
MINI REVIEW
published: 18 September 2019
doi: 10.3389/fcvm.2019.00139

Frontiers in Cardiovascular Medicine | www.frontiersin.org 1 September 2019 | Volume 6 | Article 139

Edited by:

Marie Lordkipanidzé,

Université de Montréal, Canada

Reviewed by:

Christoph Eugen Hagemeyer,

Monash University, Australia

Matthew Dean Linden,

University of Western

Australia, Australia

*Correspondence:

Carlos Medina

carlos.medina@tcd.ie

Maria Jose Santos-Martinez

santosmm@tcd.ie

Specialty section:

This article was submitted to

Atherosclerosis and Vascular

Medicine,

a section of the journal

Frontiers in Cardiovascular Medicine

Received: 14 June 2019

Accepted: 03 September 2019

Published: 18 September 2019

Citation:

Hante NK, Medina C and

Santos-Martinez MJ (2019) Effect on

Platelet Function of Metal-Based

Nanoparticles Developed for Medical

Applications.

Front. Cardiovasc. Med. 6:139.

doi: 10.3389/fcvm.2019.00139

Effect on Platelet Function of
Metal-Based Nanoparticles
Developed for Medical Applications
Nadhim Kamil Hante 1,2, Carlos Medina 1* and Maria Jose Santos-Martinez 1,3*

1 The School of Pharmacy and Pharmaceutical Sciences, Trinity Biomedical Sciences Institute, Trinity College Dublin, The

University of Dublin, Dublin, Ireland, 2College of Pharmacy, University of Kufa, Najaf, Iraq, 3 School of Medicine, Trinity College

Dublin, The University of Dublin, Dublin, Ireland

Nanomaterials have been recently introduced as potential diagnostic and therapeutic

tools in the medical field. One of the main concerns in relation to the use of nanomaterials

in humans is their potential toxicity profile and blood compatibility. In fact, and due to their

small size, NPs can translocate into the systemic circulation even after dermal contact,

inhalation, or oral ingestion. Once in the blood stream, nanoparticles become in contact

with the different components of the blood and can potentially interfere with normal

platelet function leading to bleeding or thrombosis. Metallic NPs have been already used

for diagnosis and treatment purposes due to their unique characteristics. However, the

potential interactions between metallic NPs and platelets has not been widely studied

and reported. This review focuses on the factors that can affect platelet activation and

aggregation by metal NPs and the nature of such interactions, providing a summary of

the effect of various metal NPs on platelet function available in the literature.

Keywords: platelets, metallic nanoparticles, nanoparticles, activation, aggregation, cytotoxicity, nanoparticles

charge, nanoparticles shape

INTRODUCTION

Nanoparticles (NPs) are defined as particles which range from 1 to 100 nm in size in at least
one dimension (length, width, or depth) (1, 2). Although, the development of nanotechnology
is a modern science, NPs have always existed in the natural environment and throughout the
ages, humans have been continually exposed to airborne NPs (3). However, with the onset of the
industrial revolution and the more recent explosion of interest in NPs for scientific development,
the exposure to different types of NPs is on the rise. In fact, the use of engineered nanomaterials
from a wide range of compositions and sizes together with the study of their potential hazards is
continuously increasing.

This review will focus on the interactions of metallic NPs developed for medical applications
with blood platelets. The search has been conducted using PubMed, Scopus, and Google Scholar
and relevant full text original and review articles published in English up to April 2019 have
been included.

Factors Associated to Nanoparticle’s Toxicity
Since the introduction of nanomedicine to describe the application of nanotechnology to
benefit patients by The Royal Society and Royal Academy Engineering in 2004 (4), engineered
NPs have become promising tools for the monitoring, diagnosis and treatment of human
diseases. Despite the ability of humans to avoid, tolerate, and adapt to naturally occurring NPs,
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the exposure and accumulation of engineered NPs in our body
can lead to plausible side effects (4). Multiple studies have already
demonstrated that NPs interactions with biological systems
depend on size, shape, charge, and the constituent material of
the nanomaterial. In fact, those parameters can have a profound
effect on cellular uptake and toxicity (5) and therefore on
platelet’s function (6–8).

