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Los Angeles, CA, United States

Cardiovascular diseases are the leading cause of death around the world. Despite the

larger number of genes and loci identified, the precise mechanisms by which these

genes influence risk of cardiovascular disease is not well understood. Recent advances

in the development and optimization of high-throughput technologies for the generation

of “omics data” have provided a deeper understanding of the processes and dynamic

interactions involved in human diseases. However, the integrative analysis of “omics” data

is not straightforward and represents several logistic and computational challenges. In

spite of these difficulties, several studies have successfully applied integrative genomics

approaches for the investigation of novel mechanisms and plasma biomarkers involved

in cardiovascular diseases. In this review, we summarized recent studies aimed to

understand the molecular framework of these diseases using multi-omics data from

mice and humans. We discuss examples of omics studies for cardiovascular diseases

focused on the integration of genomics, epigenomics, transcriptomics, and proteomics.

This review also describes current gaps in the study of complex diseases using

systems genetics approaches as well as potential limitations and future directions of this

emerging field.

Keywords: multi-omics, cardiovascular disease, heart disease, systems biology, data integration

INTRODUCTION

Coronary artery disease (CAD) is the most common cause of cardiovascular death (1). Studies
conducted in twins (2, 3) and in the general population have estimated a heritability of CAD
at ∼40–50% (4). In addition, genome-wide association studies (GWAS) have identified more than
150 genetic loci associated with CAD risk (5–18). Although GWAS studies have been successful
on identifying common DNA variation implicated in cardiovascular diseases, they provide little
or no molecular evidence of gene causality. In this context, the premise that rare genetic
variation could have stronger functional effects on disease manifestation still is arguable (19). This
realization has motivated researchers to integrate genetics studies with additional high-throughput
data designed to interrogate the transcriptome, epigenome, proteome, metabolome, etc.
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Recent studies have implemented the integration of multi-omics
data to accelerate the identification of novel mechanisms for
complex diseases and understand the dynamics of disease
manifestation (20–23). The relevance of integrating multi-omics
data and the current statistical tools available for data integration
have been reviewed in detail elsewhere (24–34). In this review, we
summarize the state-of-the-art of multi-omics studies conducted
in mice and humans to understand the molecular mechanisms
underlying cardiovascular diseases including CAD (35–47),
stroke (42, 48), heart failure (13, 49, 50), cardiac hypertrophy
(13, 51), aortic valve disease (52, 53), and heart regeneration
(54). We also discuss the gaps of multi-omics studies including
the utility of generating multi-omics data in animal models, the
importance of sex stratification on gene discovery, the inclusion
of diverse populations and the integration of metabolomics
and metagenomics with other omics platforms. Finally, we
discuss future directions of multi-omics approaches for
cardiovascular diseases and their importance in the era of
precision health.

MULTI-OMICS STUDIES FOR THE
INVESTIGATION OF CARDIOVASCULAR
DISEASE

The simultaneous integration of multi-omics approaches
including but not limited to genomics, epigenomics,
transcriptomics, proteomics, and metabolomics (Figure 1),
represents a powerful approach for understanding the
mechanisms connecting identified genetic variation to
cardiovascular diseases with gene causality, where many
sources of variability are integrated into statistical models
to identify key drivers and pathways that have the largest
contribution to the disease (25). Importantly, most of the
risk variants associated with CAD or other cardiovascular
diseases (5, 7, 14, 17, 18, 37, 55, 56) identified by GWAS
are located in noncoding regions of the genome (intronic or
intergenic), suggesting that these variants are likely to affect
cis or trans regulatory elements that bind transcription factors,
enhancers or promoters (57). Previous multi-omic studies for
CAD were mainly focused on the integration of GWAS data
with global transcriptomics using eQTL analysis. In recent
years, high-throughput technology have further facilitated the
integration of omics data for the identification of causal genes
and molecular mechanisms involved in the development of
cardiovascular events in mice (13, 37, 39, 41, 58) and humans
(36–39, 48) (Table 1).

SUCCESS STORIES OF MULTI-OMICS
STUDIES IN CARDIOVASCULAR DISEASES

Although there have been few studies integrating multi-
omics profiles for the investigation of mechanisms associated
with cardiovascular diseases, this approach has revealed the
potential function of previously identified GWAS loci and
respective mechanisms involved in these common diseases.

In this section, we summarize recent studies using multi-
omics approaches focusing on the integration of genomics,
epigenomics, transcriptomics, and proteomics.

