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Platelets are abundant, small, anucleate circulating cells, serving many emerging

pathophysiological roles beyond hemostasis; including active critical roles in thrombosis,

injury response, and immunoregulation. In the absence of genomic DNA transcriptional

regulation (no nucleus), platelets require strategic prepackaging of all the needed RNA

and organelles from megakaryocytes, to sense stress (e.g., hyperglycemia), to protect

themselves from stress (e.g., mitophagy), and to communicate a stress response to

other cells (e.g., granule and microparticle release). Distinct from avian thrombocytes

that have a nucleus, the absence of a nucleus allows the mammalian platelet to maintain

its small size, permits morphological flexibility, and may improve speed and efficiency

of protein expression in response to stress. In the absence of a nucleus, platelet

lifespan of 7–10 days, is largely determined by the mitochondria. The packaging of 5–8

mitochondria is critical in aerobic respiration and yielding metabolic substrates needed

for function and survival. Mitochondria damage or dysfunction, as observed with several

disease processes, results in greatly attenuated platelet survival and increased risk for

thrombovascular events. Here we provide insights into the emerging roles of platelets

despite the lack of a nucleus, and the key role played by mitochondria in platelet function

and survival both in health and disease.
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PLATELET DISCOVERY AND ORIGINS

Platelets are small (2–4µm), short-lived (7–10 days), anucleate circulating cells primarily
responsible for the prevention of bleeding and the maintenance of hemostasis (1, 2). A healthy
adult has a counts in the range of 150,000–450,000 platelets per microliter of blood, though these
counts vary with age and health (3). Platelets were first identified by Schultze in 1865 (4), but its
functions in hemostasis and thrombosis weren’t elucidated until 1881 by Bizzozero (5, 6). In 1906,
Wright established megakaryocytes (MKs) in the bone marrow to be the source of platelets (7),
though recent studies have shown that mature megakaryocytes in the lungs can also release platelets
into the pulmonary vasculature (8). MKs produce billions of platelets daily through fragmentation,
in which small cytoplasmic pieces bud off the megakaryocyte to become platelets (9). During
fragmentation, MKs undergo a series of elongations to form proplatelet shafts, or cytoplasmic
extensions which serve as assembly lines for platelet formation (10). Platelet-sized swellings then
form along the shaft (11); as these platelets develop, they are loaded with the necessary organelles
and granules from the MK parent (9). Platelets are equipped with mitochondria, a cytoskeleton,
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and a dense tubular system (DTS) (3, 12). Additionally,
platelets contain secretory organelles categorized as alpha,
dense, and lysosomal granules, which are transported
and discharged by a surface-connected open canalicular
system (OCS) (13). Dense granules generally contain
small molecules such as ADP or serotonin, whereas alpha
granules contain hemostatic factors such as fibrinogen,
as well as other growth factors and cytokines (14).
Upon complete generation, platelets are released from
the bone marrow into circulation, where they live for
the next 7–10 days (15). Historically disregarded as
“cellular dust” (16), platelets have only recently emerged
as having more diverse homeostatic processes including
wound healing, angiogenesis, immunoregulation, and
inflammatory response all key components to a stress
response (2, 17–19).

PLATELET FUNCTION BEYOND
HEMOSTASIS (FIGURE 1)

Platelets are primarily responsible for the maintenance of
normal hemostasis by the prevention of hemorrhage during
vascular injury (20). Hemostasis is achieved by a careful
balance of platelet interactions with vascular components,
cytokine mediators, fibrinolytic agents, and plasma coagulation
mechanisms (21). They assist in initiating a vascular response
leading to vasoconstriction, and formation of a hemostatic
plug (through adhesion, activation, and aggregation). The
blood coagulation cascade is then initiated with expansion
of the thrombus and massive release of platelet contents
(22). The released factors then also assist in promoting
tissue repair and resolving the repair process (23). The
role of platelets in thrombosis is essential, and increasingly
becoming well-understood. Given the complex content within
platelets, researchers have recently begun to investigate platelet
function beyond coagulation, and have implicated platelets
in several processes including immunoregulation, infection,
inflammation, and the pathogenesis of a growing list of diseases
(neurodegenerative diseases, cardiovascular disease and cancer)
(24–26). In the absence of a nucleus, the role of the platelet
mitochondria in these processes has become a focus of intense
studies, including how platelet dysfunction is associated with,
contribute to, is affected by the disease pathologies (25).