Nanoparticles Size
Alveolar clearance by macrophages in the lungs constitutes
an important barrier for inhaled NPs. However, the efficacy
of this mechanism decreases with NPs size leading to a local
increased deposition, greater access of NPs to the circulatory
system and to potential cardiovascular side effects (9). It has
been previously demonstrated that the degree of cytotoxicity and
platelet activation and aggregation is inversely correlated with the
NPs size (6, 10–12). Therefore, to dampen their potential toxic
effect, while improving their stability, various types of surface
coatings have been used (7, 13, 14). Surface modification using
polyethylene glycol (PEG) for example, has been successfully
employed to improve the platelet compatibility of gold NPs (15).

Nanoparticles Shape
The physical dimensions of nanomaterials are also strongly
correlated with their potential toxicity profiles when compared
with the bulk materials of the same composition (16, 17). For
example, although carbon black is non-toxic, inhaled carbon
nanotubes can result highly toxic (18). One of the factors that
strongly influences NPs toxicity is the NPs shape. However,
for a given geometric shape, NPs size largely determines the
cellular uptake (19–22). Gratton et al. have demonstrated that
nanorods larger than 100 nm exhibit the highest rate of cellular
uptake followed by spheres, cylinders, and cubes of similar size
(23). In contrast, studies using particles smaller than 100 nm
have found that spheres show a greater cellular uptake than
nanorods (19, 24). However, little is known about the influence
of NPs shape on platelet function. Holzer et al. have shown that
carbon-based nanomaterials could induce thrombus formation
in rodents independently of their shape (25). In contrast, He
et al. have recently demonstrated that cuboidal cyclodextrin
frameworks enhanced platelet aggregation when compared with
their spherical counterpart (26).

Protein Binding
When NPs become in contact with biological fluids, electrostatic,
dispersive, and covalent interactions will regulate the adsorption
of proteins onto NPs, leading to the formation of a dynamic
“protein corona” (27, 28). Binding of plasma proteins induce
changes in the biophysical properties of the NPs modifying
their biocompatibility. In fact, the nature and the concentration
of the proteins adsorbed on the NPs can affect their bio

Abbreviations: NPs, Nanoparticles; VEGF, Vascular endothelial growth factor;
PEG, polyethylene glycol; LTA, light transmission Aggregometry; QCM-D,
Quartz Crystal Microbalance with Dissipation, PEI, polyethyleneimine; PVP,
polyvinylpyrrolidone; PMA, Phorbol-myristate-acetate; PAA, polyacrylic acid;
ROS, reactive oxygen species; SNAP, S-nitroso-N-acetylpenicillamine; HAS,
human serum albumin.

uptake, biodistribution, and potential side effects (29–34). The
adsorption of some types of plasma proteins may result in an
inflammatory response and platelet activation and aggregation.
For instance, carbon nanotubes have been reported to bind
complement proteins leading to complement activation via
both classical and alternative pathways. In contrast, adsorption
of complement proteins on the surface of gold colloids
has not been associated with complement activation (35–
37). The ability of PEG-coatings to protect against platelet
aggregation corroborates the hypothesis that physical barriers
around NPs may also contribute to the loss of their pro-
aggregatory effect (15, 38). However, although the adsorption
of fibrinogen onto NPs can contribute to platelet adhesion and
initiate thrombogenesis, it has been also demonstrated that the
composition of the protein corona on PEGylated NPs doesn’t
predict their hemocompatibility (39).

Nanoparticle Charge
NPs charge plays also an important role in NP-plasma protein
interactions (29, 40) and therefore in the blood compatibility
of NPs. Positively charge NPs can potentially interact with
the negatively charged platelet surface and induce platelet
aggregation (41, 42). However, Love et al. found that gold NPs
with the same size and opposite charge did not induced platelet
aggregation (43). Marginal variation in charge may contribute
to a significant difference in protein binding to the NP surface
and that may be the case with albumin binding to colloidal gold
NPs (37).

