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A precise maintenance of sodium and fluid balance is an essential step in the regulation

of blood pressure and alterations of this balance may lead to the development of

hypertension. In recent years, several new advances were made in our understanding

of the interaction between sodium and blood pressure regulation. The first is the

discovery made possible with by new technology, such as 23Na-MRI, that sodium

can be stored non-osmotically in tissues including the skin and muscles particularly

when subjects are on a high sodium diet or have a reduced renal capacity to excrete

sodium. These observations prompted the refinement of the original model of regulation

of sodium balance from a two-compartment model comprising the extracellular fluid

within the intravascular and interstitial spaces to a three-compartment model that

includes the intracellular space of some tissues, most prominently the skin. In this new

model, the immune system plays a role, thereby supporting many previous studies

indicating that the immune system is a crucial co-contributor to the maintenance of

hypertension through pro-hypertensive effects in the kidney, vasculature, and brain.

Lastly, there is now evidence that sodium can affect the gut microbiome, and induce

pro-inflammatory and immune responses, which might contribute to the development of

salt-sensitive hypertension.

Keywords: skin, muscle, sweat, macrophages, immunity, microbiome

INTRODUCTION

Blood pressure (BP) may appear as a very simple physiological parameter defined as the product of
cardiac output and peripheral arterial resistance. Yet, the regulation of BP is a highly complex,
multi-facet interplay between renal, neural, cardiac, vascular, and endocrine factors under the
influence of genetic and environmental factors (1). Thus, the precise mechanism whereby
some individuals develop an elevated BP leading to hypertension remains undetermined in a
majority of them. The Mosaic Theory of hypertension described by Page in 1960 (2), which
included interactions among genetics, environment, adaptive, neural, mechanical, and hormonal
perturbations (sympathetic nervous system, renin-angiotensin-aldosterone system) as the basis of
hypertension, has been substantially modified in 2014 (1). It should probably be adapted further to
include new players like the skin, the muscles, the immune system and the microbiome (3). Indeed,
several important experimental and clinical studies have brought new insights into the possible role
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of these factors in the physiological regulation of BP. These
new regulatory mechanisms may also begin to explain crucial
involvement of the immune system in the development of
salt-sensitive forms of hypertension for which there is ample
evidence, but few postulated mechanisms (4, 5).

SODIUM AND BP REGULATION: FROM A
2- TO A 3-COMPARTMENT MODEL
INCLUDING THE SKIN AND MUSCLES

In 1972, Dahl reported the important correlation between
dietary salt consumption and hypertension (6) and Guyton
developed a complex model of BP regulation, in which the
kidney is the key regulator maintaining the balance between
sodium intake, extracellular volume and BP. He introduced the
important concept of pressure natriuresis as the mechanism
through which the kidney has the ability to preserve a normal BP
through its functions to regulate volume homeostasis and sodium
reabsorption (7, 8). His hypothesis consists essentially of a two-
compartment model with the extracellular fluid volume within
the intravascular space being in equilibrium with the interstitial
space volume. Sodium being the major cation in the extracellular
fluid, any change in urinary sodium excretion would lead to an
increase in the intravascular fluid volume, thereby increasing BP
and in some cases inducing hypertension.

The two-compartment model has been challenged in recent
years due to two major factors. First, the observation that on
a fixed sodium intake total-body Na+ content could exceed
weight gain, suggesting that sodium accumulated without
being osmotically active and that salt was stored in a third
body compartment (9). The second important factor was the
possibility of measuring tissue sodium content in muscles and
skin using 23Na-magnetic resonance imaging (MRI) (10).

THE NON-OSMOTIC STORAGE OF SALT IN
MUSCLES AND SKIN

The traditional physiological concept placing the kidney in the
very center of the regulation of extracellular volume and BP
homeostasis, has been challenged by the group of Titze et al.
after studying a group of astronauts simulating a long-term flight
to Mars (9). They had the opportunity to expose this group of
astronauts to different constant salt diets (6, 9, and 12 g/day)
during 35 days and to perform simultaneously daily 24 h urine
collections. To their great surprise, although salt intake was
fixed, they noticed large variations in urinary sodium excretion.
Changes in total-bodyNa+ exhibited rhythmic fluctuation within
a day, which were not associated with parallel changes in body
weight or extracellular water. However, the variations correlated
positively with urinary aldosterone excretion and inversely to
urinary cortisol. Toward the end of the observation period the
total-body Na+ content exceeded the weight gain, suggesting that
sodium had accumulated in another compartment without being
osmotically active (Figure 1).

