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Obesity is a complex disease that affects whole body metabolism and is associated

with an increased risk of cardiovascular disease (CVD) and Type 2 diabetes (T2D).

Physical exercise results in numerous health benefits and is an important tool to combat

obesity and its co-morbidities, including cardiovascular disease. Exercise prevents both

the onset and development of cardiovascular disease and is an important therapeutic

tool to improve outcomes for patients with cardiovascular disease. Some benefits

of exercise include enhanced mitochondrial function, restoration and improvement of

vasculature, and the release of myokines from skeletal muscle that preserve or augment

cardiovascular function. In this review we will discuss the mechanisms through which

exercise promotes cardiovascular health.
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INTRODUCTION

Obesity and its associated co-morbidities are increasing at rapid rates across the United States and
worldwide (1). Obesity is associated with many adverse health effects, including increased risks of
cardiovascular disease (CVD), type 2 diabetes (T2D), certain cancers, and death (2–6). As obesity
rates continue to rise, the prevalence of associated comorbidities including T2D and CVD increase
concomitantly (7); overweight people are twice as likely, and severely obese people are ten times
more likely to develop cardiovascular diseases than individuals of a healthy weight (8).

Regular physical exercise has several beneficial effects on overall health. While decreasing
body mass and adiposity are not the primary outcomes of exercise, exercise can mediate several
diseases that accompany obesity including T2D and CVD (9–14). Several recent studies have shown
that sustained physical activity is associated with decreased markers of inflammation, improved
metabolic health, decreased risk of heart failure, and improved overall survival (15–17). Exercise
improves overall metabolic health and reduces the development of T2D (18) by improving glucose
tolerance (19), insulin sensitivity (20), and decreasing circulating lipid concentrations (21). This
occurs primarily through adaptations to the skeletal muscle, liver, and adipose tissue (16, 22, 23).
Physical exercise can also improve cardiovascular function through adaptations to the heart and
vascular system (17, 24–27). Regular physical exercise decreases resting heart rate, blood pressure,
and atherogenic markers, and increases physiological cardiac hypertrophy (13–15, 28). Exercise
improves myocardial perfusion and increases high-density lipoprotein (HDL) cholesterol levels, all
of which reduce stress on the heart and improve cardiovascular function in healthy and diseased
individuals (11, 15, 29, 30). Given the increasing interest in exercise-based therapies, we will discuss
the benefits of exercise on cardiovascular health and the potential mechanisms through which
they occur.
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CARDIOVASCULAR DISEASE

Cardiovascular disease (CVD) is the leading cause of morbidity
and mortality worldwide (31, 32). Almost half of all adults in the
United States have at least one key risk factor for development
of CVD (i.e., high blood pressure, high cholesterol, or smoking)
(33). CVD encompasses a wide range of conditions that
affect the heart and vasculature including arrhythmias, dilated,
hypertrophic, or idiopathic cardiomyopathies, heart failure and
atherosclerosis (34, 35). These conditions can lead to potentially
fatal cardiac events such as stroke, myocardial infarction (heart
attack), or cardiac arrest (31, 36). Thus, determining various
therapeutic tools to prevent or reduce the incidence of CVD
is vital.

Although cardiovascular disease can arise in response to
multiple factors, the prevalence of obesity-related CVD is
rapidly increasing (8). This can occur for several reasons,
one being that a high fat diet or obesity can lead to
hypertension. In obesity, angiotensin II and aldosterone
secretion from abdominal subcutaneous adipose tissue drives
activation of the renin-angiotensin system (37–41). Angiotensin
II induces vasoconstriction in arterioles, causing arteriolar
resistance and increased systemic blood pressure, in addition
to stimulating the release of anti-diuretic hormone, which
increases water reabsorption in the kidneys. Aldosterone
increases the reabsorption of water and sodium into the
blood, resulting in increased extracellular fluid volume, thus
increasing blood pressure. The renin-angiotensin system also
affects the sympathetic nervous system through inhibition of
norepinephrine reuptake in the pre-synaptic sympathetic nerve
terminals, increasing resting norepinephrine concentration (42),
which can cause an increased resting heart rate and eventually
development of hypertension (43, 44). Therefore, the renin-
angiotensin system and sympathetic nervous system create
a positive feedback loop to increase hypertension in obese
individuals (40).