METALLIC NANOPARTICLES AND THEIR
APPLICATIONS IN MEDICINE

Metallic NPs can be easily synthesized and modified with
various chemical functional groups which allow them to be
conjugated with antibodies, ligands, and drugs. Therefore,
the potential applications of metallic NPs in a variety of
health-related applications over conventional pharmaceuticals,
including targeted drug delivery systems, vehicles for gene and
drug delivery, and imaging has dramatically increased (44).

Medical diagnostic applications of metal NPs are plentiful,
owing to their ability to interact with external stimuli, including
infra-red radiation, ultrasonic waves, and magnetic fields (45–
48). Paramagnetic and superparamagnetic NPs have shown a
great potential for cancer detection, as evidenced, for example,
by the superior ability of iron oxide NPs to detect liver
metastases and metastatic lymph nodes (49, 50). Metallic NPs
can be also used as therapeutics agents. The antibacterial
nature of silver has been already well-established and gold
NPs have been found to induce cell toxicity when delivered
orally. In fact, silver and gold NPs have been demonstrated
to be ideal candidates for the treatment of both, multi drug
resistant infections and cancer (51–55). In addition, gold
NPs have also shown to exert some anti-angiogenic effect by
inhibiting the VEGF activity in collagen-induced arthritis in
rats and in human umbilical vein endothelial cells (56–58).
The use of multifunctional NPs that integrate diagnostic and
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therapeutic functions in the same system (theranostic) has been
gaining increasing momentum in the nanomedical research and
development (R&D). For the management of patients suffering
from cancer, for example, nanotheranostic platforms could
comprise advanced diagnostics, hyperthermia treatment, and
targeted delivery of anticancer drugs. Actually, magnetic iron
oxide NPs constitute a good example of such “multitasking”
platforms (59).

METALLIC NANOPARTICLES-PLATELETS
INTERACTIONS

In 1977, Berry et al. described for the first time the translocation
of nano-sized particles across the alveolar epithelium following
intratracheal instillations of 30 nm gold particles in rats. They
found large amounts of these particles in platelets of pulmonary
capillaries and assumed that theremight be a pre-disposing factor
for platelet aggregation and microthrombi formation even when
those NPs are coated with a biocompatible material (60). In fact,
NPs which are not intended for systemic use can, due to their
ability to cross epithelial barriers, reach the systemic circulation
and interfere with physiological platelet function increasing the
risk of cardiovascular disease and vascular thrombosis (61–
63). Although, some NPs have been developed for therapeutic
purposes aimed to target the injured vascular site mimicking
platelet function (64) or to enhance blood clotting (65), the
potential unwanted, pro- and/or anti-aggregating, properties of
NPs are of significant concern in the field of nanomedicine and
may impede the progression of promising engineered NPs to the
clinical setting.

Induction of platelet aggregation by metallic NPs has been
found by multiple research groups. However, some studies also
indicate that metal NPs can inhibit or not affect platelet function
(Table 1). The extent to which NPs induce platelet aggregation
may depend onmultiple NPs factors, as explained in the previous
sections, but also on the physiological state of platelets prior
exposure to NPs. When platelets are in resting state most metallic
NPs seem to be inert (7) becoming more sensitive to NPs in the
presence of a threshold shear force or “pre-activation” by critical
concentrations of ADP (10, 66, 85). However, non-metallic
NPs such as carbon nano-tubes or polymer-based NPs seem to
induce platelet aggregation in the absence of any “pre-activating
factor” (42, 62).

The exact molecular mechanisms by which metallic NPs
influence platelet function is not well-understood. However,
their effect on platelet granules and integrin receptors seems
to be crucial during the process. Metallic NP-induced platelet
aggregation is inhibited when ADP pathway is blocked by an
appropriate concentration of clopidogrel or apyrase inhibiting
therefore the secondary wave of platelet aggregation which
depends mainly on granule release. GPIIbIIIa seems to play also
an important role in metallic NP-induced platelet aggregation
as in the presence of Arg-Gly-Asp-Ser (RGDS), a tetra-peptide
which binds and inhibits activated but not resting GpIIbIIIa,
platelet aggregation is attenuated (86).