Genomics, Transcriptomics, and
Epigenomics
There is a large body of literature linking genetic variation
with gene expression and/or epigenetic marks to understand
the potential mechanisms of identified DNA variants in disease
manifestation. One example on the integration of genomics
with transcriptomics is a study conducted to investigate the
role of the 9p21 locus (63), which was identified as one
of the most significant loci for CAD in previous GWAs
(64, 65). The association of CAD with this locus have been
consistently replicated in multiple studies (56, 66), although
the causal link of this locus remained unclear. This locus
contains several genes including CDKN2A (encoding cyclin
p14, p16), CDKN2B (encoding cyclin p15), MTAP (encoding
methylthioadenosine phosphorylase), and the long non-coding
RNA ANRIL. Integration of genetic and transcriptomic data led
to the identification of ANRIL as the top candidate causal gene
for CAD at the 9p21 region (63). Functional studies in cell lines
showed possible mechanisms that could explain the role of 9p21
in CAD (67, 68). For instance, a previous study showed that
alleles at the 9p21 locus were associated with different isoforms
of ANRIL (linear or circular isoforms), where linear transcripts
were associated with atherosclerosis and circular transcripts
were protective against atherosclerosis. This process is mediated
through the expression of multiple genes regulated in both, cis
and trans (69, 70). Moreover, a recent study showed that ANRIL
(DQ485454) is involved in endothelial cells functions important
to the development of CAD including monocyte adhesion to
endothelial cells, trans-endothelial monocyte migration, and
endothelial cell migration (71).

Another example is the investigation of the region of the
gene cluster CELSR2-PSRC1-MYBPHL-SORT at the 1p13.3 locus
associated with low-density lipoprotein cholesterol (LDL-C)
levels and cardiovascular risk (55, 72, 73). Incorporation of eQTL
analysis also showed that SNPs associated with a lower risk
of CAD in the 1p13.3 locus were associated with an increased
gene expression of SORT1, PSRC1, and CELSR2, with SORT1
displaying the largest expression change in the liver (73, 74).
This finding allowed the construction of new hypothesis to
elucidate the molecular mechanism of the 1p13.3 locus on CAD
development. Studies of SORT1 and PSRC1 overexpression in
mouse models of hyperlipidemia showed that, while PSCR1
overexpression had no metabolic effects, SORT1 overexpression
led to a significant reduction in plasma LDL-C and very low-
density lipoprotein (VLDL) particle levels by modulating hepatic
VLDL secretion, suggesting an important role of SORT1 in CAD
(74). Finally, a similar omics approach was applied to identify
genes associated with isoproterenol-induced hypertrophy and
heart failure in the Hybrid Mouse Diversity Panel (HMDP)
(13, 22, 23, 41, 75–83). The integration of genomic information
and cardiac transcriptome enabled the identification of several
candidate causal genes that determined the degree of cardiac
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FIGURE 1 | Multi-omics approach to identify the causal gene associated with LDL-C levels and CAD risk at the 1p13 locus. (A) GWAs meta-analysis showed several

SNPs at the 1p13 locus strongly associated with LDL-C levels (p = 1.0 × 10−170) and CAD risk. The 1p13 locus contains several genes (squares). The most

significantly associated haplotype for LDL-C comprise six SNPs in high linkage disequilibrium (LD) and is located between CELSR1 and PSR1 genes. (B) Liver eQTL

analysis showed the minor haplotype significantly associated with higher expression of CELSR1, PSR1, and SORT1 genes with SORT1 gene showed the largest

difference modified from Musunuru et al. (74). (C) By using luciferase assays and ENCODE database it was identified a common polymorphism at the 1p13 locus,

rs12740374 that alters the expression of the SORT1 gene in liver with the minor allele (T) creating a C/EBP (CCAAT/enhancer binding protein) transcription factor

binding site and the major allele (G) disrupting it. The C/EBP transcriptional factor regulates the expression of hepatic genes involved in metabolism. (D) Functional

approaches for SORT1 using small interfering RNA (siRNA) knockdown and viral overexpression in mouse liver showed that SORT1 results in significant changes in

plasma LDL-C and very low-density lipoprotein (VLDL) particle levels by modulating hepatic VLDL secretion.

hypertrophy. Specifically, Hes1 was predicted to be involved in
the progression of heart damage in cardiac hypertrophy (13).
This study showed that knocking down Hes1 in ventricular
myocytes resulted in a reduction of up to 90% hypertrophy,
confirming the role of Hes1 in cardiac hypertrophy (13). More
recently, several studies have demonstrated that epigenetic
modifications are associated with CAD risk (38, 42, 43, 47, 49,
59, 61, 62, 84, 85), and other CVD related risk factors (61,
62, 84). Epigenetic changes that have been investigated in the
context of CVD includeDNAmethylation (38, 43, 49), chromatin
organization (42), and microRNAs (47). In recent years, efforts
have been conducted to identify interactions between functional
non-coding active elements of the genome and enhancers,
defined as cis-acting DNA sequences that can increase the

transcription of genes (60, 61, 86). Several methods have been
developed for the identification of these interactions including,
chromatin immunoprecipitation followed by high-throughput
sequencing (ChIP-seq), chromatin conformation capture (3C,
HiC), and most recently, chromatin interaction paired-end
tagging (ChIA-PET). These technologies offer the advantage to
identify genome-wide protein-DNA interactions.

