
(PCSK9) inhibitors (100). However, patients on a combination of
statin and PCSK9-inhibitor therapy had a slower rate of coronary
calcification progression compared with statin mono-therapy
(100). Mechanisms by which statins may promote coronary
calcification remain unclear. Some in vitro studies have suggested
a direct effect (101), but indirect effects, such as statin-mediated
increase in Lp(a) levels (85), are also possible mechanisms.

This has created a dilemma, putting two long established
“truths” in conflict: (1) that cardiovascular calcification
increases cardiovascular mortality, and (2) that statins reduce
cardiovascular mortality. To resolve this, some authors have
dismissed or reversed the first. Although the evidence linking
vascular calcification and mortality has not changed, some
reports assert that the calcification is beneficial, as in “statin
use seems to beneficially influence the composition of carotid
atherosclerosis” (98) and others have proposed that promotion of
calcification is the mechanism for the beneficial effect of statins
on mortality (97). Theoretically, the possibility that statins alter
biomechanical effects of calcification through changes in specific
morphological features cannot be excluded.

This conundrum has translated to clinical care: physicians
are advised to tell their patients that coronary calcification is
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dangerous as the basis for initiating statin therapy, and, later,
when the calcification progresses further on the statin therapy, to
tell their patients that coronary calcification is protective. Thus, a
deeper understanding of the relationships between statin therapy,
cardiovascular calcification, and clinical outcomes is necessary.

LIPIDS AND PHOSPHOLIPIDS IN
BONE/CARTILAGE CALCIFICATION

Lipids are also closely associated with bone mineralization. Based
on nuclear magnetic resonance (NMR) spectroscopic analysis,
vascular calcium deposits, and bone both have fatty-acid lipids
entrained in their mineral. These fatty acids may include methyl-
branched fatty acids, which would be consistent with lipoprotein
particle remnants (102). As noted by Reid et al., “colocalization of
mineral and lipid may be coincidental, but it could also reflect an
essential mechanistic component of biomineralization” (102). As
evidence of their strong association with mineral, phospholipids
cannot be totally extracted from calcified tissues, such as
bone, until the tissues are decalcified. Among phospholipids,
phosphatidylserine is considered the most likely to be involved
in initiation of mineralization because of its extremely high
binding affinity for Ca2+ ions (103). Specific membrane proteins
in lipid rafts also participate in mineralization. Phospholipids are
even involved in mineralization of dental plaque, the calcium
deposits formed on teeth by bacteria (104). The lipid profiles
found in human cardiovascular calcification share many features
with those in newly mineralized bone and calcified cartilage,
particularly the complex acidic phospholipids (105).

MATRIX VESICLES

Both bone and vascular mineralization appear to be initiated by
matrix vesicles, ∼100 nm membrane-bound extracellular
vesicles. Phospholipids form the membrane of matrix
vesicles (also known as extracellular vesicles), where calcium
hydroxyapatite crystal formation is initiated when calcium
and phosphate ions interact with phosphatidylserine to form
phospholipid-calcium-phosphate complexes. Matrix vesicles
are extruded from the outer plasma membrane of cells, which
gives them a composition similar to lipid rafts (106), and they
are enriched in certain components, including cholesterol,
free fatty acids, and sphingomyelin (107). They may also be
released by fusion of multivesicular bodies (MVB) with the
plasma membrane. Interestingly, lipoproteins may interfere with
analyses of matrix vesicle composition, because LDL particles
may themselves produce extracellular vesicles (108), and because
LDL particles co-pellet with matrix vesicles in these analyses
(109, 110).

Matrix vesicles from bone were described poetically
by H.C. Anderson as: “protected and controlled internal
microenvironments outside cells in which specific metabolic
objectives of the host cell may be pursued vigorously at a distance
from the host cell” (111). They were originally discovered in
1967 in bone tissue, where they were identified as nucleation
sites for hydroxyapatite crystals. Once in the extracellular space,

they often bind to collagen, a process that appears to induce
alkaline phosphatase activity and calcification (112). Matrix
vesicles were found a decade later in calcific atherosclerotic
lesions in specimens of human aortas (113). Now they are
known to be present in human calcific vasculopathy and
valvulopathy (114), and, most likely, they would be found at
any sites of physiological or pathophysiological calcification.
Matrix vesicles from vascular smooth muscle cells and bone
cells both include calcium- and phospholipid-binding proteins,
phosphate transporters, and cytoskeletal and surface proteins
(115).

Matrix vesicles also mediate a wide range of functions besides
initiation of mineralization, such as cell-cell communication,
depending on their distinct contents and properties. These
may include different microRNA species (miR-122-5p vs. miR-
150-5p), different specific phospholipids, different activities of
alkaline phosphatase and phospholipase A2, different membrane
stiffness, and different membrane receptors (116). Due to
these distinct functions and properties, matrix vesicles are
now described by a wide variety of names: microvesicles,
extracellular membrane vesicles, ectosomes, extracellular
vesicles, microparticles, and exosomes, depending on cells of
origin, tissue location, and the investigator’s field of science.

A growing consensus is that matrix vesicles are a type of
exosome, perhaps the prototypical one, or at least homologous
with exosomes (117). Given their tendency to bind to collagen,
it has been proposed that they are “anchored exosomes”
(118). Exosomes are extracellular, membrane-bound products
of the complex endosomal pathway. Their multilamellar
membranes (119) may be understood by topological analysis
of progressive invagination, fusion, autophagy, and evagination
steps of endosomal processing through MVB (Figure 1). Most
interesting, given that the multivesicular bodymay be contiguous
at times with the extracellular space, mature matrix vesicles
within the multivesicular bodymay be, nonetheless, topologically
exterior to the cell’s cytoplasm. As such, they may begin
formation of hydroxyapatite crystals while still “deep within”
the perimeter of the cell (118). Intracellular vesicles containing
calcium phosphate have been demonstrated within osteoblasts—
in skeletal bone formation (121), although spontaneous mineral
formation within intracellular vesicles may be inhibited where
there is an acidic microenvironment.