Skeletal muscle and skin are the body’s major extracellular
fluid compartments. Animal studies revealed that sodium is

stored in the skin without concomitant water accumulation,
bound to negatively charged glycosaminoglycan (GAG) (11–
13). Skin GAG content can be directly measured by Western
blot analysis and the Na+ concentration in skin can be
determined by dry ashing and subsequent measurements of
cations with atomic absorption spectrometry. Experimentally,
the osmotically inactive skin Na+ can be mobilized by salt
deprivation, which induces a reduction of the negatively charged
skin glycosaminoglycan content (9). Furthermore, dietary salt
loading is associated with an increased synthesis of GAG
in the skin. These observations suggest that the storage of
osmotically inactive Na in the skin is an active process. Skin
sodium is stored directly under the keratinocyte layer in a
microenvironment that is hypertonic to plasma suggesting
sodium gradient formation in a kidney-like countercurrent
system (14). In fact, in contrast to the lymph, which is isosmotic
compared to the plasma, the skin is hyperosmotic and can control
its own electrolyte microenvironment by creating a urea gradient
from the epidermis to the dermis (15).

Interestingly, the sodium content in the interstitium seems to
be regulated by the immune system through local modulations
of the capillary lymphatic system in the skin (16). The skin
phagocytes sense the hypertonic accumulation of sodium in the
skin and this leads to an activation of the tonicity-responsive
enhancer-binding protein (TONEBP, also known as NFAT5)
and initiates the expression and secretion of VEGFC (vascular
endothelial growth factor C). This latter has a double effect to
increase the electrolyte clearance via cutaneous lymph vessels
and to stimulate eNOS expression in blood vessels. Thereby
immune cells exert a homeostatic and BP-regulatory control
of interstitial electrolyte clearance via TONEBP and VEGFC
and their respective impact on cutaneous lymphatic capillary
function. Interestingly, mononuclear phagocyte system cell
depletion or VEGF-C trapping blocks VEGF-C signaling and
leads to sodium accumulation in the skin and elevated BP in
response to high salt diet (17). Therefore, this new regulatory
mechanism may contribute to the development of salt-sensitive
forms of hypertension. Clinical studies have shown an age-
dependent increase in skin tissue Na+ content that is associated
with lower circulating VEGF-C levels, suggesting that VEGF-C
enhances skin electrolyte clearance (18). Keratinocytes regulate
skin perfusion by changing the balance between two hypoxia-
inducible factor (HIF) transcription factor isoforms, HIF-1α and
HIF-2α activity, and thereby regulate systemic arterial pressure
by nitric oxide (NO) -dependentmechanisms (19, 20). In patients
with essential hypertension, increased BP levels are associated
with reduced NO levels in the skin secondary to a reduction of
cutaneous HIF-1α and an increase of HIF-2α.

Elevated concentrations of sodium have also been
documented in skeletal muscles of animals with experimental
hypertension and in hypertensive patients (10, 21). As observed
in the skin, the sodium concentration measured in muscles was
higher than that measured in the plasma and could be mobilized
with specific treatments increasing salt elimination, such as
diuretics or dialysis.

This new concept of regulation of sodium balance and
extracellular volumes not only through the kidney but also skin
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FIGURE 1 | Schematic representation of the three-compartment model. In addition to the intravascular and interstitial compartments, sodium is stored in tissues,

such as the skin or muscles. The sodium stored in this third compartment is not osmotically active and can be either mobilized to return to the intravascular

compartment through lymphatic vessels or excreted through the sweat.

and muscles, might question the utility of 24 h urine collections
to estimate salt intake. In fact, due the biologic variability of the
urinary excretion of sodium, a 3 g difference in salt intake per
day is detected correctly through a 24 h urine collection in only
50% in a stringently controlled environment (22). For this reason,
single 24 h urine collections at intakes ranging from 6 to 12 g
salt per day are probably not suitable to detect a 3 g difference
in individual salt intake and repeated collections should be done
to assess sodium intake more accurately.

