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Introduction: Epicardial adipose tissue (EAT) has been linked to incidence and

recurrence of atrial fibrillation (AF), but the underlying mechanisms that mediate this

association remain unclear. Circulating microRNAs (miRNAs) contribute to the regulation

of gene expression in cardiovascular diseases, including AF. Thus, we sought to test the

hypothesis that circulating miRNAs relate to burden of EAT.

Methods: We examined the plasma miRNA profiles of 91 participants from the

miRhythm study, an ongoing study examining associations between miRNA and AF.

We quantified plasma expression of 86 unique miRNAs commonly expressed in

cardiomyocytes using quantitative reverse transcriptase polymerase chain reaction

(qPCR). From computed tomography, we used validated methods to quantify the EAT

area surrounding the left atrium (LA) and indexed it to body surface area (BSA) to calculate

indexed LA EAT (iLAEAT). Participants were divided into tertiles of iLAEAT to identify

associations with unique miRNAs. We performed logistic regression analyses adjusting

for factors associated with AF to examine relations between iLAEAT and miRNA. We

performed further bioinformatics analysis of miRNA predicted target genes to identify

potential molecular pathways are regulated by the miRNAs.

Results: The mean age of the participants was 59 ± 9, 35% were women, and 97%

were Caucasian. Participants in the highest tertile of iLAEAT were more likely to have

hypertension, heart failure, and thick posterior walls. In regression analyses, we found

that miRNAs 155-5p (p < 0.001) and 302a-3p (p < 0.001) were significantly associated

with iLAEAT in patients with AF. The predicted targets of the miRNAs identified were

implicated in the regulation of cardiac hypertrophy, adipogenesis, interleukin-8 (IL-8), and

nerve growth factor (NGF) signaling.

Conclusion: miRNA as well as EAT have previously been linked to AF. Our finding that

iLAEAT and miRNAs 155-5p and 302a-3p are associated suggest a possible direct link

to between these entities in the development and maintenance of AF. Further research

is needed to study causal relationships between these biomarkers.
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INTRODUCTION

Atrial fibrillation (AF) is the most prevalent heart rhythm
disorder in the world, with nearly 7 million Americans and 34
million individuals globally affected by it (1–4). It is associated
with heart failure, stroke, dementia, and poor quality of life
(1). Clinical risk prediction scores, including CHA2DS2VASC,
perform modestly well in predicting outcomes of AF but explain
little about the mechanisms behind disease onset and progression
and only explain a small proportion of observed risk. As such, it
is important to examine the molecular processes that drive AF, as
it may afford new biomarkers and therapeutic avenues.

MicroRNA (miRNA) is a class of small non-coding RNA
that are endogenously produced and have important regulatory
function. miRNAs have been implicated in structural and
electrical remodeling that are central to the development of
AF (5–9). In addition to their regulatory role, they serve
as biomarkers of disease states, as they exist in the plasma
with remarkable stability (10). Examining the plasma miRome
has provided unique insight into the molecular processes that
underlie the pathogenesis of AF.

Epicardial adipose tissue (EAT) is a layer of metabolically
active adipocytes that lie between the visceral pericardium and
the myocardium without fascial boundaries. Due to its close
proximity, this adipose depot has paracrine and vasocrine effects
on the myocardium and plays a critical role in the development
and maintenance of AF (11–13). Several groups, including ours,
have shown correlation between EAT and onset as well as
severity of AF. Our group has previously shown that an indexed
measure of EAT surrounding the left atrium, called iLAEAT, is
independently associated with the severity and recurrence of AF
after catheter ablation (14).

Although much is known about the interaction of these
biomarkers individually and their effects on the pathogenesis
of AF, the relationship between EAT and plasma miRNAs has
not been studied before. Thus, we hypothesized that increasing
levels of EAT measured on computed cardiac tomography
are associated with expression of circulating plasma miRNAs
and tested this using data from a prospectively recruiting,
contemporary cohort of AF patients.

