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With advances in technology, the impact of natural antioxidants on vascular cell

regeneration is attracting enormous attention as many current studies are now exploring

the clinical potential of antioxidants in regenerative medicine. Natural antioxidants are an

important step for improving future treatment and prevention of various diseases such as

cardiovascular, cancer, neurodegenerative, and diabetes. The use of natural antioxidants

which have effects on several types of stem cells with the potential to differentiate into

functional endothelium and smooth muscle cells (known as vascular progenitors) for

vascular regenerationmight override pharmaceutical and surgical treatments. The natural

antioxidant systems comprise of several components present in fruits, vegetables,

legumes, medicinal plants, and other animal-derived products that interact with reactive

free radicals such as oxygen and nitrogen species to neutralize their oxidative damaging

effects on vascular cells. Neutralization by antioxidants involves the breaking down of

the oxidative cascade chain reactions in the cell membranes in order to fine-tune the

free radical levels. The effect of natural antioxidants on vascular regeneration includes

restoration or establishment of new vascular structures and functions. In this review,

we highlight the significant effects of natural antioxidants on modulating vascular cells

to regenerate vessels, as well as possible mechanisms of action and the potential

therapeutic benefits on health. The role of antioxidants in regenerating vessels may be

critical for the future of regenerative medicine in terms of the maintenance of the normal

functioning of vessels and the prevention of multiple vascular diseases.

Keywords: natural antioxidants, oxidative stress, atherosclerosis, regenerative potential, reendothelialization

INTRODUCTION

Natural antioxidants (e.g., vitamins, phenolic compounds, and carotenoids) are contained in
many fruits and vegetables, whereas formulated synthetic antioxidants are additives to prevent
rancidification. Natural antioxidants are present in low concentrations within cells, where they
effectively reduce free radicals to provide protection system against vascular diseases. Natural
antioxidants have strong potential to inhibit oxidative stress, lipid peroxidation and oxidation of
breakdown products (1). They can function either individually or synergistically to remove free
radicals generated during oxidative metabolism, to maintain the balance between oxidants and
antioxidants. However, when there is an excessive production of reactive oxygen and nitrogen
species (ROS and RNS, collectively referred to as RONS), there is then breakdown in the
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delicate physiological balance which results in oxidative
stress. This oxidative stress eventually contributes to various
chronic diseases including cardiovascular diseases, cancer,
and diabetes (2). Coronary heart disease (CHD) is one of the
leading causes of death and disability globally. The principal
underlying cause of the disease is atherosclerosis, which occurs
in large to medium size arteries, thereby leading to loss of
vascular functions and cell death or necrosis (3). In addition,
microvascular disorders are associated with diabetes, which
is one of the main risk factors for the development of CHD.
Both CHD and microvascular dysfunctions of diabetes are
associated with endothelium dysfunction. Oxidative stress
and inflammation are key factors responsible for endothelial
dysfunction and injury, causing endothelial cells to become
activated. This activation involves increased expression
of several cell adhesion molecules [(CAMs) Intercellular
adhesion molecule-1 (CAM-1), vascular cell adhesion
molecule 1 (VCAM-1), P- and E- selectins] and chemokines
(3). This initiates recruitment of monocytes/lymphocytes into
subendothelium, followed by migration of dendritic and smooth
muscle cells (SMCs). These cells release cytokines and growth
factors, which orchestrates the process of atherosclerosis.

Both experimental animal and clinical studies show that the
intake of dietary antioxidants reduces the circulating levels of the
CAMs and chemokines by reducing the oxidative stress within
vascular cells (4, 5). The benefit of natural antioxidants is to
reduce oxidative stress directly via multiple pathways, such as
regulating the formation of free radicals, the scavenging of excess
radicals, and by interfering in the free radical chain reaction
cascade, thereby eliminating the oxidative damage (6).