Of potential clinical significance, the matrix vesicles produced
by vascular smooth muscle cells contain alkaline phosphatase
that is responsive to active vitamin D (122). The LDL particles
that deposit in the subendothelial space carry inactive vitamin
D. The vitamin D activating enzyme (1-alpha-hydroxylase) is
produced by smooth muscle cells. Thus, LDL accumulation in
atherosclerotic plaque may lead to vitamin-D induced induction
of alkaline phosphatase, which promotes calcification and raises
questions on the potential cardiovascular effects of vitamin
D supplementation (123). Vitamin D has even been used to
generate rodent models of vascular calcification (124). While
these models do produce robust calcific vasculopathy, questions
have been raised about whether the mechanisms reflect those of
calcific disease found in human atherosclerosis or chronic kidney
disease (CKD).
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FIGURE 1 | Schematic of possible exosomal biogenesis. Modified from Tintut and Demer (120). Exosomes arise through invagination of the plasma membrane during

pinocytosis, which produces endosomes containing extracellular-derived material. Some endosomes may fuse with large multivesicular bodies (MVB). Double

membranes are produced when simple microvesicles are formed by a “secondary” evagination of the MVB membrane, which then undergo “tertiary” invagination to

engulf extracellular-derived material, creating a double membrane vesicle. When the MVB fuses with the plasma membrane, the microvesicles return to the

extracellular space as exosomes. Based on this topological scheme, extracellular particles would be found only in complex exosomes.

POTENTIAL TARGETS—INHIBITORS OF
LIPID-RELATED CARDIOVASCULAR
CALCIFICATION

Inhibitors of oxidant stress, lipid oxidation, and oxidized lipids
have been shown to reduce calcific disease. Omega-3 fatty
acids reduce osteogenic gene expression in pharmacologically
induced medial calcification (125, 126). Activity of a specific
enzymatic inhibitor of lipid oxidation, paraoxonase-1, is lower
in patients with CAVD and inversely correlated with the
severity of the disease (127). A natural antibody to oxidized
phospholipids, E06, attenuates both atherosclerosis, and aortic
valve calcification in Ldlr−/− mice on a high-cholesterol
diet (128). Pioglitazone, a ligand for peroxisome proliferator-
activated receptor-γ, has been shown to inhibit lipid deposition
and calcification in aortic valves of hyperlipidemic mice (129).
Interestingly, the effect of pioglitazone was unique to the
valve, not affecting the aorta. An inhibitor of oxidant stress,
fibulin, also reduces osteogenic differentiation of vascular
cells (130). A lipid phosphatase, PTEN has been shown to
regulate vascular calcification in multiple models (131), and
sodium dichloroacetate, a small molecule inhibitor of AKT,
induces vascular cell calcification through activation of p38
MAPK, independently of AKT (132). Small molecule inhibitors

of autotaxin are considered potential therapeutic agents in
cardiovascular calcification, given that PF8380 [6-(3-(piperazin-
1-yl)propanoyl)benzo[d]oxazol-2(3H)-one] (a specific inhibitor
of autotaxin) reduces LPA levels in small intestine, liver, and
plasma (57, 77).

An important consideration in developing a medical therapy
for calcific disease of the cardiovascular system is that treatments
that reduce calciummineral deposits may adversely affect skeletal

bone. Epidemiological studies show that calcific vasculopathy

and osteoporosis are associated in an age-independent manner
(34, 133–139). The simultaneous formation of ectopic mineral

suggests that calcium and vitamin D intake may not be

the limiting factors in bone formation in osteoporosis. It

appears that inflammation promotes calcification in soft tissues,
such as in artery, lung, breast, and tendon tissues, but it

promotes decalcification in skeletal tissues. An active research
question is whether widely used osteoporosis treatments, such
as bisphosphonates, which inhibit osteoclastic bone resorption,
will affect vascular calcification and in what manner they
may do so. The one FDA-approved osteoporosis therapy
that promotes anabolic bone formation is teriparatide, an
active peptide of parathyroid hormone. Its effect on bone
depends dramatically on timing of administration. Repeated
intermittent administration is anabolic for bone, whereas
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sustained high levels are catabolic, as seen in the bone loss
in clinical hyperparathyroidism and chronic renal disease. A
key question is whether intermittent teriparatide is anabolic or
catabolic for the mineral formation in the cardiovascular system.
Important mouse studies found prevention of atherosclerotic
calcification in hyperlipidemic, hyperglycemic mice (140).
Sebastian and colleagues went on to show reduction of
medial calcification in the context of CKD, where secondary
(2◦) hyperparathyroidism was blocked by parathyroidectomy
(141). However, treatment of aged hyperlipidemic mice with
teriparatide also changes the morphology of pre-existing aortic
calcium deposits, raising the possibility that it may affect plaque
stability (142).

CONCLUSION

Overall, the regulatory mechanisms underlying calcific
vasculopathy and valvulopathy are complex, and phospholipids,

lipoproteins, and apolipoproteins are prominent among the

mediating factors. While medical therapies for cardiovascular
calcification have remained elusive, continued study of
lipoprotein-mediated pathways hold promise for identifying
effective therapeutic targets.
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