METHODS

Study Population
As part of the miRhythm study examining links between
circulating miRNAs and AF, 584 participants were recruited
at the University of Massachusetts Medical Center (UMMC)
between April 2011 to July 2017 (15). Study protocol was
approved by the University ofMassachusetts Institutional Review
Board (IRB #14875). Written consent was obtained from all
participants to analyze pre-ablation miRNA expression. Of
these, 91 participants underwent cardiac CT scan for evaluation
of pulmonary venous anatomy prior to catheter ablation.
These participants were included in our analysis. Participant
information, including demographic, clinical, and baselines
laboratory data, were abstracted from the UMMC AF Treatment
Registry and hospital medical records by trained staff.

EAT Measurements
EAT was measured using validated methods (16). CT scans were
performed by technicians at UMMC with the Siemens Somatom
Definition Flash 128 dual source CT scanner. Unenhanced CT
scans were taken with a standardized FLASH protocol. Enhanced
scans were performed by injecting contrast dye and scanning
using sequential acquisition. Calculation of contrast timing was
done by giving the patient a 15mL contrast test bolus followed
by a 50mL saline injection at 5–6 mL/s. Acquisition times were
held constant between 1 and 2 s. EAT was measured by scanning
the heart in a four-chamber view, with the bottom of the heart in
front view. Locations of EAT around the right and left ventricles
and the left atrium were traced by identifying regions of CT scans
within a threshold of−43 Hounsfield units (HU) for unenhanced
CT scans and−15 HU for enhanced CT scans. The inter and
intra-observer reproducibility for EAT measurement was (r =

0.89 and 0.95), respectively. EAT was indexed to body surface
area and reported as iLAEAT.

Echocardiographic Measurements
Complete 2D echocardiograms were performed during
hospitalization. Linear dimensions and 2D volumes were
measured according to ASE guidelines (17). We quantified
left atrial (LA) volume), left ventricular end-diastolic (LVIDd)
and end-systolic (LVIDs) dimensions, posterior wall thickness
(PWT), interventricular septum thickness at end–diastole
(IVSTd), left ventricular (LV) mass and left atrial function index
(LAFI). LV mass was calculated by LV mass= 0.8 (1.04 [LVID+

PWTd + SWTd]3 – [LVID]3) + 0.6 g (18). LAFI was calculated
by the previously validated formula: LAFI = LA emptying
fraction∗LVOT-VTI / LAESVI (19).

MiRNA Identification and Profiling
Ten cc of venous blood was obtained for study purposes after
routine femoral venous sheath placement for catheter ablation
of AF. This blood was processed to isolate plasma and stored
as previously described (20). Briefly, blood was collected into
blood collection tubes with solution containing sodium citrate.
Samples were then centrifuged at 2,500 g for 22min at 4◦C.
Plasma was separated from the cells and frozen at 80◦C within
90min of draw.

For this study, we selected 86 plasma miRNAs based
on our RNAseq experiments done on 20 participants with
cardiovascular disease and 20 without cardiovascular disease
from the Framingham Heart Study Offspring 2 cohort (8th visit).
We selected top expressed miRNAs from these 40 individuals
for study in our RT-qPCR experiments (20). For all experiment,
RNA was extracted from 200 µL of plasma. All methods used for
cDNA synthesis, pre-amplification, and qPCR were performed
according to Qiagen miScript Microfluidics Handbook by
using Qiagen miScript Assays by the High-Throughput Gene
Expression & Biomarker Core Laboratory at the University of
Massachusetts Medical School (21). RNAs were isolated, and RT
reactions performed by miScript II RT kit (Cat. No: 218161,
Qiagen, Fredrick, MD, USA). miScript Microfluidics PreAMP
Kit (Cat. No: 331455, Qiagen, Fredrick, MD, USA) was used
for preamplification reactions. qPCR reactions were run using
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TABLE 1 | Characteristics of study patients divided into iLAEAT tertiles.

Variable Low iLAEAT Intermediate iLAEAT High iLAEAT P-value

(0.08–0.59) (0.6–1.079) (1.08–3.58)