However, there is limited literature targeting the impact of
natural antioxidants on the regenerative potential of vascular
cells. Vascular cell regeneration potential is essentially the
capability of the resident cells to accelerate the repair of the
injured vascular wall in order to restore the normal vascular
structure and functions. Furthermore, vascular cell regeneration
is also a part of vascular senescence and growth of new
blood vessels. Vascular regeneration is emerging as a clinically
promising alternative strategy for repairing or preventing
many vascular diseases including CHD, atherosclerosis, and
microvascular complications of diabetes to improve health and
quality of life. With an advent of progenitor and stem cells
there is an increasing interest in novel and effective approaches
to promote the regeneration of vascular cells (endothelial,
vascular smooth muscle, adventitial, fibroblasts, pericytes, and
progenitor/stem cells) to restore their defective functions.
Resident stem and progenitor cells in the vascular wall have the
ability to differentiate into vascular cell lineages. Recent studies
have shown abundant stem or progenitor cells present within
the vessel wall contributing to cell migration, accumulation
and differentiation in the intima, and these processes not
only gives rise to endothelial and SMCs, but also modulates
macrophages (7, 8). Therefore, the impact of antioxidants could
potentially be useful in enhancing the cellular regeneration
that can modulate cellular biological processes (survival and
differentiation) by counteracting the detrimental effects of ROS
in various vascular disorders (9).

The aim of this review is to discuss the current information on
natural antioxidants in modulating the vascular cells including
the stem and progenitor cells and to provide some insights into
the possible mechanism(s) by which these antioxidants restore
defective cellular functions, thereby promoting the vascular
regeneration process.

OVERVIEW OF VASCULAR WALL CELLS
AND THEIR REGENERATING POTENTIAL

Accumulating evidence from most studies indicates an abundant
number of multipotent resident stem and progenitor cells, as
well as the two common distinct cell types (endothelial cells
and SMCs), residing in a variety of normal vessels, including
artery, vein, and microvessels (10). The vascular wall of large and
medium size blood vessels comprises of three different layers, the
intima, media, and adventitia (Figure 1). Strong evidence from
several studies has indicated that vascular stem and progenitor
cells including mesenchymal stem cells (MSCs) possess a high
proliferative capacity and the potential to regenerate into
functional endothelium and SMCs via various processes such
as proliferation, migration, and differentiation (7, 11–15). The
intima, an innermost layer, is composed of a monolayer of
functional endothelial cells overlying the sub-endothelium and
contains a small number of stem and progenitor cells (16–19).
This layer is separated from the media layer by the internal
elastic lamina. The middle layer, the media, consists of several
layers of SMCs and some stem cells (7, 19). Smooth muscle
cells act as scaffolds to provide stability for newly generated
vessels and to regulate vascular tone. Recently, studies by Yu
and co-workers on vascular repair and remodeling such as
occurs in intimal hyperplasia, showed the participation of intimal
SMCs and endothelial cells (7). These participating vascular
cells derived from the abundant stem and smooth muscle
progenitor cells, migrated from either the media or adventitia.
The outermost adventitial layer is enriched with a heterogeneous
population of cells such as fibroblasts and inflammatory cells
(macrophages, dendritic cells, T and B cells), that are critical
to the process of vascular regeneration. Beyond these cells,
there are MSCs progenitor cells (Sca-1/CCR2, c-kit/CCR2)
the pericytes, stem cell populations and the progenitor cells
(macrophage, endothelial cells, and SMCs) (20). The stem and
progenitor cells can rapidly become activated and differentiate,
reflecting their role in vascular remodeling (15, 20). The vasa
vasorum of the adventitia consists of a network of microvessels
comprising endothelial cells enveloped by pericytes (15). The
regeneration potential of the vascular wall cells in particular
endothelial cells is a relatively slow process and lacks efficiency
in regenerative potential (21).