PLATELETS: A NUCLEUS-FREE ZONE

Notably, mammalian platelets do not contain a nucleus
(27). Interestingly, non-mammalian vertebrates have nucleated
thrombocytes that have limited responses, to thrombin but not
to ADP, serotonin or epinephrine (28, 29). As described (9),
upon fragmentation, mature mammalian MKs segregate into
anucleate platelets; thus, platelets are not endowed with the
genomic genetic material generally considered a requirement
for complex cellular function (16). Nuclear material (genomic
DNA) generally provides functional autonomy; any needed
protein can be transcribed from the genomic road map provided

in the nucleus (19). However, the presence of a nucleus in
platelets may hinder many of the important roles played by
the platelet, at the expense of functional autonomy. To fulfill
the many emerging functions, platelets need to be small (able
to circulate in small vessels), flexible, highly efficient (produces
proteins rapidly and efficiently) and highly sensitive (responds to
stressors rapidly).

A human cell nucleus on average is much larger than a
platelet (nucleus ∼6µm in diameter) (30), dictated by DNA
content (3 billion base pairs in humans), and cytoplasmic factors
(31). The presence of a nucleus even if small and compact,
would greatly enhance a platelet’s size thus reducing its ability
to travel through small vessels and spaces. In addition to small
size, platelets need to be flexible, capable of modulating their
internal space to undergo extreme morphological changes (19),
again allowing platelets to travel through even the smallest
vessels in the circulatory system and enter tissues when needed.
Further, this enhanced flexibility allows the platelet OCS to
fill internal vacancies during activation to increase surface
area available for interaction with blood plasma (19, 32). The
presence of a nucleus in avian thrombocytes (nucleated platelets)
makes them larger than mammalian platelets, causes them to
spread less efficiently on collagen, and express much lower
levels of the α2bβ3 integrin required for aggregate formation
(28). Similarly, the lack of a nucleus within the red blood
cells (RBC), allows them to maintain their distinct bi-concave
shape; but additionally, removes the need to maintain nuclear
function and genome, allowing the RBC to focus on producing
and maintaining hemoglobin. Platelets, like RBCs, do not
need to regulate the health of a large complex nucleus, with
its transcriptional machinery and chromosomes. Platelets can
thus focus on what is needed for their roles in hemostasis
and homeostasis with prepackaged, carefully selected RNA
and translational machinery (without requiring transcriptional
regulation of complex genomic DNA) (33, 34). Each platelet
is equipped with an abundance of needed genetic information,
and processing machinery required for a highly efficient rapid
response (35), within minutes (required for hemostasis), rather
than hours or days. Thus, based upon the literature and the
lower efficiency of nucleated avian thrombocytes, we believe that
the lack of a nucleus allows for improved platelet functional
efficiency. More studies are required to support this notion.
Interestingly, in the absence of a nuclear source of RNA, platelets
are capable of taking up RNA material from external sources
through microvesicles (MVs) (36). RNAs can also be donated
from platelets to other cells through microvesicle mediated
intercellular crosstalk (37–39). The microRNAs within these
MVs have proven to be increasingly relevant to understanding
the role of platelets in thrombosis, immune response, and
various diseases. Not only miRNA but transcription factors
and mitochondria are conveyed to such cells as neutrophils,
mediated by 12-lipoxygenase and phospholipase A2-IIA (40).
Thus, platelets have proven to be “intelligent” even in the
absence of a nucleus: a platelet’s ability to interact with their
environment and efficiently respond to the needs of that
environment, has marked them as far more complex than
previously thought (41).
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FIGURE 1 | Diversity of platelet function. Highlighted are some of the diverse pathophysiological functions of platelets both in health and disease from hemostasis and

thrombosis to contributions to disease. Included are also a section outlining diverse synthesis and release of platelets and important involvement in immunoregulation.