Adding Another Layer: Proteomics
The incorporation of protein expression profiles into the multi-
omics studies for CAD has been less explored compared with
multi-omics studies incorporating mRNA expression (43–45, 47,
51–54). This may be due to the costs and the highly specialized
expertise required for instrument operation, data acquisition,
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TABLE 1 | Studies using Multi-omics approaches for the investigation of cardiovascular diseases.

References Phenotypes Population of study Omic strategy Tissue Analysis strategy Main findings Genes involved Functional

confirmation

Santolini et al.

(13)

Isoproterenol-

induced cardiac

hypertrophy and

heart failure

Mice (HMDP) 100

genetically diverse

strains of mice

Genomics

(genomic diversity)

Transcriptomics

(microarray

platform Illumina)

H Correlation-based

method

Identification of 36 genes

associated with severity of

cardiac hypertrophy

Rffl, Wdr1, Nppb, Atp6v0a1, Ankrd1,

Eif4a1, Dtr (HB-EGF), Kcnip2,

Pcdhgc4, Hes1, 4930504E06Rik,

Akap9, 2310022B05Rik, Bclaf1,

Ttc13, Nipsnap3b, Gss, Klhl23,

Tspan17, Tnni2, Cab39l, Ptrf (Cavin-1),

Dedd, 9430041O17Rik, Fgf16, Ehd2,

Ppp1r9a, Kremen, Scara5, Zfp523,

Nfatc1, Corin, Prnpip1, Lrrc1,

AW549877, and Mkrn3

Knockdown of

Hes1 reduces

hypertrophy by

80–90% in

neonatal rat

ventricular

myocytes

Foroughi Asl

et al. (36)

CAD CAD patients from the

Stockholm

Atherosclerosis Gene

Expression (STAGE)

study

Genomics

[microarray platform,

Affymetrix]

Transcriptomics

(microarray

platform, Affymetrix)

B, AAW, MAM,

LIV, SKLM, SF,

VAF

Cis- and trans-gene

regulation by GWAS

risk loci across tissues

and CAD phenotypes

Identification of 3 master

regulators of CAD across 7

tissues

FLYWCH1, PSORSIC3 and G3BP1 Knockdown of

FLYWCH1,

PSORSIC3,

G3BP1 genes

affect

cholesterol-

ester

accumulation in

foam cells

Braenne et al.

(37)

CAD STAGE study

Mice (HMDP)

Genomics

(microarray platform,

Illumina)

Transcriptomics

(microarray

platform, Affymetrix)

LIV, SF, and M GWAS and eQTL

analysis

The majority of the GWAS loci

for CAD affect gene expression

(41%)

LIPA, TOM1L2, GALNT4, SERPINH1,

VAMP8, VAMP5, GGCX, PSCR1,

CELSR2, SORT1, DRG2, C17orf39,

MYO15A, TOM1L2, SREBF1, mir-224,

hsa-miR-130a-5p, hsa-miR-4722-5p,

hsa-miR-3198, hsa-miR-5197-3p,

miR-378a-5p

NA

Zhao et al.

(48)

Carotid plaque,

Stroke

Gene-expression

profiles of 11 publically

gene expression

datasets of carotid

plaque (n = 1,546).

GWA studies of

ischemic stroke from

the International Stroke

Genetics Consortium

Genomics

(microarray platform,

Illumina)

Transcriptomics

(microarray

platform, Affymetrix)

H Marker Set Enrichment

Analysis (co-expression

modules)

Seventeen co-expression

modules were enriched for

stroke. Enriched modules for

stroke we associated with

toll-like receptor pathway,

homocysteine metabolism and

phagosome formation and

maturation

F2, APOH, and AMBP NA

Lempiainen

et al. (46)

CAD GWAS studies and

exome array studies for

CAD.

eQTL STAGE study

Genomics

(microarray platform,

Illumina)

Transcriptomics

(microarray

platform, Affymetrix)

B, AAW, SKLM,

SF, VAF

Construction of

network modules for

tissue-specific

gene–protein

interactions affected by

genetic variance in

CAD risk loci

Identification of modules with

tissue-specific activity

associated with CAD. Most of

the modules were druggable.

The top modules were

implicated in extracellular matrix

organization and disassembly,

blood coagulation, or platelet

degranulation/activation

process

LDLR, APOE, SCARB1, NOS3,

CSNK2A1, HTRA1, LRP1, COL4A1,

FN1, RELA, TNF, SHC1, LRP1, LYN,

SYK, IGF1R, SHC1, IL6R, CXCR4,

LCAT, VLDLR, PLTP, APP, SCH1,

RELA, FN1, TNF, FN1, PCSK9, TRIB3,

CXCR4, and CCR1.