A number of different natural antioxidants are being explored
for their potential to promote vascular cell regeneration.
This involves reprogramming of stem and progenitor cell
populations to improve cell survival, differentiation, recruitment
potency, and functions of vessels. Moreover, this reprogramming
enhances reendothelialization and vascular remodeling.
Reendothelialization is a self-repair process after injury to restore
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FIGURE 1 | Distribution of different types of residents cells within the different layers of the normal vascular wall.

and maintain endothelium functions, through proliferation and
migration of resident stem and progenitor cells as well as the
adjacent endothelial cells.

NATURAL ANTIOXIDANTS REGULATE
OXIDATIVE STRESS IN VASCULAR CELLS

The vascular cells are important sites for the generation
of ROS and oxidative stress. Under physiological conditions
oxidative stress is compensated, however; when there is excessive
production of ROS then the capacity of the antioxidant enzymes
becomes inadequate to deal with such levels. This facilitates
oxidative stress which can result in various types of vascular
disorders (CVD, diabetes, and neurodegenerative diseases) (22,
23). The mechanism(s) responsible for this vascular damage are
still not clearly known. A natural antioxidant system is present in
the vascular cells as a complex defense system, which regulates
oxidative stress by regulating the intracellular levels of RONS.
These radicals are generated within the vascular wall cells, such
as endothelial cells and SMCs, by cellular enzymes such as
NADPH oxidase, xanthine oxidase, mitochondrial respiratory
enzymes and uncoupled endothelial nitric oxide synthase eNOS
(24). The ROS levels in fact dictate the fate of resident
vascular cells. Low levels of ROS maintains the cells in their
quiescent and self-renewal states, whereas at high levels they
regulate multiple cell functions including intracellular signaling,
proliferation, differentiation, migration (25), apoptosis (26, 27),
gene expression, vascular tone, angiogenesis, and the redox
potential (28). The activation of transcription factors [nuclear

factor-κB, hypoxia inducible factor (HIF-1 alpha)] and eNOS
stimulates cell growth and migration (29–32). However, when
the antioxidant concentration becomes too low, then the activity
of the repertoire of endogenous antioxidant enzymes such as
glutathione peroxidase (GPx), catalase (CAT), glutathione-s-
transferase (GSH), and superoxide dismutase (SOD) is reduced
and this results in the breakdown of the intracellular defense
barriers (33). As a consequence of this, there is an intracellular
accumulation of excessively produced free radicals, triggering
oxidative stress that has deleterious effects.

Recently, a number of studies have been published on the
benefits of natural antioxidants, and the regulation of oxidative
stress as a defined mechanism(s) in various types of vascular
cells such as endothelial, VSMCs, stem, and progenitor cells
(9, 34–37). Within endothelial cells and VSMCs, the oxidative
stress is regulated by various pathological signaling pathways
involving RONS. Indeed, animal and in vitro studies on the
use of antioxidants (e.g., carotenoids, flavonoids, and vitamin
D) suggest various intracellular mechanisms by which oxidative
stress can be modulated. This includes different signaling
pathways and molecules like mitogen-activated protein kinases
(MAPK), transcription factor NF-kB, pro-inflammatory vascular
adhesion molecules (VCAM-1, ICAM-1, E-selectin), cytokines
(TNF-alpha, IL-1B, and IL-8), endogenous enzymes (SOD
and CAT), inhibition of VSMC senescence, and increases in
NO bioavailability (23, 34–36).