Sustained hypertension increases left ventricular afterload,
forcing the left ventricle to work harder (45). This leads
to pathologic hypertrophy of the ventricular walls and
ventricular chamber dilation, eventually culminating in
decreased myocardial function and the onset of heart failure
(46, 47). As myocardial function declines, the cardiovascular
system becomes impaired, resulting in insufficient blood flow.
Oxygen and nutrients are then unable to meet the physiological
demands of the body, resulting in tachycardia and extreme
fatigue, as well as compounding health issues such as pulmonary
congestion, fluid retention, and arrhythmias (48, 49).

Another potential cause of obesity-related CVD is metabolic
overload of the heart, which can occur independent of
hypertension. The heart is a “metabolic omnivore” (50), but in
the obesogenic state, and particularly with insulin resistance,
fatty acid uptake and utilization is significantly increased (51).

This can lead to inefficient β-oxidation and intramyocardial

lipid accumulation (52). Because the heart has limited storage

capacity, abundant accumulation of excess lipids and toxic lipid
metabolites results in “lipotoxicity” which contributes to cardiac
dysfunction (53–55). Indeed, several studies have demonstrated

that metabolic changes precede structural changes in the heart
(56, 57). Cardiac metabolism is also altered in T2D patients who
are not obese. As in obesity, T2D is associated with elevated
circulating free fatty acids, increased myocardial fatty acid uptake
and utilization, and myocardial insulin resistance leading to
decreased glucose uptake and utilization in the heart (58–61).

Atherosclerosis is the most common form of CVD, and the
development of atherosclerosis progresses slowly in response
to persistent exposure to an unhealthy, sedentary lifestyle,
including obesity (34, 62). In an obese state, circulating levels
of triglycerides and LDL cholesterol are increased (63), causing
small plaques to form under endothelial cells of the innermost
surface of artery walls (34, 62, 64). While normal endothelial cells
can prevent adhesion of these plaques by leukocytes, under obese
conditions LDL molecules are oxidized causing endothelial cells
to instead express adhesionmolecules and chemoattractants (65–
67). In response, macrophages take up oxidized LDL and are
transformed into foam cells (64, 65) which localize to the fatty
plaques within arteries and secrete factors that further promote
plaque formation (67, 68). Resulting plaques cause vessel walls
to thicken and stiffen, inhibiting blood flow (69). If the plaques
become large enough or thrombosis occurs, the inhibition of
blood flow can lead to ischemic conditions and cardiac events
including stroke, myocardial infarction (MI), or cardiac arrest
(70), all of which can be fatal.

EXERCISE TRAINING IMPROVES
CARDIOVASCULAR HEALTH

There are several risk factors leading to the development and
progression of CVD, but one of themost prominent is a sedentary
lifestyle (34, 35, 71). A sedentary lifestyle can be characterized by
both obesity and consistently low levels of physical activity. Thus,
lifestyle interventions that aim to increase physical activity and
decrease obesity are attractive therapeutic methods to combat
most non-congenital types of CVD.

Physical Activity Decreases
Cardiovascular Risk Factors
Regular physical exercise is associated with numerous health
benefits to reduce the progression and development of obesity,
T2D, and CVD (9–14). Several randomized clinical trials have
demonstrated that lifestyle interventions including moderate
exercise and a healthy diet improve cardiovascular health in at-
risk populations (72, 73). Individuals with metabolic syndrome
who participated in a 4 month program of either a diet (caloric
restriction) or exercise intervention had reduced adiposity,
decreased systolic, diastolic andmean arterial blood pressure, and
lower total and low-density lipoprotein (LDL) cholesterol lipid
profiles compared to the control group (12). Both the diet and
exercise intervention improve these cardiovascular outcomes to
a similar extent (74).

Several previous studies have investigated the effects of diet
and exercise, independently or in combination, on metabolic and
cardiovascular health and have determined that diet, exercise, or
a combination of diet and exercise induces weight loss, decreases
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visceral adiposity, lowers plasma triglycerides, plasma glucose,
HDL levels, and blood pressure, and improves VO2max (75–
78). Importantly, several of these beneficial effects of exercise
are evident independent of weight loss (79). Studies have shown
that exercise can improve metabolic and cardiovascular health
independent of changes in body weight, including improved
glucose homeostasis (80, 81), endothelial function (82), blood
pressure (83), and HDL levels (84, 85). These data indicate
exercise, independent of changes in body mass, results in
significant improvements in cardiovascular andmetabolic health.
Although a detailed analysis of the vast impact of diet on
cardiometabolic health is outside the scope of this review,
the importance of diet and exercise in tandem should not be
ignored, as many studies have shown that cardiometabolic health
is improved to a higher extent in response to a combined
diet and exercise programs compared to either intervention
alone (86–89).