PLATELET MITOCHONDRIA ARE KEY TO
FUNCTION AND SURVIVAL OF PLATELETS
(FIGURE 2)

To maintain the ability to rapidly respond to stressors or
blood vessel damage (thrombosis), a highly efficient source of
energy and metabolites are needed to orchestrate the response.
Distinct from RBCs that are also devoid of mitochondria,
platelets are equipped with mitochondria (42). Interestingly,
mitochondria have a number of features in common with
a nucleus, both contain DNA, both are surrounded by a
double plasma membrane, and both can divide during the cell
cycle (30). However, the role of the mitochondria, referred
as the “powerhouse of the cell,” is quite different, playing
essential roles in energy production and metabolism (43). The
mitochondria is home to key energetic processes such as the
tricarboxylic acid (TCA) cycle and oxidative phosphorylation
(OXPHOS), both of which are involved in the production
of adenosine triphosphate (ATP) (44). However, studies have
implicated mitochondria in many processes beyond energy
production, such as the generation of reactive oxygen species
(ROS) (45), Ca2+ homeostasis (46), apoptosis regulation (47),
and ER-stress response mechanisms (48). Mitochondrial health

and dysfunction also appear to be involved in aging (49),
as well as neurodegenerative diseases (e.g., Alzheimer’s (50)
and Parkinson’s disease (51). Healthy platelets contain between
5 and 8 mitochondria, the majority of which must remain
uncompromised for the platelet to maintain proper function.
In healthy platelets, mitochondria has been demonstrated to
serve a variety of purposes as described for nucleated cells, from
metabolism, activation, ATP production to the regulation of cell
processes and viability (42, 52).

In the absence of nuclear control, platelet health is largely
determined by the health of their mitochondria (53). As is
apparent in a number of diseases, an excess of damaged platelets
can lead to premature apoptosis; therefore, it is essential to keep
platelet mitochondria in good health (25). The turnover rate
for mitochondria in various nucleated cells ranges from 9 to 24
days (54, 55). Considering, the lifespan of a platelet (7–10 days),
the necessity of mitochondria for energy production, and the
inability to consistently replenish nuclear encoded mitochondria
proteins, the lifespan of the platelet mitochondria likely
determines the platelet lifespan. A mitochondrial protein Bcl-xl,
master regulator of mitochondrial apoptosis has been reported
to determine platelet lifespan (56). Moreover, a recent study
implicated TNF-alpha-driven megakaryocyte reprogramming
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FIGURE 2 | Platelet mitochondrial Functions. Outlined are platelet mitochondria contents (genomics and proteomics), physiological function (metabolism), and

involvement in pathology and disease (process of activation, apoptosis and disease involvement).

leading to increased mitochondrial mass and activity as
being a major contributor to the observed hyperactivity
and thrombosis associated with aging (57). Multiple factors
affect mitochondrial health and some of the key components
determining mitochondria function and lifespan, especially in
context of the anucleate platelets, will now be discussed.

Mitochondria DNA (mtDNA)
A complete mitochondrial genome is needed for both proper
mitochondrial as well as platelet function, and the prevention of a
number of mitochondrial related diseases such as mitochondrial
myopathies caused by mtDNA mutations (58). Mitochondria,
along with chloroplasts in plants, are the only organelles
besides the nucleus to contain genetic material (59). Human
mitochondrial DNA (mtDNA) is double-stranded, circular, and
relatively small: at 16.6 kbp, human mtDNA is comprised of 37
genes encoding two rRNAs, 22 tRNAs, and 13 polypeptides, all of
which are components of the OXPHOS enzyme complexes (60).
Similar to bacterial chromosomal DNA, mtDNA is organized,
in multiple copies, in nucleoids within the mitochondria (61).
Because they likely originated from prokaryotic ancestors,
mitochondria are largely self-sufficient: they are able to maintain,
transcribe and translate mtDNA internally and independently
(62). Mitochondria have several modes of mtDNA replication
which differ significantly from the nuclear mode of replication

including the strand-displacement mode (SDM) (63, 64),
ribonucleotide incorporated throughout the lagging strand
replication (RITOLS) (65) and coupled leading-lagging strand
synthesis (66). mtDNA copy number is considered an indirect
measure of mitochondrial function (67) and its quantification in
peripheral blood, majorly reflects the mtDNA copy number in
leukocytes and platelets (68). The epigenetic regulation of platelet
mtDNA is of particular importance with higher methylation of
platelet mtDNA being a possible biomarker for cardiovascular
disease (CVD) (69, 70).