ROS levels are tightly controlled by endogenous antioxidant
enzymes to reduce oxidative stress and this is critical not
only in maintaining the balance between self-renewal and
differentiation, but also in proliferation and apoptosis of stem
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and progenitor cells (9, 38). Interestingly, new scientific studies
are focusing on the effects of antioxidants on reprogramming
of the stem or progenitor cells. However, this reprograming
of cells is also linked to oxidative stress via the increased
production of ROS (39). Ji et al. in their in vitro study showed
antioxidant supplementation not only reduced oxidative stress
in the process of differentiation of the induced pluripotent
stem cells (iPSCs, as a renewable source of endothelial and
VSMCs), but also provided protection against DNA damage
(40). On the other hand, a slight increase in ROS levels
can affect the cell self-renewal process, and this effect was
abolished through supplementation with combination of two
different antioxidants (N-acetyl-L-cysteine and MitoQ) (41).
The mechanism(s) of inhibition involved increases in GSH,
H2O2, and prevention of superoxide production. Similarly, trace
element antioxidants such as selenium enhanced the vascular
differentiation of embryonic stem cells (ESCs) into vascular
progenitor cells by reducing NADPH oxidase-4 enzyme activity,
thereby lowering ROS production (42). In another in vitro
study with adipose derived MSCs, the antioxidant supplements
(N-acetyl-L-cysteine and ascorbic acid-2-phosphate) not only
synergistically decreased oxidative stress, but also increased
proliferation and cell number in the S phase of the cell cycle
(43). The suggested mechanisms behind these effects involved
downregulation of CDKs inhibitors and upregulation of CDK2,
CDK4, and CDC2 expression.

These studies clearly show that antioxidants have beneficial
effects on vascular resident cells and stem cells as potential source
for vascular regeneration (differentiation, proliferation, and
survival) by reducing oxidative stress through removal of ROS,
and increasing the endogenous enzyme activities. The beneficial
role of natural antioxidants on vascular cell regeneration in
relation to their vascular functions is discussed in detail in the
following sections.

THE IMPACT OF NATURAL ANTIOXIDANTS
ON THE REGENERATION POTENTIAL OF
VASCULAR CELLS’

Several different naturally occurring antioxidants are being
investigated for their potential to regenerate vascular cells and
improve vascular integrity by restoring the cellular functions of
diseased vessels. However, studies on natural antioxidants such
as vitamins (C, D, and E) and polyphenols on the regeneration
potential of vascular cells is still in its infancy. The antioxidants
can be endogenous or acquired exogenously as a part of a diet
or dietary supplements. Antioxidants can be classified into two
main types: the enzymatic and non-enzymatic, both of which
modulate free radical reactions. The non-enzymatic antioxidants
include both the natural and synthetic. This article is limited
to only natural antioxidants. When endogenous antioxidants
are not sufficient then there is a critical need for the dietary
antioxidants to maintain normal cellular functions. Natural
antioxidants are contained in many fruits, vegetables, legumes,
medicinal plants among others, and animal products (Table 1).
The antioxidants can be further subdivided into four groups:

vitamins (A, C, D, and E), carotenoids (β-carotene, lycopene,
and astazanthin), polyphenols [phenolic acids (tea, honey, peach,
grape seeds, and red-wine) and flavonoids (flavones, isoflavone,
xanthones, and anthocyanins)] and trace elements (selenium,
iron, copper, zinc, andmanganese) (Table 1). The mechanisms of
actions of the non-enzymatic antioxidants involves interruption
of free radical chain reactions. The endogenous antioxidants
include the enzymes GPx, CAT, SOD, and co-factor enzyme
Q10 (oily fish, offal, and whole grain) and mitochondria-targeted
antioxidant MitoQ. These endogenous defense enzymes function
interactively and synergistically with diet-derived antioxidants to
increase their effectiveness by either stabilizing the free radicals
or by reducing their formation (66).

Natural antioxidants are currently being explored for
their potential to accelerate the reendothelialization process
by upregulating the adhesion molecules and stimulating
rapid endothelial cell growth. Recently, an attractive new
approach involving vitamins for direct reprogramming of
stem or progenitor cells into endothelial cells has surfaced
(44). A small number of published studies on vitamin C,
D, and E demonstrated that these antioxidants promoted
reendothelialization and contributed to vascular repair following
vascular injury (45, 51). The reendothelialization process was the
result of cell growth and proliferation (46), which improved the
functions of vascular endothelial cells (45, 52, 67).