NA

(Continued)
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TABLE 1 | Continued

References Phenotypes Population of study Omic strategy Tissue Analysis strategy Main findings Genes involved Functional

confirmation

Franzen et al.

(38)

CAD Patients with CAD from

the STARNET study

Road Epigenomics

Consortium

Genomics

(microarray platform,

Illumina)

Transcriptomics

(mRNA sequencing,

Illumina)

Epigenomics

(microarray platform, Illumina)

B, MAM, AOR,

SF, VAF, SKLM,

LIV

Cis- and trans-gene

regulation across

different tissues and

CAD phenotypes

Tissue-specific gene-regulatory

effects of CAD-associated

SNPs identified by GWAS.

Identification of 26 key drivers

regulated in cis-trans by CAD

SNPs

FAM117B, LIPA, SARS, ATP5G1,

GGCX, CARF, ICA1L, SH2B3,

AC023271.1, RPL7P14, MAT2A,

EDNRA, LINC00310, SLC22A5,

NT5C2, FES, USP39, ADAMTS7,

FURIN, PSMA5, ABCG5, CNNM2,

SLC5A3, CACFD1, ZNF76, TCF21,

PSRC1, and PDGFD

NA

Liu et al. (59) CAD HCASMCs from 52

unrelated donors.

Genomics

Transcriptomics

Epigenomics (ATAC-seq)

HCASMCs Jointly eQTL modeling

and GWAS analyses

Identification of 5 genes that

modulate CAD risk via

HCASMCs.

SIPA1, TCF21, SMAD3,FES,PDGFRA NA

Haitjema et al.

(42)

CAD, Stroke GWAS of

METASTROKE and

CARDIoGRAMplusC4D

Genomics

(microarray platform,

Illumina)

Transcriptomics

(mRNA sequencing,

Illumina)

Chromatin Organization

(4C sequencing, Illumina)

M, CEC Association of eQTLs

with chromatin

interaction

Integrative analysis of gene

expression and chromatin

conformation to elucidate

mechanisms involved in

atherosclerosis

MIA3, PSRC1, SORT1, GGCX,

VAMP5, VAMP8, NBEAL1, WDR12,

MRAS, PHACTR1, TRIB1, CDKN2A,

CDKN2B, KIAA1462, LIPA, COL4A1,

COL4A2, PEMT, RASD1, SMG6,

UBE2Z, LDLR

NA

Lee et al. (60) H

Meder et al.

(49)

Heart failure 135 patients with

dilated cardiomyopathy

31 control subjects

Transcriptomics

(mRNA sequencing,

Illumina)

Epigenomics

(microarray platform, Illumina)

H, B Methylation-expression

quantitative trait locus

analysis

Integration of methylation and

gene expression data identified

enrichment of cell adhesion,

cardiac development, and

muscle function in HF

PLXNA2, RGS3, NPPA, NPPB, B9D1,

doublecortin-like kinase 2 and

neurotrimin

NA

Rask-

Andersen

et al. (61)

Hypertension

MI

Stroke

Thrombosis

Arrhythmia

729 subjects from the

Northern Sweden

Population Health

Study

Epigenomics

Illumina Infinium

450 BeadChip

B Integration of EWAS

and ChIA-PET data

Identification of 196 genes

associated with cardiac-related

traits

ESRRG, ST6GALNAC5,

RYR2, NMNAT2, EPHA2, TGFB2,

ABCG5, FMNL2, DYSF, MEIS1,

MECOM, WNT7A, SOX2, HAND2,

F2RL1, KCNN2, ME1*

NA

Dekkers K

et al. (62)

Blood lipids 3,296 subjects from

the Biobank Based

Integrative Omics

Study

Transcriptomics

Epigenomics

B Integration of EWAS

and gene expression

Identification of CpGs

associated with the expression

of lipids

CPT1A and SREBF1 (TGs)

DHCR24 (LDL-C)

ABCG1 (HDL-C)

NA

Howson

JMM, et al.

(43)

CAD 88,192 CAD cases

162,544 controls

including

CARDIoGRAMplusC4D

database

Genomics

(microarray platform,

Illumina, Affymetrix)

Transcriptomics

(microarray platform,

Illumina)

Epigenomics

(microarray platform,

Illumina)

Proteomics

(multiplexed aptamer based

affinity proteomics

platform, SomaLogic)

30

cells/tissues

including P, B,

LIV, SF, VAF, H,

and DT

Genomic

meta-analysis, eQTL,

pQTL. Enrichment

analysis (Ingenuity

Pathway Analysis

software)

Integrative analysis showed

enrichment of genes involved in

biological processes active in

the arterial wall as cellular

adhesion, leucocyte migration,

vascular smooth muscle cell

differentiation, coagulation,

inflammation, and

atherosclerosis

ATP1B1, NME7, CAMSAP2, DDX59,

LMOD1, TNS1, TBXAS1,

SERPINH1,SCARB1, TRIP4 HP,

PECAM1, PROCR

NA

(Continued)
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TABLE 1 | Continued

References Phenotypes Population of study Omic strategy Tissue Analysis strategy Main findings Genes involved Functional

confirmation

Yao C, et al.