Age (years) 55.9 ± 10.2 59.8 ± 9.8 61.2 ± 7.9 0.08**

Male sex n (%) 15 (50.0) 22 (71.0) 22 (73.3) 0.11

Body mass index (kg/m2) 30.7 ± 6.8 32 ± 5.9 31.5 ± 5.2 0.72

MEDICAL HISTORY

CHA2DS2-VASc score 1.7 ± 1.3 2.2 ± 1.5 2.6 ± 1.1 0.04*

Smoking n (% reporting current/ex-smoker) 7 (23.3) 11 (35.5) 12 (40.0) 0.36

Diabetes mellitus n (%) 3 (10.0) 9 (29.0) 6 (20.0) 0.18

Hypertension n (%) 16 (53.3) 24 (77.4) 26 (86.7) 0.01*

Heart failure n (%) 0 (0.0) 5 (16.1) 8 (26.7) 0.01*

Stroke/TIA n (%) 3 (10.0) 0 (0) 2 (6.7) 0.22

ELECTROCARDIOGRAPHIC CHARACTERISTICS

PR duration (msec)a 165.5 ± 39.3 185.7 ± 28.3 172.7 ± 27.1 0.09**

QRS Duration (msec)b 91.3 ± 20.9 94.3 ± 21.6 91 ± 15.7 0.81

QTc duration (msec)c 514 ± 140.9 481.4 ± 123.6 443.6 ± 68.8 0.1

ECHOCARDIOGRAPHIC CHARACTERISTICS

LVEF (%)d 58.2 ± 2.5 60 ± 5.6 54.4 ± 8.6 0.15

LA volume (mL) 78.0 ± 27.5 86.9 ± 20.1 83.3 ± 18.4 0.39

LVIDd (mm) mean (SD) 48.9 ± 6.0 50.5 ± 5.7 46.8 ± 5.8 0.19

LVIDs (mm) mean (SD) 31.5 ± 6.3 33.3 ± 5.6 30.1 ± 6.2 0.19

PWT (mm) mean (SD) 9.7 ± 1.6 10.3 ± 1.6 11.0 ± 1.7 0.01*

IVSTd (mm) mean (SD) 10.2 ± 2.3 10.5 ± 1.7 11.2 ± 1.9 0.2

LV mass (g) 172.1 ± 47.2 200.1 ± 64.1 186.9 ± 52.3 0.17

LABORATORY CHARACTERISTICS

BNP mean (pg/mL)e 106.8 ± 120.4 112.2 ± 140.0 116.0 ± 130.7 0.97

CRP mean (mg/mL)f 5.7 ± 9.7 4.4 ± 7.1 3.9 ± 3.2 0.71

BNP, B-Natriuretic Peptide; CRP, C-Reactive Protein; LA, Left Atrium; IVSTd, Interventricular Septum Thickness end-Diastole; LA AP diameter, Left Atrium Anterior-Posterior diameter;

LV, Left Ventricle; LVIDd, Left Ventricular Internal Dimension at end-Diastole; LVIDs, Left Ventricular Internal Dimension at end-Systole; PWT, Posterior Wall Thickness; TIA, Transient

Ischemic Attack.
aPR data were available for 79 of the participants (29 for low iLAEAT, 23 for intermediate iLAEAT, and 27 for high iLAEAT).
bQRS data were available for 80 of the participants (29 for low iLAEAT, 24 for intermediate iLAEAT, and 27 for high iLAEAT).
cQTc data were available for 73 of the participants (28 for low iLAEAT, 20 for intermediate iLAEAT, and 25 for high iLAEAT).
dEF data were available for 28 of the participants (11 for low iLAEAT, 9 for intermediate iLAEAT, and 8 for high iLAEAT).
eBNP data were available for 68 of the participants (27 for low iLAEAT, 21 for intermediate iLAEAT, and 20 for high iLAEAT).
fCRP data were available for 69 participants (28 for low iLAEAT, 22 for intermediate iLAEAT, and 19 for high iLAEAT).

*Denotes significance of p < 0.05 between tertiles.

**Denotes marginal significance of p < 0.1 between tertiles.

FIGURE 1 | iLAEAT and left atrial function. (A) iLAEAT is higher in participants with persistent AF. (B) LAFI tended to be lower in patients with higher iLAEAT tertile.

iLAEAT and LAFI data were available for 71 participants in our cohort (26 for low iLAEAT, 23 for intermediate iLAEAT, and 22 for high iLAEAT). Statistical analysis was

performed using unpaired student t-test for AF subtypes (*p < 0.05) and one-way ANOVA analysis for iLAEAT tertiles. Error bars represent SEM. Panel (A) is adapted

from work by Sanghai et al. (14).
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on BioMark System. BioMark System can detect single miRNA
copy at 26–27 Cq compare to conventional qPCR platforms
36–37 (22).