Silver NPs
The broad-spectrum antimicrobial properties of silver NPs are
well-documented. Their widespread use in both commercial
and biomedical applications, due to their large surface-area-to-
volume ratio which increases their efficacy against bacteria in
comparison to common antibiotics, has raised them to the status
of the most commercialized NPs.

The blood compatibility of silver NPs, remains controversial,
with several studies that report contradictory results. Spherical
silver NPs (10–100 nm) have been found to induce platelet
aggregation by increasing intraplatelet Ca2+ levels, upregulating
GPIIb/IIIa and P-selectin and serotonin secretion (76, 78). Laloy
et al. reported that silver NPs increased platelet adhesion but did
not exert any further effect on platelet aggregation (77). Coating
with PEG inhibits platelet aggregation induced by collagen, ADP,
thrombin, and arachidonic acid in a concentration dependent
manner (79). Silver NPs spherical in shape, 10–15 nm in diameter
and monodispersed, have also been shown to have antiplatelet
properties (67). Some variability between studies can be due to
the use of different dispersing media (87–89) and Deb et al. have
argued that the inhibition of platelet function by silver NPs may
be due to the presence of the citric acid used for coating their
surface (7). In addition, most of the studies use light transmission
aggregometry (LTA) for measuring platelet aggregation and LTA
has some limitations: (1) it may not be sensitive enough for
studying NP-induced platelet aggregation (90). (2) As silver NPs
have light absorbance properties, which are significant from
10µg/mL, the use of concentrations over this threshold can have
a profound effect on the results obtained (77). On the other
hand, Smock et al. performed a prospective, placebo controlled
in healthy human volunteers to assess the effect of commercially
available oral colloidal silver NPs on platelet aggregation ex vivo
using LTA. They found that platelet activation was not enhanced
at peak silver serum concentrations (<10µg/mL) (80).

Gold NPs
Colloidal gold was first described as a novel NP vector for tumor
directed drug delivery back to 2004 (91). GoldNPs are considered
to be one of the safest and most attractive drug-delivery agents
due of their inert, non-toxic, and highly permeable properties
(92). Still, there are some studies that document toxicity of gold
NPs depending on the physical dimensions, surface chemistry,
and shape of the NPs studied (19, 20, 93–97).

The compatibility of gold NPs with blood components
and their effect on platelet function is not well-established.
Although, gold NPs >60 nm in size have no effect on
platelet function, smaller NPs (20 nm) can activate platelets.
Those NPs could trigger platelet aggregation by a molecular
mechanismwhich involves the platelet canalicular system and the
activation of intracellular signaling mechanisms that comprise
tyrosine phosphorylation, alpha granule release and P-selectin
translocation (10, 98). On the other hand, it has been shown that
spherical gold NPs of ∼30 nm do not affect platelet aggregation,
probably due to the total surface contact and/or the formation of
the protein corona (37, 43).

Santos-Martinez et al. have investigated the effect that
different NPs may exert on platelet function under flow
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TABLE 1 | Metallic nanoparticles-platelets interactions.

Composition Size (nm) Charge Concentration tested Nanoparticle

shape

Effect on platelet

function

References

Copper oxide 10 Negative 1.6 × 1019 atoms/mL Rods and

spheres

No effect (66)

Gold 13,20,29 Negative 50µM Spheres No effect (67)

Gold 5–30 Negative 5–40µM Spheres No effect (68)

Gold >60 Negative 5–40µM Spheres Inhibition of ADP

induced platelet

aggregation

(68)

Gold 20 Negative 5–40µM Spheres Platelet Aggregation (68)

Gold 40 Negative 5–40µM Spheres Platelet aggregation (68)

Gold 30 Negative 0.45 mg/mL Spheres Inhibition of collagen

induced platelet

aggregation

(37)

Gold 50 Negative 0.420 mg/mL Spheres Inhibition of

collagen-induced

platelet aggregation

(37)

Gold 18 Negative 5µg/mL Spheres Platelet aggregation (69)

Gold 9.509 ± 0.56 Negative 2.144 × 1021

atoms/mL

Rods and

spheres

Platelet aggregation (66)

Gold 30 Negative and

positive

5, 15, 25, and

50µg/mL

Spheres No effect (43)