The main function of vitamins, trace elements and
endogenous antioxidants is to reduce oxidative stress induced
damage caused by free radicals. This occurs via mechanisms that
include: inhibition of free radical formation, their decomposition
and scavenging of peroxyl radicals that are converted to
tocopherol radicals by α-tocopherol (vitamin E), and binding
of excess free radicals to transport proteins and conversion
of ROS to less reactive forms (68). Natural antioxidants
may also down-regulate the cellular free radical levels by
preventing the expression and activities of free radical generating
endogenous enzymes (69).

Emerging evidence highlights the novel effects of natural
antioxidants on modulation of vascular cells to facilitate vascular
regeneration (70). However, there is still a controversy regarding
synthetic antioxidant supplements (β-carotene, vitaminA, C, and
E), as their use in clinical trials showed no effect onmortality (71).
The reasons for the failure may have been too high doses, the
exposure time was too short, different sources, and toxicity issues.

Some natural dietary antioxidants are now being recognized
to play a role in the regeneration of vessels by reprogramming
vascular cells. The question regarding which particular
antioxidant class may be most potent in terms of their
contribution in vascular cell regeneration is a challenging one
at this stage.

Vitamin C
Vitamin C (L-ascorbic acid or ascorbic acid) is an essential
antioxidant available in abundance in fruits and vegetables
(Table 1). Vitamin C is known to protect against vascular
disorders by inhibiting the VSMCproliferation and by promoting
endothelial cell proliferation in the presence of CAT enzyme
and the (47, 48). Vitamin C also protects cell membranes and
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TABLE 1 | Natural antioxidants, their mechanisms of action in regulating the oxidative stress and effects on vasculature.

Natural antioxidants Food rich in antioxidants Mechanisms for oxidative stress

reduction

Effect on vasculature References

Vitamin C

(ascorbic acid)

Citrus fruits, mango,

papaya, pineapple, berries,

kiwis

• Scavenges ROS

• Recycles α-tocopherol

• Upregulates eNOS, SOD

• Down regulates NADPH-oxidase

• Inhibits ox-LDL

• Decreases BP

• Preserves endothelial function

• Reendothelialization

(44–50)

Vitamin D Fish, egg yolk, cheese, beef

liver

• Upregulates anti-oxidant enzymes

• Suppresses NADPH oxidase

• Reendothelialization (51, 52)

Vitamin E

(α-tocopherol)

Vegetable oils, nuts,

spinach, broccoli

• Scavenges ROS

• Upregulates anti-oxidant enzymes

• Inhibits ox-LDL

• Decreases blood cholesterol

• Preserves endothelial function

(38, 45, 53–55)

Carotenoids

β-carotene lycopene

Red, green, yellow fruits,

and vegetables

• Scavenge ROS

• Upregulate anti-oxidant enzymes

• Decease TNFα

• Increase NO

• Inhibit iNOS

• Inhibit ox-LDL

• Preserve endothelial function

• Decrease blood cholesterol

Polyphenols:

Phenolic

Cocoa, green tea, red wine,

grape seeds, peaches

• Upregulate anti-oxidant enzymes • Inhibits ox-LDL

• Decreases BP

• Reendothelialization

• Decrease blood cholesterol

• Regulates TLR4 pathway

(6, 15, 56–58)

(59–61)

Flavonoids

Trace elements

Honey, berries, plants

Animal dietary source

• Inhibit iNOS

• Scavenge ROS • Neovascularization
(34, 62–64)

(64, 65)

BP, blood pressure; eNOS, endothelial nitric oxide synthase; iNOS, inducible nitric oxide synthase; NADPH, Nicotinamide adenine dinucleotide phosphate; NO, Nitric oxide; ox-LDL,

oxidized low-density lipoprotein; ROS, Reactive oxygen species; SOD, superoxide dismutase; TNFα, Tumor necrosis factor α; TLR4, Toll-like receptor 4.

proteins from oxidative damage by quenching free radicals (49).
This vitamin plays the role of an enzyme modulator in the
vascular wall by upregulating the eNOS and SOD activities
and down-regulating NADPH oxidase in the aortic wall which
subsequently protects the endothelial cells (45, 50). Vitamin C
also regulates vasodilation by inhibiting the effects of endothelin-
1 (ET-1) and by stimulating the release of interleukin-6 (45).
Recently, a new role for vitamin C has been suggested in cardiac
and vascular regeneration through enhanced reprogramming of
iPSCs that can differentiate into various vascular cell lineages
(44). These cells have been shown to differentiate into VSMCs
and endothelial cells (72).