We normalized the volume of plasma did not employ further
methods of normalization in our dataset such as global mean
normalization. Global mean is not ideal with our modest sample
size and there are no reliable “housekeeper” gene to normalize
miRNAs in the plasma (20). We believe that our Ct values are
representative of relative concentrations. Differentially expressed
miRNAs were analyzed using miRDB, an online database that
captures miRNA and gene target interactions (23, 24). Network
and functional analyses were generated through the use of
Qiagen’s Ingenuity Pathway Analysis (25).

Statistical Analyses
Participants were divided into tertiles based upon iLAEAT values,
placing them into either low (iLAEAT 0.08–0.59, n = 30),
intermediate (iLAEAT 0.6–1.079, n= 31), or high (iLAEAT 1.08–
3.58, n= 30) groups. Tertiles were created to identify participants
at the greatest clinical risk for AF burden and recurrence.
We examined the relationship between demographic, clinical,
and echocardiographic variables and tertiles of iLAEAT using
either χ

2-squared tests for categorical variables or ANOVAs for
continuous variables. A p-value of 0.05 was used as the standard
significance threshold for statistical tests.

Pre-ablation miRNA expression was compared to iLAEAT
using a series of linear regression models. Covariates included in
the models were identified based upon characteristics that were
determined to be significantly different between iLAEAT tertiles
and included age, hypertension, heart failure, and posterior wall
thickness. Bonferroni correction was also applied to account for
multiple tests.

RESULTS

We present participant characteristics based upon iLAEAT
tertiles in Table 1. Participants almost exclusively identified as
Caucasian (97%), and the majority were male (65%). Participants
in the highest tertile of iLAEAT tended to be older, more likely
to have a history of hypertension (86.7%, p = 0.01) and heart
failure (26.7%, p= 0.01) and higher CHA2DS2-VASc scores (p=
0.04), thicker posterior walls (p= 0.01), and longer PR durations
than did participants in the lower two tertiles. Participants with
persistent AF have higher iLAEAT (Figure 1). As previously
observed, participants who have higher iLAEAT have a higher
likelihood of having persistent AF (14). Furthermore, there is a
non-significant association in decreasing LAFI with increasing
iLAEAT tertile (Figure 1).

Results from qPCR analysis of 86 miRNAs are included
in Supplemental Table 1. Analysis of miRNA expression level
as well as regression models run between iLAEAT and
Cq are illustrated in Table 2. After statistical correction
for multiple tests, two miRNAs (miR-155-5p and−302a-3p)
remained significantly associated with higher tertile of iLAEAT.
Although, we do not know the source, potential targets or the
mechanisms by which they are transported in the plasma, we
believe that plasma miRNAs are derived from cellular sources.

TABLE 2 | Associations between iLAEAT and miRNAs.