(44)

CAD 6,861 subjects from

the Framingham Heart

Study and

CARDIoGRAMplusC4D

Genomics

(microarray platform,

Illumina, Affymetrix)

Transcriptomics

(microarray platform,

Affymetrix)

Proteomics

(multiplexed aptamer based

affinity proteomics

platform, Luminex)

P Multi-stage strategy of

proteomic analysis

pQTL analysis identified six

causal proteins for CHD

LPA, BCHE, PON1, MCAM, MPO,

Cystatin C

NA

Chen G, et al.

(45)

CAD, MI 7,242 participants from

the Framingham Heart

Study

Genomics

(microarray platform,

Illumina, Affymetrix)

Targeted proteomics

(bead-based multiplex

immunoassays, Luminex)

P Cis- and trans-protein

regulation by GWAS

CAD risk loci

Identification of 210 pQTLs for

12 proteins associated with

CAD and MI

CELSR2/SORT1 locus (granulin) NA

Fernandes,

M, et al. (47)

CAD Public databases of

human samples

Genomics

(microarray platform,

Illumina, Affymetrix)

Transcriptomics

(microarray platform,

Illumina)

Epigenomics

(microarray platform,

Illumina)

Proteomics

(LC-MS/MS,

MALDI-TOF/TOF, Thermo)

Metabolomics

(LC-MS/MS,

HPLC-MS, Thermo)

ART, B, H,

and LIV

Supervised

development of a

multi-omics integrative

molecular model

Integrative analysis of omics

studies showed enrichment of

lipid metabolism, extracellular

matrix remodeling,

inflammation, and cardiac

hypertrophy pathways

LCAT, FABP1, FASN, APOA1, FASN,

mir-1305 (PPARA and APOA1),

mir-1303 (FASN)

NA

Lau E, et al.

(51)

Cardiac

hypertrophy

Mice (inbred from six

diverse genetic

backgrounds)

Transcriptomics

(microarray platform,

Illumina)

Proteomics

(LC-MS/MS platform,

Thermo)

Proteome dynamics

H Clustering of

co-expression

Modules associated with heart

hypertrophy across the mouse

strains were involved in

biological processes including

cell adhesion, glycolytic

process, actin filament

organization, translation, and

sodium ion transport

ANXA2, ANXA5, COL4A2, LDHA, and

PGAM1

NA

Schlotter F,

et al. (52)

Calcific aortic

valve disease

25 human stenotic

aortic valves

Transcriptomics

(mRNA sequencing,

Illumina)

Proteomics

(unlabeled and label-based

tandem-mass–

tagged, Thermo)

AV Correlation of gene and

protein expression

differentiated between

calcification stage.

Protein-

protein interaction

Identification of novel regulatory

networks for CAVD

SOD3. MGP, SERPINA1, VWF, C8A,

C8B, SLPI, ELANE, HLA-DRA, and

CD14

NA

(Continued)
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TABLE 1 | Continued

References Phenotypes Population of study Omic strategy Tissue Analysis strategy Main findings Genes involved Functional

confirmation

Matic LP,

et al. (53)

Carotid atheroma Patients from the

Karolinska Biobank

Transcriptomics

(microarray platform,

Illumina, Affymetrix)

Proteomics

(LC-MS/MS

platform, Thermo)

CP, P Systems biology Identification of enriched

pathways for carotid atheroma

including cell proliferation, nitric

oxide signaling, lipoprotein, and

apoptotic particle clearance,

immune cell activation,

chemokine secretion, blood

coagulation, and extracellular

matrix disassembly were

dominant in plaques by

transcriptomics. Extracellular

matrix, heme-binding, and

platelet-derived growth factor

binding were the most enriched

functional categories by plaque

proteomics. Integrative analysis

showed BLVRB as the only

significant candidate enriched

both in plaques and plasma

BLVRB- HMOX1 In THP-1

macrophages

iron stimulated

an induction of

BLVRB and

HMOX1 was

observed.

Lalowski MM,

et al. (54)

Heart regeneration Mice Transcriptomics

(mRNA sequencing,

Illumina)

Proteomics (LC/MS

platform, Waters)

Metabolomics

(UPLC-MS/MS

platform, Metabolon)

H Systems biology The decrease of the heart

regeneration capacity was

associated with a transition from

fructose-induced glycolysis

under hypoxic conditions to

oxidative phosphorylation, with

an increase in oxidative stress,

suggesting a switch from

hyperplasia to hypertrophy

growth. Furthermore, they found

enrichment of the glycolytic

pathway, mTOR, plasmalogen

metabolism, methionine and

histidine metabolism, lipid

peroxidation, and sphingolipid

signaling as novel pathways

involved in heart regeneration

Cpt I and II, Acaa2, Acsl1, Ecl1,

Hadha, Hadhb, and Hsd17b10

NA

Suhre K, et al.