INFORMATION FROM NEW METHODS TO
MEASURE SODIUM IN TISSUE

The development of new technologies to measure sodium
content in tissues has been an important adjunct to studies
supporting the hypothesis of a 3-compartment model. Today
sodium content in tissues can be visualized and quantified
directly in skeletal muscles and skin through the development
of 23Na-magnetic resonance imaging (MRI). By coupling 23Na-
MRI with traditional 1H-MRI, it is possible to demonstrate
that sodium accumulates in the skin and muscles without
concomitant water accumulation (23). In a cohort of 56
healthy subjects and 57 patients with essential hypertension,
23Na-MRI measurements showed that patients with refractory
hypertension had an increased tissue Na+ content compared
with normotensive controls suggesting that sodium storage in
the skin is associated with hypertension (23). In addition, 23Na-
MRI studies have also revealed that the sodium content in the
skin and muscles increases with age, an observation going along
with the higher prevalence of hypertension in elderly subjects.
Men appear to have a higher sodium content in the skin than
women andwomen have highermuscle sodium than skin sodium

(24). Interestingly, in case of primary hyperaldosteronism, the
sodium content in skin and muscles is also elevated and is
reduced by adrenalectomy or the prescription of an aldosterone
antagonist (10). High muscle sodium concentrations have also
been measured in patients with type 2 diabetes on maintenance
dialysis (25). In these patients, skin sodium correlates with
left ventricular hypertrophy and insulin resistance and can be
reduced during a dialysis session (25, 26).

DOES SWEAT HAVE A ROLE IN THE
REGULATION OF SODIUM BALANCE?

Sweat- the major product of the skin- may also be involved in
the control of sodium balance in humans. The major function
of sweat is the regulation of body temperature, but sweat glands
are also able to secrete water and salt through several channels
(27). Astonishingly, the sweat gland has some similarity with the
convoluted tubules of the kidney as cells of the secretory coil of
sweat glands contain ion channels, pumps and co-transporters,
such as the Na+-K+-2Cl− cotransporter (NKCC1), Na+-K+-
ATPase, Na+-H+ exchanger (NHE1), aquaporine-5 (AQP5) (28).
The sweat duct itself expresses epithelial sodium channel (ENaC),
Na+-K+-ATPase and NHE1 participating in the reabsorption of
ions. In particular, ENaC is expressed strongly in all epidermal
layers and is located on the apical side of membranes in eccrine
glands and ducts, reabsorbingNa+ ions (29). In a detailed sodium
balance study performed by Heer et al. in healthy volunteers on
salt intakes of about 3, 12, and 32 g/day, skin losses of sodium
and chloride by sweat were reported to be negligible (mean
sweat sodium excretion varied between 2.88 ± 0.35 and 4.92
± 0.28 mmol/day) and were independent from salt intake (30).
However, the low number of participants and the cumbersome
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method of sweat collection (volunteers wore an all-body cotton
suit for 24 h) limited the interpretation of this study as only 3
subjects underwent sweat testing. Sports sciences provide the
most recent data about sweat electrolytes and their excretion
in humans (excluding cystic fibrosis). Thus, in a study of 157
marathon runners, 20% presented sweat salt losses equivalent to
3.5 ± 0.6 g of NaCl per liter of sweat which means that during a
race time of 4 h and with a sweat rate of 1 L/h, salt losses can be
as high as 14 g of NaCl (31).

In a cross-over design, we have recently assessed muscle
sodium content by 23Na-MRI in 38 healthy normotensive
volunteers after 5 days of high-sodium diet (HS) (6 g of salt
added to their normal diet) and 5 days of a low-sodium
diet (LS). In a sub-group of 18 participants we conducted
quantitative pilocarpine iontophoretic sweat collections and
measured the sodium concentration in sweat (32). Under
HS conditions, urinary sodium excretion, muscle and sweat
sodium concentrations all increased significantly. Sweat sodium
concentrations correlated positively with salt intake as estimated
by 24 h urine sodium excretion. Plasma aldosterone and
plasma renin activity were negatively associated with both
muscle and sweat sodium content. These results indicate that
sweat sodium excretion are significantly higher on a high
salt intake in healthy subjects and suggest that sweat may
also play a role in regulating sodium balance in humans.
These findings extend those from studies of the expression of
the mineralocorticoid receptor (MR) and 11β-hydroxysteroid
dehydrogenase in sweat gland epithelium, as well as the
relationship between MR expression, salt intake and aldosterone
levels (33–37).