Exercise has a similar effect on cardiovascular improvements
in lean and overweight normoglycemic subjects. In a 1
year study of non-obese individuals, a 16–20% increase in
energy expenditure (of any form of exercise) with no diet
intervention resulted in a 22.3% decrease in body fat mass
and reduced LDL cholesterol, total cholesterol/HDL ratio, and
C-reactive protein concentrations, all risk factors associated
with CVD (74). In overweight individuals, 7–9 months of
low-intensity exercise (walking ∼19 km per week at 40–
55% VO2peak) significantly increased cardiorespiratory fitness
compared to sedentary individuals (90). Together these data
indicate that exercise interventions decrease the risk or severity
of CVD in subjects who are lean, obese, or have type 2
diabetes (12, 74, 90).

Physical Activity Improves Cardiovascular
Function in Patients With CVD
Exercise is also an important therapeutic treatment for patients
who have cardiovascular diseases (14). A systematic review of 63
studies found that exercise-based cardiac rehabilitation improved
cardiovascular function (91). These studies consisted of various
forms of aerobic exercise at a range of intensities (from 50 to
95% VO2), over a multitude of time periods (1–47 months).
Overall, exercise significantly reduced CVD-related mortality,
decreased risk of MI, and improved quality of life (91). Another
study looked specifically in patients with atherosclerosis post-
revascularization surgery. Patients who underwent 60min of
exercise per day on a cycle ergometer for 4 weeks had an increase
blood flow reserve (29%) and improved endothelium-dependent
vasodilatation (10). A recent study provided personalized
aerobic exercise rehabilitation programs for patients who had
an acute myocardial infarction for 1 year after a coronary
intervention surgery (92). The patients who underwent the
exercise rehabilitation program had increased ejection fraction
(60.81 vs. 53% control group), increased exercise tolerance,
and reduced cardiovascular risk factors 6 months after starting
the exercise rehabilitation program (92). This improvement in
cardiovascular health in patients with atherosclerosis or post-MI
is likely the result of increased myocardial perfusion in response

to exercise, howevermore research is required to fully understand
these mechanisms (10).

One defining characteristic of heart failure is exercise
intolerance (93), which resulted in a prescription of bed rest
for these patients until the 1950s (94). However, it has now
been shown that a monitored rehabilitation program using
moderate intensity exercise is safe for heart failure patients,
and this has now become an important therapeutic for patients
with heart failure (95–97). Meta-analyses and systemic reviews
have shown that exercise training in heart failure patients
is associated with improved quality of life, reduced risk of
hospitalization and decreased rates of long-term mortality (93,
98–102). One study of heart failure patients found that aerobic
exercise (walking or cycling) at 60–70% of heart rate reserve 3–
5 times per week for over 3 years led to improved health and
overall quality of life (determined by a self-reported Kansas City
Cardiomyopathy Questionnaire, a 23-question disease-specific
questionnaire) (103). Other studies have shown that exercise-
based rehabilitation at a moderate intensity in heart failure
patients improves cardiorespiratory fitness and increases both
exercise endurance capacity and VO2max (12–31% increase)
(101, 104).

More recent studies have examined the effects of high-
intensity exercise on patients with heart failure. A recent study
found that 12 weeks of high intensity interval training (HIIT)
in heart failure patients (with reduced ejection fraction) was
well-tolerated and had similar benefits compared to patients
who underwent moderate continuous exercise (MCE) training,
including improved left ventricular remodeling and aerobic
capacity (105). A separate study found that 4 weeks of HIIT in
heart failure patients with preserved ejection fraction improved
VO2peak and reduced diastolic dysfunction compared to both
pre-training values and compared to the MCE group (78).
These studies indicate that both moderate and high intensity
exercise training improve cardiovascular function in heart failure
patients, likely related to increased endothelium-dependent
vasodilation (106) and improved aerobic capacity (78, 101, 105).