Vitamin C may act synergistically with vitamin E to
promote vessel remodeling, by modulating endothelial
cell proliferation through the MAPKs activation pathway
and inhibiting VSMC proliferation (49). These vitamins
work by regulating the oxidative stress, via reducing redox
ratio [glutathione (GSH): oxidized glutathione (GSSH)]
and through MAPK and extracellular signal-regulated
kinases (ERK1/2) signaling pathways (phosphorylated c-Jun
NH2-terminal protein kinase, p38, and the ERK1/2). This
results in the stimulation of endothelial cell growth and
inhibition of VSMC growth.

Vitamin D
Vitamin D is synthesized endogenously and can be obtained
from dietary sources. Vitamin D has been shown to restore
normal vascular function by reendothelialization of the damaged
arterial wall (51). Vascular cells, such as endothelial cells, SMCs,
and pericytes, express vitamin D receptors (VDR), but how

these receptors interact with ligands to initiate cell signaling is
still unknown. However, recent studies on vitamin D receptors
on vascular endothelial cells of healthy volunteers, using an
experimental artery injury model and VDR knockout animal
models, have demonstrated that vitamin D treatment increased
the number of circulating angiogenic myeloid cells (AMCs),
promoted reendothelialization in the injured vessel and restored
vascular endothelial dysfunction (51, 73).

These studies suggested the vitamin D in the presence of
stroma cell-derived factor (SDF1) released from the vascular
residential myeloid cells (macrophages or dendritic cells)
promoted the migration of the AMCs to the local injury
site for vascular regeneration. A meta-analysis of randomized
controlled trials showed that vitamin D improved endothelial
functions, despite the fact that the clinical trials were based
on a small sample size (52). However, the results from clinical
research and in vitro models published on the effect of
vitamin D on angiogenesis involving endothelial cells have been
contradictory with regard to the origin of the endothelial cells.
These endothelial cells were either myeloid cells-derived from
circulating monocytes (74) or from endothelial progenitor cells
(75). Another clinical study failed to show any effect of vitamin D
on endothelial cell functions (76).

Vitamin E
Vitamin E (tocopherols and tocotrienols) is a fat soluble
antioxidant found in vegetable oils such as soybean, sunflower,
corn, and walnut. This vitamin exists in several forms, with α-
tocopheroxyl being the most abundant form (38, 45). in vitro and
animal experimental studies have shown that alpha-tocopheroxyl
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preserves endothelial integrity, inhibits VSMCs proliferation
(53) and regulates endothelial function (54, 55). Vitamin E
in vitro also inhibits monocyte-endothelial cell adhesion and
aggregation, ROS monocyte, cytokine release, platelet- adhesion,
and aggregation. All these effects lead to protection against the
development of atherosclerosis (53).