SALT AND THE IMMUNE SYSTEM IN
HYPERTENSION

The three-compartment model described above involved the
immune system through immune cells including macrophages
as important components leading to sodium storage or release
from tissues where it has accumulated. Of course, this model
does not exclude the central role of the kidney but add another
regulatory system in the model, in which the immune system is
involved. Today, most recent hypotheses on the pathophysiology
of hypertension consistently include the immune system as
a crucial co-contributor to the development of hypertension
through pro-hypertensive effects in the kidney, vasculature, and
brain (38–40) (Figure 2). Actually, the first time that the immune
system was implicated in the process of hypertension generation
was in 1954 by RH Heptinstall (41), who reported data on
renal biopsies of hypertensive patients who showed early and
scattered arteriolar hyalinization and intimal thickening of some
small arteries. He also reported an accumulation of immune cells
in kidney biopsies of hypertensive patient (41). The immune
system is divided in two functional compartments: the innate
immune system, which reacts rapidly, but is rather non-specific,
with responses to a wide array of pathogens, and the adaptive
immune system, which initiates slower but develops antigen-
specific responses. Both components have been implicated as

potential contributors to the development of various forms of
hypertension, but mainly salt-sensitive hypertension (38, 42–45).

In experimental models, salt-sensitive hypertension is
associated with increased renal expression of pro-inflammatory
molecules including cytokines, chemokines and adhesion
molecules (46–48). In addition, the inflammasome appears
to contribute to the development of hypertension in renin-
dependent and independent hypertension (49, 50) under
the effect of salt, angiotensin II but also the sympathetic
nervous system and endothelin (51). Four inflammasomes
have been identified so far and the NLR family, pyrin domain-
containing 3 (Nlrp3) inflammasome has been the most fully
characterized. It forms a multi-protein complex with apoptosis-
associated speck-like protein containing a caspase recruitment
domain (Asc) and the protease Caspase-1, which activates the
cytokines pro-interleukin-1β (IL-1β) and pro-IL-18. Conversely,
pharmacological inhibition of inflammasome has been shown to
lower BP in salt-sensitive hypertension (52, 53).

Several studies have also shown that angiotensin II has pro-
inflammatory effects and can increase macrophage infiltration
in the renal interstitium leading to a sustained elevation
of BP, interstitial fibrosis, and preglomerular hypertrophy
(53). Angiotensin II stimulates redoxi-sensitive-signaling
cascades leading to mitogen activated protein kinase activation,
activation of the p38 mitogen, an activated protein kinase,
and increased oxidative stress (54, 55). This cascade stimulates
the inflammatory mediators NFkB and activator protein-1
and further leads to production of chemokines involved in
macrophage recruitment and prothrombotic agents, such as
plasminogen activator inhibitor-1 and adhesion molecules
(41, 42). In this context, T lymphocytes may have an important
role to mediate the angiotensin II-induced hypertension (43).
Thus, it has been postulated that the angiotensin II-induced
organ damages generate neo-antigens from damaged cells
leading to an immune reaction within the renal tissue and to
the production of pro-inflammatory cytokines, such as TNF-α
and IL-1β from infiltrating mononuclear cells. These cytokines
may participate in the maintenance of hypertension and salt
sensitivity through their effects on renal sodium handling (55).
However, angiotensin II has also major effects on the vasculature.
Thus, activation of AT1 receptors can cause an hemodynamic
injury (52) that leads to further recruitment of monocytes into
key effector tissues in hypertension, including the heart, the
vascular bed and the kidney (48, 53, 54). Similarly, activation of
the MR on cardiac and vascular cells, as well as immune cells,
also increases immune cell-mediated effects, which in excess
produce hypertension and deleterious cardiovascular and renal
remodeling (56–58). Figure 2 summarizes the direct and indirect
mechanisms whereby sodium, aldosterone and angiotensin II
can activate the immune system in tissues.