Mitochondrial Functions
In addition to mtDNA, mitochondria are equipped with a
complex array of proteins offering significant insights into
mitochondrial activity (71). Mitochondria contain around 1,500
distinct proteins in mammals, compared to around 1,000 in
yeast (72). Since the majority of the proteins encoded by
mtDNA form components of the respiratory chain complexes,
most mitochondrial proteins are encoded by the nucleus and
imported into the mitochondria from the cytosol with the help
of mitochondrial translocases (73). Each protein is coupled with
a distinct import signal which guides it to the appropriate
mitochondrial membrane, to which it is then inserted: outer
membrane proteins are integrated by the TOM complex,
whereas TIM23 is the presequence translocase responsible for
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inner membrane protein integration (74). The mechanism
by which proteins are incorporated into the mitochondria
is posttranslational: unlike ER-protein import, mitochondrial
proteins are synthesized in the cytosol as precursor proteins
before being translocated into a mitochondrion (75).

Mitochondria and Energy Metabolism in the Platelets
While most human nucleated cells contain hundreds, if not
thousands, of active mitochondria, platelets generally contain
only 5–8 mitochondria per cell (42). However, metabolically,
platelets are quite active: for example, compared to resting
mammalian muscle cells, platelets have much higher levels
of ATP-turnover (69). This energy demand is met using a
metabolic system which combines the efforts of glycolysis and
mitochondrial OXPHOS. In platelets, glycolysis provides about
60% of cellular ATP, while OXPHOS provides the remaining 30–
40% (25). Out of the platelet’s total mitochondrial function, 50%
is dedicated to ATP production; the reserve energy is responsible
for, among other activities, cellular response to oxidative stress
(76). ATP is essential to proper platelet function: several key
processes that occur within the platelet, such as the maintenance
of calcium homeostasis, require a constant energy supply.
Interestingly, platelets have been shown to have a metabolic
flexibility that helps them meet this energy demand; activated
platelets exhibit a glycolytic phenotype even as they preserve
mitochondria function (77). This ability to utilize glycolysis
or fatty acid catabolism instead of OXPHOS (mitochondrial
ATP production) allows the platelet to adapt to different
situations, such as hypoxia or the presence of mitochondrial
inhibitory agents (78). Several studies have shown that platelet
aggregation along with other metabolic activities are only
fully interrupted when mitochondrial OXPHOS and glycolysis
are inhibited simultaneously (79). Indeed, double knockout of
GLUT1 and GLUT3 (major transporters of platelet glucose)
leads to mitochondria reprograming, reduced thrombosis and
reduced platelet activation along with thrombocytopenia (80).
This suggests that this metabolic plasticity is the key to enabling
platelets to meet their extraordinary energy demand with so
few mitochondria.

Mitochondria and Platelet Activation
Platelets are activated during the adhesion events of primary
homeostasis, and the initiation of the blood coagulation
cascades (81). Until recently, it was assumed that the only
role mitochondria played in this process was an energetic one
(78). However, new studies have demonstrated the contributions
of several mitochondrial functions in platelet activation such
as the mitochondrial permeability transition (MPT) (82, 83),
increased ROS generation (84–86), and collapse of mitochondrial
membrane potential (1Ψm). Platelet activation is mediated by
several agonists: collagen, thrombin, and ADP have all been
implicated in the regulation of hemostasis (87). The activity of
these agonists is mediated by a common increase in intracellular
calcium (88). Mitochondria do little to regulate platelet calcium
levels (89), but a simultaneous increase in intramitochondrial
calcium levels does mediate phosphatidylserine (PS) exposure,
without affecting integrin activation and granule release (86).