Mechanisms Regulating Exercise-Induced
Benefits on Cardiovascular Health
Multiple mechanisms mediate the benefits of regular physical
exercise on cardiovascular health (13, 14) (Figure 1). Exercise
represents a major challenge to whole-body homeostasis, and
provokes widespread changes in numerous cells, tissues, and
organs in response to the increased metabolic demand (121),
including adaptations to the cardiovascular system (13, 14).

Exercise induces adaptations in several cell types and
tissues throughout the body. Exercise increases mitochondrial
biogenesis in adipocytes (104, 111, 112), skeletal muscle myocytes
(113), and cardiomyocytes (14, 114, 115), increasing aerobic
respiration within these tissues. Additionally, exercise improves
oxygen delivery throughout the body through vasodilation and
angiogenesis (107–110), protecting against ischemia-reperfusion
injury in the heart (122, 123). Further, exercise causes a long-
term anti-inflammatory effect which is inversely related to the
increased inflammation typically seen in CVD and obesity
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FIGURE 1 | Exercise improves cardiovascular health by inducing changes in oxygen delivery, vasculature, peripheral tissues, and inflammation. (A) Exercise improves

oxygen delivery throughout the body through promotion of vasodilation and angiogenesis (107–110). (B) Exercise increases mitochondrial biogenesis in adipocytes

(104, 111, 112), skeletal muscle myotubes (113), and cardiomyocytes (14, 114, 115). (C) Exercise causes a long-term anti-inflammatory effect (which is inversely

related to the increased inflammation typically seen in CVD and obesity) (116). Myokines released from skeletal muscle during physical exercise partially mediate these

anti-inflammatory effects, and promote inter-tissue cross talk to mediate further cardiovascular benefits (117–120).

(116). Myokines released from skeletal muscle during physical
exercise partially mediate these anti-inflammatory effects, and
promote inter-tissue cross talk to mediate further cardiovascular
benefits (117–120).

Exercise Improves Mitochondrial
Biogenesis and Function
Many of the benefits sustained by exercise are due to
mitochondrial adaptations throughout the body. For example,
exercise improves long-term cardiorespiratory fitness (VO2)
by increasing the mitochondrial content and desaturation of
myoglobin in skeletal muscle tissue, improving the oxidative
capacity of skeletal muscle (113, 124, 125). The increase of
oxygen uptake and utilization by skeletal muscle (as indicated by
arteriovenous oxygen difference; a-vO2) in response to regular
exercise (126) is protective against a decrease in obesity-related
a-vO2, resulting in individuals to require more blood to receive
the same amount of oxygen (127).

Mitochondrial biogenesis is augmented in cardiomyocytes
in response to exercise (14, 114, 115, 128). This is likely
due to enhanced activation of AMP-activated protein kinase
(AMPK) and subsequent increase mitochondrial PGC-1α
expression (109, 114) Exercise also increases the ability of
mitochondria to oxidize fatty acids (the predominant substrate
utilized in healthy myocardium), thus increasing the capacity
for ATP synthesis (14, 129–133). These exercise-induced
enhancements of mitochondrial function are important in
preventing cardiovascular dysfunctions often caused by obesity.

Obesity is associated with defective mitochondrial biogenesis
in the myocardium (134) and reduced mitochondrial capacity
for oxidative phosphorylation and ATP synthesis (135, 136).

In heart failure, fatty acid uptake, and utilization is decreased
(137), likely causing the heart failure associated shift toward
glucose metabolism in order to preserve cardiovascular function
(130, 137, 138). However, in advanced heart failure, diabetes, or
obesity, myocardial insulin resistance may develop, impairing
glucose uptake and accelerating cardiovascular dysfunction
(139–141). Importantly, insulin sensitivity is improved in
response to regular exercise (142) which is vital in reducing
the risk of obesity-related insulin resistance. Insulin has also
been indicated to directly regulate mitochondrial metabolism
by promoting induction of OPA1, a GTPase that controls
mitochondrial cristae integrity, energetics and mitochondrial
DNA maintenance (143, 144), thus indicating another potential
mechanism of exercise-induced improvements in cardiovascular
health through mitochondrial function enhancement.