Gold (PEI-) 20 Negative 50 ppm Spheres Platelet aggregation (70)

Gold (PVP-) 50 Negative 50 ppm Spheres Platelet aggregation (70)

Iron 10–50 Negative 2 × 1019 atoms/mL Rods and

spheres

Platelet aggregation (66)

Iron 10 Not specified 5 mg/mL Spheres Inhibition of PMA and

arachidonic acid

induced platelet

aggregation

(71)

Iron oxide (Fe2O3) 55–65 Not specified- 50µg/mL Rods Platelet aggregation (72)

Iron oxide

(Ferucarbotran)

90 Negative 0.5mM Spheres No effect (73)

Iron oxide

(Ferucarbotran)

90 Negative 10mM Spheres Platelet aggregation (73)

Iron oxide

(Ferucarbotran)

90 Negative 5mM Spheres No effect (73)

Iron oxide (QD-labeled

Ferucarbotran)

90 Negative 0.5mM Spheres No effect (73)

Iron carbide (PEG) 30 Neutral 1 mg/mL Spheres No effect (74)

Iron oxide (Fe3O4) 20–30 Not specified- 50µg/ml Spheres Platelet aggregation (72, 75)

Iron oxide

(Ferucarbotran (HSA-)

90 Negative 0.5mM Spheres No effect (73)

Nickel 62 Neutral 50µg/ml Spheres Platelet activation (72)

Silver 10–15 Positive 50µM Spheres Inhibition of thrombin-

induced platelet

aggregation

(67)

Silver 20 Neutral 0.05–0.1 mg/kg i.v. or

5–10 mg/kg

Spheres Platelet aggregation (76)

Silver 16–71 Positive 50µg/ml Spheres No effect (77)

Silver (PVP) 90–240 Neutral 50µg/mL Spheres Platelet activation (72)

Silver 12 Positive 200 mg/L Spheres Platelet activation (78)

Silver (PEG) 20 Neutral 125–625µM Spheres Inhibition of fibrinogen

induced platelet

aggregation

(79)

Silver (Colloidal) 10–100 Positive <10 µg/L Spheres No effect (80)

Silver (citrate coated) 24.3 ± 4.5 Negative ∼500µg/mL Spheres No effect (81)

(Continued)
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TABLE 1 | Continued

Composition Size (nm) Charge Concentration tested Nanoparticle

shape

Effect on platelet

function

References

Silver (PVP coated) 21.6 ± 4.8 Negative ∼500µg/mL Spheres No effect (81)

Titanium dioxide

(anastase)

101 Negative 1 mg/kg Not specified Platelet aggregation (82)

Titanium dioxide (rutile) 104 Negative 1 mg/kg Not specified No effect (82)

Titanium dioxide 10 × 40 Not specified- 0.4–10µg/mL Rods No effect (83)

Titanium dioxide 600–4,000 Negative 10µg/mL Spheres Platelet activation (84)

Titanium dioxide 20–160 Not specified- 50µg/mL Rod No effect (72)

Zinc oxide 100–1,200 Negative 10µg/mL Rod Platelet aggregation (84)

Zinc oxide 150 Negative 1 mg/kg Not specified No effect (82)

HAS, Human serum albumin; PEG, polyethylene glycol; PEI, polyethyleneimine; PVP, polyvinylpyrrolidone; PMA, Phorbol-myristate-acetate; QD, Quantum dots.

conditions using a Quartz Crystal Microbalance with Dissipation
(QCM-D). The group has demonstrated that QCM-D is more
sensitive than the traditional LTA when investigating NP-
platelet interactions (69, 99) and found that PEGylation of
gold NPs improves their platelet compatibility (15). However,
the use of polyethyleneimine (PEI) and polyvinylpyrrolidone
(PVP) conjugated NPs can induce platelet activation as revealed
by the formation of numerous filopodia and degranulation
in equine platelets (70). This effect may be related to the
adsorption of fibrinogen onto the NPs surface (5) and could be
even more obvious if polyacrylic acid (PAA)-conjugated gold
nanoparticles are exposed to platelets as PAA binds to and induce
conformational changes of fibrinogen (100) that could potentially
have a greater impact on the hemocompatibility of those NPs.