Carotenoids
Carotenoids are also natural antioxidants found mostly in
colored fruits and green vegetables. Human beings cannot
synthesize carotenoids; they are acquired from food (77).
Carotenoids include β-carotene, lutein, zeaxanthin, astaxanthin,
and lycopene. Although all carotenoids possess antioxidation
potential (prevent oxidative damage to lipid membranes and
LDL by scavenging free radicals and lowering ROS levels), some
carotenoids have specific properties, for example β-carotene is
a precursor of vitamin A, which has a protective role in both
ocular and vascular disorders (78). Beta-carotene and lycopene
are known to decrease tumor necrosis factor-α (TNF-α) mediated
ROS generation at the endothelial level (62). Recent studies
have shown that lycopene improved endothelial cell functions by
increasing the bioavailability of NO (34). Lycopene also protects
cells from oxidative stress by reducing the levels of ROS and
controlling the production of antioxidants enzymes (SOD and
CAT) (36, 63). Lycopene treatment of endothelial progenitor
cells (EPCs) caused an increase in their proliferation, as well as
reduced apoptosis and autophagy (64). These effects of lycopene
are particularly important in vascular disease such as diabetes
mellitus where EPCs autophagy is increased due to the increase
in advanced glycation end-products.

Polyphenols
Polyphenols are present in a wide variety of dietary food and
medicinal plants, and are subdivided into two main groups:
phenolic and flavonoid antioxidants (79). Recently, studies of
Wang et al. in vitro and rat vascular graft model provided
evidence that cells within the vascular wall, endothelial, SMCs,
and macrophages, can be modulated by the natural polyphenolic
compound resveratrol (15). This compound is present in the
skin of grapes, blueberries, raspberries, mulberries, peanuts,
and in red wine. This study also showed that resveratrol
induced vascular stem and progenitor cell to differentiate
into endothelial cells, that accelerated endothelialization of an
artery via endothelial cell migration and by an increase in
macrophage number (15). However, their study failed to show
an inhibitory effect of resveratrol on intimal hyperplasia, whereas
a previous study reported inhibition of SMC proliferation (80).
This discrepancy in the inhibitory effects may have been due
to the two different models being employed (vascular graft and
vascular injury), where the regeneration and repair processes as
well as the number of SMCs present might have been different.
Evidence from other in vitro studies has shown that resveratrol
increased proliferation and the functional activity of endothelial
progenitor cells (56).

A study by Oak et al. showed that polyphenols from red wine
inhibited the expression of a pro-atherosclerotic, pro-angiogenic
factor, and vascular endothelial growth factor (VEGF) in VSMCs

(57). This inhibition was the result of the prevention of the redox-
sensitive activation of the p38 MAPK-pathway. In addition,
phenolic antioxidants are known to activate vascular endothelial
cells through amechanism involving the inhibition of the nuclear
transcription factor pathway (NF-kβ) (58).

Flavonoids
Flavonoids are natural antioxidants found in abundance
in seeds, citrus fruit, soya, and vegetables (81). There is
limited literature available on flavonoids and their effects
on vascular regeneration; however, one of the isoflavone
present in legumes, genistein, can eliminate free radicals,
and boost antioxidant enzyme activities when combined
with 7-difluoromethoxy-5′4-dimethoxy (DFMG). This novel
antioxidant compound effectively inhibits VSMCs proliferation
and migration by regulating the Toll-like receptor-4 (TLR4)
signaling pathway as well as reducing oxidative stress (59) and
endothelial cell impairment (60). These studies suggest that
genistein may possibly prevent vascular disorders by restoring
vascular function and promoting vascular cell regeneration.
Another strong flavonoid antioxidant, catechin, activates eNOS
and regulates vascular tone by its effects on the VSMCs
and has been shown to reduce the incidence of CVD in
epidemiological study (61).

Trace Elements
Trace elements (selenium, iron, copper, zinc, andmanganese) are
natural antioxidant components obtained from dietary sources.
Selenium is a powerful antioxidant found in a variety of dietary
foods; its deficiency is related to an increased risk of vascular
disorders (82). The differentiation of human embryonic stem
cells (ESC) to vascular progenitor cells was enhanced with
selenium through ROS scavenging. The effect was associated
with an increase in the ROS level, and NADPH oxidase-4
activity (9). Furthermore, these ESCs are found to be involved
in neovascularization (64, 65). Dietary copper is also an essential
antioxidant that has been shown to have a significant effect
on vascular cell types. In an animal model of atherosclerosis,
copper reduced apoptosis, increased vascular eNOS, inhibited
VSMCs migration, and proliferation into the aortic intima
of the artery (83).