Reactive oxygen species (ROS) are physiological byproducts
of aerobic mitochondrial metabolism and while necessary for
initiating cellular repair or apoptosis, increased levels of ROS
are associated with inflammation and several forms of CVD
(145). While exercise increases the direct production of ROS by
mitochondria, the net cellular ROS load is reduced by exercise
due to increased action of antioxidant systems (146). Essentially,
exercise creates a system in which cells exhibit a “favorable”
response within low exposures of ROS, allowing antioxidant
systems to work effectively (147).

By increasing the ability of mitochondria to prevent oxidative
damage, exercise-induced modifications to mitochondria protect
against ischemia-reperfusion damage to the heart. During
ischemia, the absence of oxygen from the heart creates an
environment in which the return of oxygenated blood flow
leads to the induction of inflammation and oxidative stress
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rather than restoration of normal function (148). In contrast,
exercise-induced adaptations to cardiomyocyte mitochondria
dampen oxidative damage caused by ischemia-reperfusion,
resulting in reduced cardiac injury and decreasing the risk of
ischemia-related cardiac dysfunction or death (149–151).

Exercise Improves Vasculature and
Myocardial Perfusion
Exercise training induces vascular adaptations to several tissues
(107, 108). In the heart, the increase in vascularization
protects against vascular stress and reduces the likelihood of a
cardiac event (24–26). These adaptations are mediated through
increased expression of vascular endothelial nitric oxide synthase
(eNOS). Exercise increases the intensity of physiological shear
stress, inducing the shear stress-dependent activity of c-Src in
endothelial cells and increasing expression of eNOS (27, 152).
In the vascular endothelium, eNOS catalyzes the production of
nitric oxide (NO) which causes vasodilation, inhibits platelet
aggregation and prevents leukocyte adhesion to vessel walls, thus
reducing the onset of atherosclerosis, thrombosis, ischemia, or
other cardiac events (152, 153).

Exercise also induces angiogenesis, however the mechanisms
regulating this process are unclear. It has been hypothesized
that the increase in nitric oxide (NO) production after
exercise upregulates pro-angiogenic factors, particularly vascular
endothelial growth factor (VEGF) (154). One recent study
determined that male rats who underwent exercise training for
10 weeks after MI had increased Akt phosphorylation of eNOS,
and reactivation of cardiac VEGF pathway activity, resulting in
increased angiogenesis (155). While the mechanisms are not
completely defined, it is clear that exercise induces arteriogenesis,
increases angiogenesis and protects against vascular stress, thus
decreasing the possibility of a cardiac event (107–110, 122, 123).

Exercise Reduces Chronic Inflammation
Inflammation is a complex yet normal biological reaction to
damaging stimuli (156). Chronic inflammation is associated
with multiple diseases including obesity, T2D, and CVD (116,
157). Excess consumption of nutrients causes cells including
adipocytes (158), hepatocytes (159), islet cells (160), and skeletal
muscle cells (161) to activate the transcription factors nuclear
factor kappa-light-chain-enhancer of activated B cells (NF-κB)
and activator protein 1 (AP-1), increase expression of toll-
like receptor 4 (TLR4) (162, 163), and stimulate the release
of cytokines such as TNF-α, IL-6, IL-1β, and CCL2 (158,
164). The subsequent inflammation is modest in comparison
to inflammatory responses during infection or injury (165)
but remains as a chronic response to obesity termed “meta-
inflammation” (163). Exercise, however, results in a long-
term anti-inflammatory effect (116, 156). The exercise-induced
reduction of meta-inflammation during disease is hypothesized
by some to be related to downregulation of NF-κB (166–168), but
exercise also decreases monocyte accumulation and suppresses
the release of TNF-α and other pro-inflammatory adipokines,
creating an anti-inflammatory effect (169–172).

Excess immune activation caused by obesity is of particular
concern for vascular health, as activation of TLR4 causes

monocyte recruitment and conversion to foam cells, driving the
progression of atherosclerosis (67, 173). Exercise prevents the
development of atherosclerosis by reducing expression of TLRs
on monocytes and macrophages, which subsequently decreases
the availability of TLR4 ligands and inhibiting pro-inflammatory
cytokine production (170, 171, 174). Exercise also decreases pro-
inflammatory N-terminal pro b-type natriuretic (NT-proBNP)
and high-sensitivity C-reactive protein (hsCRP) within the heart,
both of which are predictors of heart failure in atherosclerosis
(175, 176).