MiRNA ID b-coefficient 95% confidence

intervals

Cq p-value

miRNA-100-5p −0.09256 −0.16559 −0.019533 19.08 0.013684

miRNA-122-5p −0.07597 −0.12271 −0.029219 15.84 0.001798

miRNA-106b-5p −0.06955 −0.13335 −0.005748 16.17 0.03305

miRNA-155-5p 0.01584 0.00769 0.02399 12.98 0.00024

miRNA-184 0.01587 0.00351 0.028234 5.67 0.01282

miRNA-192-3p 0.01578 0.00133 0.030232 4.78 0.032953

miRNA-199a-5p 0.01335 0.00091 0.025786 16.68 0.035761

miRNA-19a-3p −0.08618 −0.15284 −0.019515 15.41 0.011985

miRNA-19a-5p 0.01881 0.007 0.030627 5.12 0.002358

miRNA-20a-5p −0.07285 −0.13287 −0.012837 15.14 0.018026

miRNA-21-5p −0.08711 −0.16238 −0.011839 15.01 0.02391

miRNA-218-5p 0.01153 0.00195 0.021105 10.47 0.01914

miRNA-221-3p −0.08579 −0.15833 −0.013249 17.57 0.021091

miRNA-29a-3p −0.07983 −0.14971 −0.00994 17.91 0.025736

miRNA-302a-3p 0.02139 0.01078 0.032 6.59 0.00016

miRNA-182-5p 0.0118 0.00287 0.020725 11.85 0.010358

miRNA-30a-3p 0.01191 0.00057 0.023248 15.27 0.039776

miRNA-320a −0.06294 −0.12578 −0.000095 17.76 0.049664

miRNA-196b-5p 0.01095 0.00053 0.021373 13.32 0.039796

miRNA-483-5p 0.01716 0.00639 0.027934 11.56 0.002286

miRNA-491-3p 0.01845 0.00683 0.030061 6.19 0.002422

miRNA-576-5p 0.0181 0.00557 0.030625 17.2 0.005243

miRNA-589-3p 0.01454 0.00373 0.025357 10.29 0.009236

miRNA-589-5p 0.01385 0.00123 0.026474 4.77 0.032054

miRNA-92a-3p −0.09228 −0.16487 −0.019692 13.8 0.013415

miRNA-30a-5p −0.083 −0.15325 −0.012747 17.27 0.021215

miRNA-26a-5p −0.07741 −0.13605 −0.018773 17.44 0.01036

miRNA-24-3p −0.05787 −0.11243 −0.003314 17.55 0.037918

miRNA-126-3p −0.08408 −0.14623 −0.021933 15.79 0.00868

miRNA-451a −0.08118 −0.14626 −0.016095 9.84 0.015193

let-7b-5p −0.0718 −0.13272 −0.0109 15.17 0.0215

let-7c-5p −0.06978 −0.12978 −0.0098 16.75 0.02324

Bolded miRNAs signify significant relationships after Bonferroni correction for p < 0.0005.

Cq, quantitation cycle; miRNA, microRNA.

Therefore, analysis of miRNA downstream targets and pathways
may reveal information regarding the molecular pathways that
are activated.

Thus, miRNAs downstream targets were analyzed using
miRDB, an online database that captures miRNA and gene
target interactions (23, 24). We do not have experimental data
to guide selection of relevant downstream targets, and thus we
included all predicted targets of miR-155-5p and−302a-3p in
our analysis. As miRNA are known to act in concert, we used
the combined targets of miR-155-5p and−302a-3p to perform
further analysis (26). Ingenuity Pathway Analysis (IPA) was
utilized to identify the molecular network and cellular toxicity
pathways regulated by predicted targets. Canonical pathways
were mapped to allow for visualization of the shared biological
pathways through the common genes. The pathways identified
and their associated genes are shown in Supplementary Table 2

and the top 10 significant pathways are displayed in Figure 2,
including adipogenesis, cardiac hypertrophy, nerve growth factor
(NGF), and IL-8 signaling.
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FIGURE 2 | A network analysis of predicted targets of miR-155-5p and miR-302a-3p as performed by Ingenuity Pathway Analysis. Nodes represents signaling

pathways, and lines are protein targets that are common between nodes. IL-8, Interleukin 8; NGF, Nerve Growth Factor; ERK5, Extracellular Related Kinase 5.

DISCUSSION

Due to its proximity to the autonomic ganglia, myocardium,
and coronary arteries, epicardial adipocytes can influence
neighboring cells via both paracrine and vasocrine signaling (27).
EAT has been implicated in the pathogenies of AF.We and others
demonstrated previously that EAT is associated with incident
and severity of AF (14, 28). miRNAs regulate the molecular
processes that trigger the structural and electrophysiological
remodeling key to the development of AF (6–9, 21). They are
associated with incident and recurrent AF, and their dynamic
nature after catheter ablation suggests that they are related
to the pathogenesis of AF (5, 15, 21). In this work, we
explore the relationship between iLAEAT and plasma miRNA
and hypothesize their potential role in creating a substrate
for AF.

We found two circulating miRNAs, miRNA 155-5p and

302a-3p, significantly associated with iLAEAT. Our pathway

analysis of the downstream targets of miRNAs 155-5p and

302a-3p implicated them in the regulation of adipogenesis,
cardiac hypertrophy, IL-8, and NGF signaling. In our cohort,
increased iLAEAT is associated with increased posterior wall
thickness. It is possible that miRNAs 155-5p and 302a-3p regulate
pathways to increase formation of adipocytes and myocyte
hypertrophy, as evident by echocardiographic phenotypes. It is
unclear to us why in our dataset there is a significant association
between iLAEAT and PWT and not IVSTd or LV mass. Perhaps,
iLAEAT is in close proximity to the posterior wall and thus

is able to exert mechanical stress or paracrine effects to cause
local hypertrophy. Alternatively, we may be under-powered to
examine the differences in IVSTd or LV mass in different tertiles
of iLAEAT.