(35)

CAD KORA and TwinsUK

cohorts.

CARDIoGRAM.

Genomics

(microarray platform,

Illumina, Affymetrix)

Metabolomics

(HPLC/MS

platform, Metabolon)

B, P. Genotype-dependent

metabolic phenotypes

Some genetic loci that regulate

blood metabolite concentrations

were also associated with CAD

risk (NAT2, ABO, CPS1, NAT8,

ALPL, KLKB1). The biochemical

function of the associated

metabolic traits identified may

support a possible role in heart

disease.

NAT2 (1-methylxanthine/

4-acetamidobutanoate); ABO (ADpS

GEGDFXAEGGGVR/ADSGEGDFXA

EGGGVR); CPS1 (Glycine); NAT8

(N-acetylornithine); ALPL (ADpSGEGD

FXAEGGGVR/ DSGEGDFXAEGG

GVR); KLKB1 bradykinin des-arg(9).

NA

(Continued)
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TABLE 1 | Continued

References Phenotypes Population of study Omic strategy Tissue Analysis strategy Main findings Genes involved Functional

confirmation

Feng Q, et al.

(40)

CAD 59 CAD patients and

43 healthy controls

Metabolomics

(HPLC/MS platform,

Thermo)

Metagenomics

(DNA sequencing, Illumina)

P Association of

metabolites with

microbiome data

Some metabolites were

significantly associated with gut

microbiota and CAD risk

(GlcNAc-6-P, mannitol, and 15

plasma cholines). Moreover,

these identified metabolites

show correlations with species

of intestinal microbiota

(Clostridium sp. and

Streptococcus sp.).

LPCs, glycerophosphocholines,

L-Arginine, GlcNAc-6-P, and

paraxanthine

NA

Cui X, et al.

(50)

Chronic heart

failure

53 CHF patients and

41 controls

Metabolomics

(LC/MS platform, Thermo)

Metagenomics

(DNA sequencing, Illumina)

P Correlation between

changes in metabolites

and gut microbiome

associated with CHF

Enriched bacteria in CHF such

as Veillonella were inversely

correlated with cardiovascular

protective metabolites such as

niacin, cinnamic acid, and orotic

acid. Furthermore, they found a

positive correlation between the

high sphingosine 1-phosphate

levels and several CHF-enriched

bacteria such as Veillonella,

Coprobacillus, and

Streptococcus.

Veionella- niacin, cinnamic acid, and

orotic acid

Veillonella, Coprobacillus, and

Streptococcus-

sphingosine 1-phosphate

NA

Talukdar H,

et al. (39)

CAD GWAS of

CARDIoGRAMplusC4D

and DIAGRAM studies.

Mice (HMDP)

Genomics

(microarray platform,

Illumina, Affymetrix)

Transcriptomics

(microarray platform, Affymetrix)

AAW, SF, VAF,

LIV

Marker Set Enrichment

Analysis (co-expression

modules).

Cross-species

validation using the

HMDP

Identification of 30 CAD-causal

regulatory gene networks

interconnected in vascular and

metabolic tissues

POLR21, PQBP1, AIP, DRAP1,

MRPL28, PCBD1, ZNF91

Validation of

key divers in a

THP-1 foam

cells

Shu L, et al.

(41)

CAD

T2D

GWAS data of five

multi-ethnic studies

including AA, EA, and

HA. GWAS of

CARDIoGRAMplusC4D

and DIAGRAM studies.

Mice (HMDP)

Genomics

(microarray platform,

Illumina, Affymetrix)

Transcriptomics

(microarray platform and

mRNA sequencing,

Affymetrix, Illumina)

PheWAS

16 tissues

including B, SF,

ADR, ART, DT,

IS, HY, LIV, LY,

SKLM, TG, VE

Marker Set Enrichment

Analysis (co-expression

modules).

Cross-species

validation using

cardiometabolic traits

in the HMDP

Co-expression modules

between CAD and T2D showed

enrichment of pathways that

regulate the metabolism of

lipids, glucose, branched-chain

amino acids, oxidation,

extracellular matrix, immune

response, and neuronal system.

Identification of 15 key drivers

associated with both CAD and

T2D

ACAT2, ACLY, CAV1, COL6A2,

COX7A2, DBI, HMGCR, IDI1, IGF1,

MCAM, MEST, MSMO1, PCOLCE,

SPARC, and ZFP36

SiRNA

knockout and in

vivo knockout

of CAV1

resulted in

metabolic

perturbations

CAD, Cardiovascular Artery Disease; P, plasma; H, heart; B, blood; LIV, liver; AW, atherosclerotic arterial wall; MAM, atherosclerotic-lesion-free internal mammary artery; AOR, atherosclerotic aortic root; SF, subcutaneous fat; VAF,

visceral abdominal fat; SKLM, skeletal muscle; ADR, Adrenal gland; HCASMCs, Human coronary artery smooth muscle cells; ART, Artery; DT, Digestive tract; IS, Islet; HY, Hypothalamus LY, Lymphocyte; TG, Thyiroid gland; VE, Vascular

endothelium; AV, Aortic valve; M, monocytes; CEC, Coronary endothelial cells; CP, Carotid plaque.