Conversely, some studies showed that immune suppression
lowered BP in rats with renal infarction and could disrupt the
evolution of salt-sensitive hypertension (47, 48). Thus, the group
of Rodriguez showed that during experimental hypertension,
T cells infiltrate the kidney leading to the disruption of the
nephron’s capacity to excrete sodium and water and results in the
elevation of BP (36). Inhibition of infiltration of T cells, using a
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FIGURE 2 | Schematic representation on how pro-hypertensive stimuli, such as aldosterone, angiotensin II or sodium can stimulate the immune system either directly

or indirectly to increase blood pressure (BP). The indirect pathway involve the development of tissue lesions in the kidneys and vasculature. Damaged cells from these

tissues generate cell particles acting as neo-antigens. These latter may induce an immune response with an activation of lymphocytes and the production of cytokines

that will increase blood pressure.

lymphocyte-specific inhibitor (mycophenolate mofetil) decreases
the renal infiltration of T cells, and improves BP and decreases
kidney damage (36). In addition, the transfer of lymph node cells
from hypertensive to normotensive rats induces hypertension
in the recipients, and angiotensin II infusion causes vascular
inflammation (44–46).

The three most important cytokines that play a crucial role

are IL-17α, produced from Th17 cells, IFNγ and TNFα. IL-17-α

or IFN deficiency can limit expression of sodium transporters in
the proximal tubule, an effect which can facilitate the excretion
of saline load (49). Experiments in Dahl salt-sensitive rats
and a subset of hypertensive humans showed increased BP,
albuminuria, and infiltration of macrophages and T cells in the
kidneys in response to increased dietary sodium (49). Moreover,
pro-inflammatorymacrophage cytokines, TNF-α and IL-1β, both
independently influence renal sodium handling in response to
activation of the renin-angiotensin system (59). Experiments

with TNF-deficient animals have shown that TNF-α potentiates
renal sodium reabsorption in the kidney’s thick ascending limb
via nitric oxide synthase 3 (NOS3) suppression (51). According
to Rucker and his colleagues (55) IL-1 receptor activation
decreases the number of NO-expressing macrophages in the
kidney and as consequence reduces inhibition of the NKCC2
sodium transporter byNO, thus favoring renal salt retention (59).

IS SALT THE TRIGGERING FACTOR FOR
THE PRO-INFLAMMATORY CASCADE?

One hypothesis linking sodium to the inflammatory pathway is
that high salt leads to CD4+T cell proliferation and produces
IL-17 related cytokines (59). These latter induce the secretion
of IL-23, IL-6 and IL1β, and lead to IL17 production from T
cells (59). This could result in renal and vascular inflammation,
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an impaired renal function, a shift of the pressure/natriuresis
relationship and the development of hypertension (59). Thus,
Zhang et al. showed that mouse and human macrophages
cultured in a high salt environment producedmore inflammatory
and less anti-inflammatory cytokines than those cultured in
normal salt (59). Besides, macrophages stimulated with IL-4
and IL-13 become less anti-inflammatory in the presence of a
high-salt environment. In vitro, high salt has also been reported
to alter protein phosphorylation, an effect, which could affect
several important cellular functions and maybe inflammatory
pathways (60). Interestingly, in a post-hoc analysis of the subjects
having participated in the MARS project discussed previously,
Yi et al. observed an increase in inflammatory cytokines (IL-
6 and IL-23) and a decrease in the anti-inflammatory cytokine
IL-10 in the plasma of subjects when on the highest salt intake
when compared to the lower salt period (61). This observation
suggests that in healthy humans a high-salt diet has a potential to
induce an excessive immune response. Therefore, sodium intake
itself could be one of the important triggering factor leading to
inflammation in hypertension.

SALT, HYPERTENSION, IMMUNITY, AND
THE GUT MICROBIOME

In the last decade, the gut microbiota has been associated
with the development of several diseases including cardio-
metabolic diseases and it has been the subject of an intensive
research (62, 63). Considering the impact of a high-salt intake
on pro-inflammatory immune cells and the development of
hypertension, it appeared logical to investigate the role of salt
intake on the composition of the gut microbiota and the possible
implication of this latter in the pathogenesis of hypertension.
Recently, Wilck et al. (64) described a novel interaction between
a high-salt intake and T cell phenotype which is mediated
by changes in the composition of the gut microbiome with a
depletion of Lactobacillus species and reduced generation of
bacterial indoles (Figure 3) (65). Wyatt and Crowley (65) have
assessed the role of Lactobacillus treatment on the development
of salt-sensitive hypertension in mice. In these studies, mice on
a high salt diet had an elevated BP, but this latter could be
reduced with a concomitant treatment with Lactobacillus. When