EAT has been shown to secrete adipokines that influence
electrical remodeling (29). Our analysis predicts that miRNA
155-5p and 302a-3p regulate NGF signaling. There is much
evidence suggesting that autonomic remodeling plays an
important role in the pathogenesis of AF (30–32). The
ganglionated plexi (GP), consisting of autonomic ganglia,
are located on the epicardial surface of the heart and are
typically surrounded by EAT (Figure 3) (33). Adipocytes have
been shown to secrete NGF (34). NGF is up-regulated in
the presence of AF and can induce the hyperactivity of
GP (32, 35). In animal models, Yang et al. found that
high plasma NGF levels create atrial substrate for AF and
increase the incidence of inducible AF and its duration
(36). Our analysis of miRNAs 155-5p and 302a-3p suggests
a mechanism in which adipose tissue upregulates NGF to
potentiate AF.

Several studies from the Sata laboratory have shown that EAT
adipokine imbalance is a strongly linked of the development of
atherosclerosis in men (37–39). Similarly, adipokines released
from EAT may alter immune profiles the myocardium and
surrounding tissue to increase inflammation and vulnerability
to rhythm disturbances (40). Our results further support the
hypothesis that EAT is an inflammatory mediator that is involved
in adverse cardiac remodeling. EAT potentially contributes to
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FIGURE 3 | Proposed functions of miR-155-5p and miR-302a-3p. Increase EAT with concurrent upregulation of miR-155-5p and miR-302a-3p cause changes in

adipokine secretion such as IL-8 and NGF. These changes lead to autonomic dysregulation and increased inflammation, creating a substrate for atrial fibrillation.

inflammation and adverse structural remodeling via secretion
of inflammatory adipokines such as IL-8 (40, 41). Circulating
levels of IL-8 are associated to obesity-related factors such as
BMI, waist circumference, C-reactive protein, interleukin (IL) 6,
and tumor necrosis factor α (TNF-α) (42–44). IL-8, IL-6, IL-10,
and TNF-α concentrations have been shown to be independently
associated with AF (45). Patients with post-operative AF after
coronary artery bypass graft surgery have higher serum IL-
8 concentrations, indicating a role for inflammation in the
development of AF post-surgery (46). miRNAs 155-5p and 302a-
3p are implicated in the regulation of IL-8 and are associated with
increased EAT, suggesting that secretion of IL-8may be one of the
ways in which EAT promotes inflammation to create a substrate
for AF.

STRENGTHS AND LIMITATIONS

We leveraged data from a prospectively enrolled contemporary
cohort of participants with AF undergoing miRNA profiling,
echo phenotyping as well as EAT quantification using cardiac CT.
We analyzed plasma concentration levels of commonly expressed
miRNAs in cardiomyocytes of a cohort of 91 patients undergoing
CA and CT scans at UMMC.

Despite these study strengths, there are notable study
limitations. Notably, we do not know the sources of the
miRNAs, the mechanism by which they are found in the
blood or if they are indeed involved in a signaling cascade.
These biological questions are of great importance and will
provide mechanistic insight. Unfortunately, they are beyond
the scope of our study. Our modest sample size leaves for

the possibility of falsely negative associations. This may explain
why the negative association between iLAEAT and LAFI was
not statistically significant. There is also a lack of diversity in
patients sampled inhibits us from making generalizable claims.
Furthermore, the associations made in this study between
iLAEAT and miRNA expression are purely correlational. We
have not tested a causal relationship between miRNAs 155-5p,
302a-3p and iLAEAT. Further experimentation at the bench is
needed to elucidate the exact relationship between these miRNAs
and EAT.

CONCLUSION

In this study, we assessed the relationship between relative EAT
area and plasma miRNA expression in patients with AF. We
observed a significant, positive association between relative EAT
area and miRNAs 155-5p and 302a-3p. Future validation and
mechanistic studies are needed to improve our understanding of
the pathological role of EAT in AF development.
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