Increased mitochondrial calcium levels also correlate with
mitochondrial ROS imbalance and MPT pore activation (90).
Strong platelet activation characterized by the drastic increase
in mitochondrial and cytosolic calcium also seems to initiate
the collapse of the mitochondrial membrane potential (1Ψm)
via a cyclophilin D (CypD)-dependent mechanism (56). Thus,
this collapse, mediated by mitochondrial calcium, contributes
to further ROS generation and the initiation of the PS
exposure essential for platelet adhesion (85). Interestingly, these
mitochondrial activation pathways also contribute to the platelet
apoptosis framework (84, 91, 92).

Mitochondria and Apoptosis (Figure 3)
Long associated only with nucleated cells, apoptosis is a
mechanism of systematic cell deletion which can be induced or
inhibited by both normal and abnormal stimuli (96). However,
recent studies have identified apoptosis in the anucleate platelet
(96, 97). Morphologically, platelet apoptosis is characterized by
blebbing, platelet shrinkage, PS exposure, fragmentation into
microparticles, and filopod formation (96). Apoptosis follows
either an extrinsic or intrinsic pathway, the former stimulated
by the activation of cell-surface death receptors, and the latter
mediated by mitochondrial coordination of pro- and anti-
apoptotic members of the Bcl-2 family (98). The presence of
Bcl-2 family proteins within platelets, along with the platelet
PS exposure characteristic of apoptosis, suggests that platelets
might primarily follow an intrinsic apoptotic pathway (99, 100).
Bcl-xL, the key regulator of platelet survival, is responsible for
inhibiting BAK and BAX, two pro-apoptotic proteins which
serve to damage the mitochondria: studies in which either Bcl-
xL or BAK/BAX were impaired saw interference with natural
platelet lifespan (98, 101, 102). Overexpression of Bcl-2 family
pro-survival proteins can increase survival of platelets in the
circulation (103). However, deletion of Bcl-2 in mice did not
affect thrombopoiesis or platelet life span (104), supporting
compensatory responses. When platelets come under stress or
reach their natural end, the survival signal is overwhelmed and
causes the activation of BAK and BAX, initiating the subsequent
release of mitochondrial components such as cytochrome c
through pores in the mitochondrial membrane (105). The
presence of cytochrome c in the cytosol triggers the apoptotic
caspase cascade, which begins with the initiator caspase-9 and
ends with the effectors caspase-3 and caspase-7, which cleave
hundreds of intracellular components and effectively destroy
several essential cellular processes (106). Interestingly BCL2
family proteins are also involved in platelet formation with
the anti-apoptotic family member BCL2L2 being involved in
increasing megakaryocyte proplatelet formation in cultures of
human cord blood (107).

Mitophagy in Platelets/Mitochondrial Turnover in

Platelets (Figure 3)
Highlighting the importance of protecting platelet mitochondria
in maintaining platelet health and lifespan, the protective process
of induced mitophagy was recently described in platelets (95).
This is distinct from basal platelet autophagy needed for an
important role in platelet activation (108–110). Mitophagy can
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FIGURE 3 | Platelet response to hyperglycemia. Diagram outlining some of

the signaling and functional responses to stress (hyperglycemia). Increased

glucose (hyperglycemia) through the aldose reductase enzymic system can

lead to enhanced reactive oxygen species (ROS). This can activate multiple

pathways including p38MAPK, promoting platelet activation and thrombosis

(93); phosphor-p53 and Bcl-xl, promoting mitochondrial damage, apoptosis,

and thrombosis (94); and a mitophagy rescue response, removing toxic

damaged mitochondria (95).

be generated by Parkin-independent or -dependent pathways
(111–115) The process in platelets is Parkin-dependent and
protects the platelet from oxidative stress and mitochondrial
mediated damage (95). In the absence of a nucleus the platelet
requires prepacking of the highly ordered and complex process,
from initial phagophore formation (nucleation) to subsequent
expansion of the membrane by ubiquitin-like conjugating
systems, microtubule-associated protein 1 light chain 3 (LC3),
and the autophagy protein system (ATGs), ultimately the
phagophore completely surrounding its target, followed by fusion
with a lysosome, leading to content degradation by lysosomal
enzymes (116–118). The energy required to sort and prepackage
the mRNA components for this process in anticipation of
mitochondria stress/damage suggests an essential role for
platelet mitochondria in health and disease. Platelet mitophagy
removes toxic damaged mitochondria (as in diabetes mellitus)
preventing platelet apoptosis (95, 119). If platelet mitophagy is
impaired, increased platelet apoptosis can contribute to enhanced
thrombosis (95).