Iron Oxide NPs
Iron oxide NPs have been extensively used as contrast agents.
With the introduction of theranostic systems their use has
become more attractive as a novel approach for cancer
therapy. The use of those NPs loaded with cytotoxic drugs
and functionalized to detect and specifically attack malignant
cells could potentially reduce significantly both, side effects of
cytotoxic drugs and healthy cells damage.

The effect of iron-based NPs on platelet function in the
literature is somehow inconsistent. Some iron-based NPs have
been found to induce platelet aggregation as demonstrated by
morphological changes using scanning electron microscopy (72).
Bircher et al. found that carbon-coated iron carbide magnetic
NPs incubated with whole blood induced upregulation of GPIIb-
IIIa and P-Selectin but this effect was reversed when NPs were
PEGylated (74). In another study, the use of dextran-stabilized
iron oxide NPs developed for hyperthermia did not affect either
platelet function (101). Deb et al. show in their work that starch-
stabilized iron oxide NPs do not exert any effect of platelets
while citric acid-stabilized iron oxide NPs inhibited platelet
aggregation (7).

Platelet labeling can be of great interest for evaluating
the influence of different methods on platelet survival when
preparing platelet concentrates or when there is a need to
distinguishing between donor and recipient platelets. Iron oxide
NPs conjugated with quantum dots have been used previously

by Aurich et al. as a non-radioactive alternative for platelet
labeling. NPs were successfully internalized in platelets but
impaired platelet function at the concentrations needed for
labeling. However, this effect was abolished when the NPs where
functionalized further with human serum albumin (73).

Nickel NPs
Compared to its elemental state, nickel NPs exhibit exceptional
electrochemical properties and show unusual superparamagnetic
properties and stability that make them very attractive in the
nanotechnology field (102, 103). In addition, nickel NPs have
been used in medicine as catalysts in the production of hydrogen
nanoparticles (104). Some studies have demonstrated that nickel
NPs induce cytotoxic effects in vitro (105, 106) and changes
in platelet shape (72). However, despite their wide use in
industry, their potential toxic effect to humans has not been
extensively investigated.

Zinc Oxide NPs
Zinc oxide NPs are commonly used in nanomedicine. Spherical
NPs have been used as anti-cancer and anti-bacterial agents due
to their ability to produce reactive oxygen species (ROS) and
induce apoptosis (107, 108). In fact, tetrapod NPs have been
recently studied for their antibacterial activity (109), antiviral
activity (110, 111), and as a vaccine adjuvant (112). Composite
types of nanostructures are also synthesized in various forms
including zinc oxide quantum dots and zinc oxide nanoclusters
as anti-cancer and anti-bacterial agents (113–115).

Zinc oxide NPs prepared in dispersion medium, citrate
or glucose solution have been shown to induce human and
canine platelet activation (84). On the other hand, systemic
administration of zinc oxide NPs to mice did not induce
thrombus formation (82). However, studies looking at the blood
compatibility of those NPs are once again scarce.

Copper NPs
Deb et al. have shown that copper NPs have a pro-aggregatory
effect activating purinergic receptors (P2Y12) in the presence of
ADP at suboptimal concentrations (66). However, Major et al.
using a nitric oxide generating polymeric material (polyurethane
containing copper NPs) combined with the intravenous infusion
of a nitric oxide donor (S-nitroso-N-acetylpenicillamine-SNAP)
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TABLE 2 | Effect of metallic nanoparticles on platelet function.

Nanoparticle type Main findings

Silver Silver NPs need to accumulate within platelets to interfere with different intraplatelet pathways (67, 76, 78, 79). Primary NPs size

is as important as the stability and monodispersity of the NPs which highly depend on the type of dispersion medium used.