Exercise Enhances Inter-tissue
Communication Through Release of
Myokines
Skeletal muscle can act as a secretory organ by stimulating the
production, secretion, and expression of specific myokines after
contraction (177–179). Myokines are chemical messengers that
function in an autocrine, paracrine, or endocrine manner to
influence crosstalk between different organs including skeletal
muscle, liver, and adipose tissue (180–185). They are of great
interest with regards to cardiovascular health because the well-
known protective actions of exercise on cardiovascular function
are at least partially mediated by increased secretion of myokines
(Figure 2) (195). Some myokines that impact cardiovascular
health include IL-6, myonectin, Fstl1, and NDNF (196).

Interleukin-6 (IL-6)
IL-6 was introduced as the first myokine over a decade ago
(197). Circulating levels of IL-6 are increased in response an
acute bout of aerobic exercise (198, 199) and can act in an
endocrine fashion to improve metabolic and cardiovascular
health. Exercise-induced elevated concentrations of IL-6 can
stimulate glucagon-like peptide-1 (GLP-1) secretion from
intestinal L cells and pancreatic α cells, leading to improvements
in insulin secretion and glycemia (188). IL-6 also increases
lipolysis and fatty acid oxidation in adipose tissue (189)
and can increase glucose uptake through stimulation of the
AMP-activated protein kinase (AMPK) signaling pathway (190,
191). With regard to cardiovascular function, IL-6 can reduce
inflammation by inhibiting tumor necrosis factor-α (TNF- α)
(186). This results in a protective effect on cardiovascular health
because TNF- α is involved in the formation of atherosclerosis,
development of heart failure, and subsequent complications,
including myocardial infarction (MI) (187). More investigation
is required to determine the direct effects of IL-6 action on
cardiovascular health.

Myonectin
Myonectin (or CTRP15) is abundantly expressed in skeletal
muscle and is increased in response to chronic aerobic exercise
(117). Importantly, injection of myonectin into wild-type mice
decreases circulating free fatty acids levels by increasing fatty
acid uptake in adipocytes and hepatocytes (117). Myonectin has
also been identified to have protective effects on cardiovascular
health; mice deficient in Myonectin had enhanced ischemic
injury in response to MI while systemic delivery of myonectin
attenuated ischemic injury (200). Further work is needed to
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FIGURE 2 | Exercise-induced myokines mediate organ cross-talk and improve cardiometabolic health. (A) The myokine IL-6 inhibits TNF-α (186), reducing

inflammation and protecting against the formation of atherosclerosis (187); stimulates GLP-1 secretion causing improved insulin secretion (188); increases lipolysis and

fatty acid oxidation in adipose tissue (189) and increases glucose uptake through the AMPK signaling pathway (190, 191). (B) Fstl1 decreases ischemic injury size

through activation of the Akt/AMPK pathway (activating eNOS and enhancing revascularization) (118, 119) and early fibroblast stimulation (which aids in repair after

ischemia-reperfusion) (192). (C) Myonectin (MyoN) increases fatty acid uptake in adipocytes and hepatocytes (117), and promotes protects against ischemic injury in

the heart, possibly through Akt activation (193). (D) NDNF improves survival after myocardial infarction (MI) by reducing apoptosis (120) through stimulation of the

Akt/AMPK/eNOS pathway (enhancing revascularization) (194).

determine whether these benefits are observed in response to an
increase in myonectin after exercise.

Follistatin-Like 1 (Fstl1)
Fstl1, also referred to as TSC-36, is a secreted glycoprotein that
belongs to the follistatin family of proteins and is upregulated
in skeletal muscle in response to exercise (194, 201, 202).
Expression of Fstl1 is also increased in ischemic and hypertrophic
hearts of mice and functions in a protective manner (118).
Systemic administration of Fstl1 in both mouse and swine
models led to reduced apoptosis, inflammation and injury size
following ischemia-reperfusion (118, 119). In vitro, treatment of
cultured cardiomyocytes with Fstl1 reduces apoptosis in response
to hypoxia-reoxygenation by activating Akt and AMPK (118,
119). One recent study demonstrated that Fstl1 stimulates early
fibroblast activation, which is required for acute repair and
protects the heart from rupture after ischemia-reperfusion (192).
While the exact role of an exercise-induced increase in Flst1 on
cardiovascular function has not been defined, these data indicate
that Fstl1 is increased in response to exercise, and an increase in
circulating Fstl1 functions to repair cardiovascular damage and
improve cardiovascular function (202).