*For complete list of genes see reference.
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and analysis of quantitative proteomics (87). Recently, Emilsson
et al. showed that co-expression protein modules associated with
complex diseases are highly regulated by cis and trans acting
genetic variants (88). Therefore, the integration of proteomic
data can add valuable information about the molecular processes
involved in the development of CAD. One of themore interesting
studies incorporating proteomic data in mice was conducted by
Lau et al. which in addition to genomic and proteomic data,
integrated protein dynamics (51). This study showed modules
involved in cell adhesion, glycolytic process, actin filament
organization, translation, and sodium ion transport associated
with heart hypertrophy (51). In another multi-omics study
conducted by Schlotter et al. for the identification of mechanisms
involved in calcified aortic valve disease (CAVD) (52), the
authors performed global transcriptomics and proteomics of
human stenotic valves to identified novel regulatory networks in
CAVD. Novel potential molecular drivers of CAVD development
and progression were identified including alkaline phosphatase,
apolipoprotein B, matrix metalloproteinase activation, and
mitogen-activated protein kinase. Moreover, this approach also
identified inflammation pathways as a significant contributor
to CVD (52). This study emphasizes the relevance of extensive
phenotypic characterization for multi-omics approaches to
define markers associated with disease subgroups and to design
more specific therapeutic strategies. In summary, these studies
showed that the knowledge generated from the integration of
genomics, epigenomics, transcriptomics, and proteomics could
provide initial insights into the identification of mechanisms for
cardiovascular diseases.

METABOLOMICS AND METAGENOMIC
STUDIES FOR THE STUDY OF CAD

Metabolomics and metagenomics represent additional layers
of complexity because they integrate the influences of the
intake, utilization and flux of nutrients. Moreover, these omics
data have proven to be useful tools for the identification of
biomarkers with potential clinical applicability (89). However,
studies integrating metabolomics, lipidomics, or metagenomics
data in the context of CAD are limited (Table 1). In a GWAS
study for metabolite levels conducted by Suhre et al. (35),
the authors found several loci including ABO, NAT2, CPS1,
NAT8, ALPL, KLKB1 genes associated with both metabolites
and a high risk of CAD (35). Interestingly, KLKB1 was
associated with bradykinin concentrations and with a higher
CAD risk. It is known that bradykinin is a potent endothelium-
dependent vasodilator that contributes to vasodilation and
hypotension (90). These findings suggest that the integration
of metabolomic data with other omic data can help to
identify novel biomarkers for CVD diagnosis. Regarding studies
integrating metagenomic data, there are only two studies for
CVD so far that integrate metabolomics and metagenomics
data (40, 50) (Table 1). These studies have shown species of
bacteria associated with risk of CAD and plasma metabolites.
For example, the bacteria Veillonella was associated with
chronic heart failure and was also inversely correlated with

known cardiovascular protective metabolites such as niacin,
cinnamic acid and orotic acid (50). Nevertheless, it should
be noted that these studies are only based on correlations
and do not make an integrative analysis of the data, which
reflects the complexity and the opportunity to develop novel
statistical approaches.