Mitochondrial Antioxidant (MitoQ)
Mitochondrial antioxidant (MitoQ) consists of a naturally
occurring antioxidant ubiquinol attached to lipophilic cation,
and has the ability to cross the plasm membrane. In a
recent randomized-double blind clinical trial, the chronic
administration ofMitoQ to aged adults with impaired endothelial
function improved vascular endothelial function by amechanism
that reduced oxidative stress in the vasculature (84). Similar
effects were observed in this study with aged animals with regards
to the reduction in oxidative stress. This study was a short term
and it would have been interesting to see the long-term effects of
MitoQ on oxidative stress by assessment of the ROS production
and in a larger clinical trial.
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HEALTH BENEFITS OF
NATURAL ANTIOXIDANTS

Natural antioxidants have been used in health and disease to treat
or prevent various vascular disorders. Natural antioxidants are
being added to the diet in order to overcome their deficiency
(85, 86). Indeed, health promotion authorities have encouraged
a balanced diet with natural antioxidants in order to benefit from
their vascular regenerating properties (87).

Despite the potential role of natural antioxidants, there is still
a lack of evidence on their clinical benefits and a lack of specific
molecular markers to measure the impact of dietary antioxidants
on health (88). An individual’s responses to natural antioxidants
may depend on their genetics (89).

CONCLUSIONS AND
FUTURE PROSPECTIVE

In the past, there have been vast numbers of clinical trials
and animal studies published concerning the effect of natural
antioxidants in vascular disease prevention. These studies failed
to show natural antioxidants had any beneficial effects and
the results were inconsistent with in vitro findings. However,
findings from a small number of pre-clinical (in vitro and
animal studies) and clinical studies discussed in this review
have provided convincing evidence that natural exogenous
antioxidants, including vitamins, polyphenols, and carotenoids
among others, and endogenous enzymes play a critical role in
regulating oxidative stress. This regulation involves elimination
of excessively produced free radicals and by an increase in
endogenous enzyme activities. Strong evidence from in vitro
study showed that a combination of antioxidants exerted greater
effects than the individual antioxidant on reducing oxidative
stress, increasing cell proliferation and number in the S phase
of the cell cycle. The underlying mechanisms responsible
for these effects involved downregulation of CDKs inhibitors,
resulting in upregulation of CDK2, CDK4, and CDC2 expression.
Another important antioxidant MitoQ has been mentioned in

passing in this review, used in a short-term small clinical study
which demonstrated improvement in endothelial function by
reduction in oxidative stress. Collectively, studies discussed in
this review have demonstrated the mechanisms of regulation
of oxidative stress and have suggested the possible involvement
of multiple signaling pathways and molecules. These included
transcriptional factors (e.g., NF-kβ), MAPK signaling pathways,
pro-inflammatory vascular molecules, cytokines, endogenous
enzymes, inhibition of VSMC senescence, and increase in
NO bioavailability.

In this review, we discussed the effects of natural antioxidants
on reprogramming of the stem and progenitor cells (survival,
differentiation, and proliferation potentials) and their potential
in vascular regeneration. This is an emerging field and
investigations so far have provided strong evidence that
antioxidants may be used for the regeneration of blood vessels.
By regulating oxidative stress with antioxidants, the resident
vascular cells such as SMCs, endothelial cells, inflammatory cells,
stem and progenitor cells can be modulated to normal functional
cells and to committed vascular cells. Hence, there is a need to
understand the mechanisms of action of regulation of oxidative
stress by natural antioxidants. Considering the prevalence of
vascular disorders is increasing globally, it is imperative that
these regulatory mechanisms are exploited therapeutically in
order to bring about progress in the treatment of vascular
disorders. More investigations are needed on the impact of
antioxidants on the vascular cell regenerating potentials for
future therapeutic applications.
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