FIGURE 3 | Schematic representation of the impact of a high sodium intake on the gut microbiome. The sodium-induced changes in gut microbiota lead to the

production of interleukin-17 (IL-17) inducing an endothelial dysfunction and an increase in renal sodium reabsorption thereby increasing blood pressure.
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TABLE 1 | Major experimental and clinical observations having modified our

understanding of the regulation of sodium balance and the role of sodium in the

genesis of some forms of hypertension.

Observations References

1. Despite a fixed salt intake, there are large

variations in 24 h urinary sodium excretion with

rhythmic fluctuations in total-body Na+ within

a day

(9)

2. Sodium is stored non-osmotically in tissues like

skin and muscles

(12, 13)

3. Sodium content in skin and muscles can be

measured by 23Na-magnetic resonance in

animals and humans

(10, 22, 23)

4. Skin and muscle sodium are elevated in elderly,

in hypertensive patients and in patients with type

2 diabetes on dialysis. Diuretics, adrenalectomy

and dialysis reduce tissue sodium.

(10, 23–25)

5. Sweat participates in the regulation of

sodium excretion

(32)

6. The immune system participates in the

development and maintenance of salt-sensitive

forms of hypertension

(38, 40, 45, 47, 49, 55)

7. A high sodium intake modifies the intestinal

microbiota and may increase blood pressure via

T-helper lymphocytes 17 and interleukin 17.

(64–68)

analyzing the T lymphocyte population in intestinal and splenic
tissue, they found an increased frequency of Th17 lymphocytes
in mice on a high-salt diet. Treatment with Lactobacillus enabled
to reduce the number of Th17 lymphocytes in these tissues
in animals on a high salt intake. Thus, a diet rich in sodium
appears to affect intestinal microbiota, increasing intestinal Th17
cells. Together, these studies showed that modification of the gut
microbiome by the excessive consumption of sodium increases
the systemic inflammatory milieu (66). Moreover, analyzes of the
gut microbiota in animals and humans with hypertension show
similar modifications (65, 67–69).

CONCLUSIONS

Several new aspects of the role of sodium in the regulation of
sodium balance and in the development of hypertension have
been revealed in the last 10 years as summarized inTable 1. There

is now evidence that sodium contributes to the pathogenesis of
hypertension through an effect on the immune system. Sodium
modulates the immune cell function and a high salt micro-
environment in tissues can cause local inflammation, tissue
damages and in some cases hypertension. Sodium is stored in a
non-osmotically active manner in the skin and muscles and may
be excreted through the sweat in response to a high salt diet, a
newly described mechanism involving tissue macrophages. This
storage may actually protect from an excessive increase in BP,
excluding sodium from the intravascular space.

While small changes in plasma concentration of sodium
are unlikely to induce inflammation, the hypothesis that larger
and/or chronic increases in sodium trigger an inflammatory
response is gaining more ground. However, as of today, one
does not know precisely in which other tissues, besides skin and
muscles, a high-salt environment may activate immune cells.
Wiig et al. reported slight elevations in sodium concentrations
in lymph capillaries in hypertensive rats (16). Another possible
mechanism whereby salt would stimulate the immune system is
that circulating antigen-presenting cells may be activated by high
concentrations of sodium in peripheral tissues before turning
into lymphoid tissues and activating T cells (70).

Further understanding of the exact mechanisms whereby
sodium interacts with the immune system and gut
microbiota might offer new opportunities for therapeutic
approaches of hypertension with unexplored targets. A global
immunosuppression of T lymphocytes may be excessive
and associated with too many side effects and hence would
not be appropriate to treat an asymptomatic disease, such
as hypertension. Yet, specifically targeting key components
regulating the T cell’s contribution to BP regulation may still
be an option, provided the therapy is safe and well-tolerated.
Sustained modifications of the gut microbiota might represent
another therapeutic approach that needs to be explored.
However, today, reducing daily salt consumption to 5–6 g per
day remains the easiest and most cost-effective way to limit
the impact of sodium on blood pressure and to prevent the
cardiovascular complications of hypertension.
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