Neuron-Derived Neurotrophic Factor (NDNF)
NDNF is a glycosylated protein secreted from the endothelial
cells of skeletal muscle (203). Although initially identified as a
neurotrophic factor expressed in mouse brain and spinal cord
(204), NDNF is also released from skeletal muscle in response

to exercise (203) and acts as a hypoxia-induced pro-angiogenic
factor that stimulates endothelial cell network formation through
activation of the Akt/eNOS signaling pathway (194). This pro-
angiogenic affect is an important component in the recovery
from MI; intramuscular administration of NDNF using an
adenoviral vector improved systolic function in a mouse model
after MI (120). Increased NDNF levels are also associated with
reducedmyocardial hypertrophy and apoptosis in post-MI hearts
(120). Another study showed that down-regulation of NDNF
by siRNA impairs recovery from ischemia-reperfusion injury
(205). Treatment of NDNF in cardiomyocytes also reduces
hypoxia-induced apoptosis via activation of the focal adhesion
kinase/Akt-dependent pathway (120). Additionally, increased
levels of NDNF released from skeletal muscle in response to
exercise enhance fatty acid oxidation through activation of
AMPK (203). These data demonstrate the importance of NDNF
as an endogenous ischemia- and exercise inducible factor that can
enhance revascularization and therefore have a cardiovascular
protective effect.

CONCLUSIONS

The rate of obesity-related cardiovascular disease is rapidly
increasing, and often associated with additional co-morbidities
including type 2 diabetes (3, 6, 8). It is clear that exercise
reduces cardiovascular risk factors, and this reduction in
risk factors is independent of changes to body weight or
incidence of type 2 diabetes (75–77, 79, 206, 207). Exercise
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is also an important therapeutic treatment for patients who
have cardiovascular diseases (14), further demonstrating
the protective and restorative properties of exercise. In
patients with CVD, exercise improved endothelium-dependent
vasodilatation, increased ejection fraction and exercise tolerance,
improved quality of life, and reduced CVD-related mortality
(10, 91, 92, 101, 103, 208–211). Exercise improves cardiovascular
health by several mechanisms including increased mitochondrial
biogenesis and fatty acid oxidation (14, 114, 115, 128–130)
dilation of blood vessels causing improved myocardial perfusion
(9–11), and reduction of inflammation providing protection
against the development of atherosclerosis (67, 116, 156).
Myokines released from skeletal muscle during exercise
also mediate systemic and cardiovascular health benefits
through an anti-inflammatory action, increased fatty acid
oxidation, increased glucose uptake, and improved insulin
secretion and sensitivity (117, 186, 193, 196, 212–214).
Importantly, several myokines (IL-6, Myonectin, Fstl1,
and NDNF) have also been shown to have cardiovascular
protective effects in response to ischemia-reperfusion
injury (117–120, 186, 187).

While it is clear that exercise is important, the mechanistic
pathways behind exercise-induced benefits on cardiovascular
health are still being identified. Further understanding of
the molecular mechanisms through which exercise improves
cardiovascular function will lead to the development of
therapeutics which can act in conjunction with exercise
programs, and for individuals whom are unable or unwilling to
exercise to amplify the beneficial effects of exercise.

Future research will investigate the effects of cardiac
specific proteins on cardiovascular health, expanding research
into the areas of system cross-talk will help delineate how

other tissues, skeletal muscle in particular, can mediate
cardiovascular improvements via myokine release. How these
myokines affect cardiovascular function, including adaptations to
mitochondrial activity, angiogenesis and inflammatory responses
will provide insight into new mechanisms for the beneficial
effects of exercise on cardiovascular function. Accordingly,
myokines may act as potential targets for heart disease
prevention and therapies. Recent studies have investigated
the use of gene therapies, including the use of adeno-
associated virus, on cardiovascular function. While these
therapies have not been fully optimized with remaining
issues in immunogenicity, efficacy and genotoxicity (215),
their development provides excitement for the potential
therapies focused on exercise-induced myokines that improve
cardiovascular function as a treatment for patients who are
unable, or perhaps unwilling, to exercise. Together these
data highlight the importance of exercise and exercise-related
therapies to both prevents the development of cardiovascular
disease and promotes recovery and improved health in patients
with CVD.
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