INTEGRATION OF MULTI-OMICS,
MULTI-ETHNIC, AND MULTI-SPECIES
MODELS OF DISEASE

It has been suggested that comparison of “omics” data
between human and animal models can provide an important
contribution to the understanding of the molecular mechanism
implicated in CAD (24). While studies in humans have greater
translational potential, studies using animal models can help
validate their biological relevance and to recapitulate the
findings in humans under different environmental stimulus
(22, 24, 78). This has been demonstrated in recent studies
integrating multi-omics approaches for the study of CAD in both
humans and animal models (39, 41). An example of a large-
scale integrative multi-omic approach is the study conducted
by Shu and colleagues that involved CAD and T2D GWAS
data of five multi-ethnic studies (41). In this study, genetic
and transcriptomic data of 16 relevant tissues for CAD were
included to construct co-regulation networks for CVD and
T2D (41). This network modeling allowed the identification of
pathways involved in lipid metabolism, glucose, and branched-
chain amino acids, along with process involved in oxidation,
extracellular matrix, immune response, and neuronal system in
CAD and T2D (41). Moreover, this strategy helped to dissect
the molecular mechanism of HMGCR, identified as a top key
driver for both CAD and T2D. Interestingly, the authors showed
that HMGCR was associated with CVD and T2D in opposite
directions, while genetic variants in HMGCR decrease CVD risk,
they increase T2D risk. These findings could have important
implications in the pharmacological treatment of both diseases.
The integration of existing omics-data from mice and humans
deposited in the cardiovascular disease database (C/VDdb),
including, microRNA, genomics, proteomics and metabolomics,
has recently been analyzed to identified novel drivers for
CVD. In an exercise to demonstrate the utility of the C/VD
database, integrative analysis of this “omics” studies showed
enrichment of lipid metabolism, extracellular matrix remodeling,
inflammation, and cardiac hypertrophy pathways. In addition,
regulatory mechanisms mediated through miRNAs associated
with the development of CAD were reported (47). Altogether,
these studies illustrate that high-level integration approaches
are powerful tools to extract robust biological signals across
molecular layers, phenotypes, tissue types, and even species
and to prioritize new therapeutic avenues for cardiometabolic
diseases. Of note, there is a limited overlap in the metabolic
regulators, co-expression modules and key driver gene identified
across different multi-omics studies for CVD, except for markers
involved in lipid metabolism which seem to be consistent
among different studies. This highlights the importance of lipid
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metabolism in the development of cardiovascular disorders (91–
93). Discrepancies of these findings could be explained by
differences in the statistical tools, phenotypic characterization,
ethnic origin, sex, and pathophysiological conditions (13, 23–25,
79, 94).

DATA INTEGRATION USING FREELY
AVAILABLE PUBLIC DATABASES

The access to big biologic public databases allows the integration
of genomic data with other “omics” including transcriptomics,
proteomics and metabolomics datasets through freely available
public databases such as GTEx (95) Encode (Encode project
c, Roadmap (Roadmap Epigenomics Consortium, 2015),
Snyderome (96) and bioRxiv, to mention a few. One of the main
advantages of these databases is that allow simultaneous analysis
of regulatory mechanism in different tissues, which are usually
difficult to obtain in genetic studies conducted in humans. In this
regard, the Genotype-Tissue Expression (GTEx) project is one of
the most complete gene expression datasets currently available.
This database was generated as a repository for identifying
genetic variants associated with changes in gene expression
(expression quantitative trait loci, eQTLs) and contains a broad
tissue collection obtained from deceased donors. The last
release v7, provides 11,688 transcriptomes from 714 individuals
and 53 tissues. In addition GTEx also includes pathology and
histology data as well as other characteristics as ethnicity, age,
and sex (95). Moreover, in order to increase information about
potential molecular mechanisms, the Enhancing GTEx (eGTEx)
project extends the GTEx project to combine gene expression
with DNase I hypersensitivity, ChIP–seq, DNA and RNA
methylation, ASE, protein expression, somatic mutation, and
telomere length assays (97). The Encyclopedia of DNA Elements
(ENCODE) project has identified and annotated a significant
amount of functional elements in the human and mice genome
through diverse approaches as DNA hypersensitivity, DNA
methylation, and immunoprecipitation (IP) assays of proteins
that interact with DNA and RNA. The last version includes over
35 high-throughput experimental methods in > 250 different
cell and tissue types, resulting in over 4,000 experiments. As
GTEx database, ENCODE also includes relevant information
about ethnicity, sex and age (98). Additional databases such
as Roadmap (99), which has an extensive collection of DNA
methylation, histone modifications, chromatin accessibility,
and small RNA transcripts. The utility of these databases has

been demonstrated in several studies for CAD, where their
integration with genetic data facilitated the identification
of regulatory mechanisms, potential targets and allows the
functional validation. One example, is the prediction of the
disruption of C/EBP binding site by the G allele of rs12740374
SNP using ENCODE data, functional studies showed that this
variant results in a lower transcription of the SORT1 gene in
liver and a higher VLDL-secretion, explaining the association of
the variant with LDL-C levels in genetic studies (Figure 1) (74).
Therefore, the integration of various data frameworks could be

highly successfully to understand the mechanisms implicated in
disease manifestation.

FUTURE DIRECTIONS

The identification of causal genes is a critical step toward
the translation of genetic loci into biologic processes.
The integration of “omic” strategies will accelerate the
identification, in a more precise way, of novel molecular
mechanisms implicated in CVD. This may eventually result
in the characterization of novel pathways and drug targets.
Although multi-omics approaches have been successfully
applied for the investigation of cardiovascular diseases, the
number of studies using this approach is still limited. These
studies have been primarily focused on the integration of
genomics, transcriptomics, epigenomics, and proteomics.
Given the potential of metabolomics, metatranscriptomics,
and metagenomics as tools for the identification of biomarkers
with potential clinical applicability, the integration of such data
will increase the understanding of cardiovascular diseases and
accelerate the identification of new diagnostics or therapeutic
targets (100). Finally, research efforts should be directed to
the application of multi-omics and the generation of big data
in more diverse populations and into the investigation of
sex-specific mechanisms.
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