Chitosan and PEG prevent agglomeration (122) but also increase NPs size affecting NPs properties and leading to inconsistent

results despite using similar or close primary NPs size. PVP has no effect on platelet function but citric acid can inhibit platelet

aggregation (7, 77). Silver NPs can also interfere with light absorbance and therefore, light transmission aggregometry, which is

the gold standard for studying platelet function, may not be suitable to investigate silver NPs-platelets interactions

Gold Gold NPs size is important when investigating their effect on platelet function. It seems that gold NPs >60 nm do not modify

platelet function. However, when NPs are <50 nm they can be internalized and accumulated in platelets affecting their function

(10, 66, 68–70, 93). PEI, PVP, and PAA coatings can induce platelet aggregation (70, 100, 123)

Iron oxide The effect of iron nanoparticles on platelet function is not consistent and the studies available demonstrate that they can induce

(66, 72, 73, 75); have no effect (73, 74) or inhibit platelet aggregation (71). No single factor seems to be determinant but coatings

may play an important role as HAS, PEG, and citrate have shown to do not affect platelet function (73, 74) but PAA inhibited

platelet aggregation (71)

Titanium dioxide, zinc oxide,

nickel, and copper oxide

Most studies refer to pro-aggregatory effect of these NPs. However, information is scarce to draw a robust conclusion regarding

their effect on blood platelets

PEI, polyethyleneimine; PVP, polyvinylpyrrolidone; PAA, poly acrylic acid; HAS, Human serum albumin; PEG, polyethylene glycol; PMA, Phorbol-myristate-acetate.

observed that platelet function was preserved in rabbit blood
exposed to extracorporeal circulation (116).

Titanium Dioxide NPs
Titanium dioxide NPs are widely used in cosmetic products and
sunscreens (117) and they are very well-known photocatalysts
able to generate different reactive species that could be potentially
toxic to microorganisms. In fact, in vitro studies have shown
deleterious effect of those NPs on different cell lines (118, 119).
Titanium dioxide NPs have shown to activate dog and, to a
lesser degree, human platelets in vitro (84). When administered
systemically to rats, titanium dioxide anatase but not titanium
dioxide rutile NPs of similar size (around 100 nm) were found
to increase murine platelet aggregation (82). In another study,
systemic administration of titanium dioxide rutile NPs did
not activate platelets or exert prothrombotic effects in mice
either (120). However, the intratracheal administration of rutile
titanium oxide nanorods has resulted in platelet aggregation in
rats (83).

CONCLUSIONS

Medicine is envisaged to be one of the primary beneficiaries of the
nanotechnological development. The growth of nanotechnology
has fired the “technological boom” in diagnostics, imaging,
and drug delivery (121). The scientific community has shown
significant interest in further developing the potential medical
applications of metal NPs. However, nanomaterial-blood
interactions are inevitable regardless of the use NPs are
intended to.

The compatibility of NPs with blood elements remains as a
controversial topic. Several studies utilizing similar experimental
protocols and assessing similar end points report contradictory
results and Table 2 summarizes the main effects of metallic
NPs on platelets found in the literature. Although there are
multiple “NP dependent” factors that can play an important
role on NPs-platelets interaction, other circumstances should
be kept on mind when carrying out those experiments as

they may potentially contribute to the conflicting results:
(a) platelet preparation/platelet handling; (b) use of different
solutions/dispersing media when preparing the NPs/performing
the experiments; (c) presence of impurities or additional
substances in metallic NPs or their suspensions; (d) interference
of the NPs tested with the method used; (e) use of different
concentrations of NPs and or platelet agonists in different
experimental settings; and (f) lack of sensibility for detecting
platelet microaggregates with the method used.

Unwanted side effects of NPs is of significant concern in
the field of nanomedicine and often hampers the progression
of promising nanomaterials to the clinical setting. Knowledge
regardingNPs toxic potential is still limited along with an absence
of appropriated regulatory policies for their use and testing
(124, 125). In fact, not all commercially available nanomaterials
have a Safety Data Sheet and novel nanomaterials are sometimes
manipulated without full assessment of their potential health
risk (124).

There is no doubt that the development of nanomaterials
intended for human use should be always carried out in
tandem with an extensive toxicological evaluation. Those
studies must include the investigation of the effect of
nanomaterials on platelet function as they can lead to secondary
effects (bleeding or thrombosis) that can affect individuals
involved in their production, manipulation or use during
medical applications.
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