PLATELET MITOCHONDRIA IN DISEASE

Because mitochondria play such an integral role in platelet
metabolism, activation, and apoptosis, it is no surprise that
mitochondrial dysfunction contribute to dysfunctional platelet
activity and apoptosis in several diseases, most notably
Alzheimer’s and Parkinson’s (120), cardiovascular disease (CVD)
(121), diabetes mellitus (122), and sepsis (123). Apoptotic
platelets induce clotting 50–100 times faster than normal
platelets, because phosphatidylserine on the platelet surface acts

as a catalytic site for clotting enzyme assembly and thrombin
generation (124, 125). Recent studies have therefore provided
invaluable insight into the complex mitochondrial mechanisms
that determine platelet function in relation to tissue homeostasis
(126). Due to the decreased fidelity of PolyG during replication,
the mutation rate of mtDNA is about 100-fold higher than that
of nuclear DNA (127). Additionally, the process of mitochondrial
DNA segregation occurs randomly and with far less organization
than in the nucleus, sometimes leaving daughter cells with
similar, but not identical, copies of mtDNA (128). Combined,
there is increased risk for mtDNA abnormalities and mutations
that can have severe health consequences, hindering ATP
generation and increasing oxidative stress (129). Mutations
which impact mitochondrial functionality are also relevant in
aging (130) and age-related diseases, such as diabetes mellitus
(58), Parkinson’s (51), and cardiovascular disease (69). Platelet
mitochondrial DNA in the circulation may serve as biomarkers
for disease (131–133).

Cardiovascular diseases (CVD) including atherosclerosis
and thrombosis are the leading causes of death for patients
with diabetes (134). Diabetes mellitus, characterized by acute
and chronic hyperglycemia have been shown to increase
mitochondrial ROS production in platelets leading to activation
(85, 93, 135). Platelets have also been identified as leading players
in the development of atherosclerotic lesions, contributing,
along with monocytes, to the inflammatory environment
of atherosclerosis (136, 137). Type 2 diabetes results in
alterations of platelet ATP production with an initial increase
in platelet mitochondrial ATP content and platelet activity
(93, 138), followed by platelet apoptosis and a decrease
in ATP production, in the presence of severe persistent
oxidative stress (94, 138, 139). Antiplatelet therapies, as well
as hyperglycemic control treatments, have become increasingly
relevant for the regulation of the high levels of platelet
reactivity observed in Type 2 diabetes (140, 141). Preserving
platelet mitochondrial function may be an additional means
of decreasing the risk of potentially fatal thrombotic events
for diabetic patients (142). Platelets may also serve essential
functions in immunoregulation (143–146). Alterations in the
bioenergetics of platelet mitochondria have been observed in
cases of sepsis (147), contributing to drastic, but impermanent,
organ failure (148). Thrombocytopenia is associated with
increased mortality in septic shock (149, 150). Recently, platelet
mitochondria have also been reported to incite an inflammatory
response upon activation through release of bioenergetically
active mitochondria in free as well as encapsulated form (151).
Interestingly, the alphaproteobacterium Rickettsia prowazekii
may be an evolutionary ancestor of the mitochondria (152).

Both Parkinson’s and Alzheimer’s are severe
neurodegenerative diseases that have been linked to platelets,
mitochondrial dysfunction and platelet apoptosis (153, 154).
Platelets, are considered to be structurally and functionally
similar to neurons and have been shown to rich in key proteins
associated with the neurons and brain (155–157). Indeed, after
the brain, platelets contain the highest amounts of Amyloid
precursor protein, synuclein and tau, and are major contributors
to the circulating levels of these key proteins involved in
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neurodegenerative diseases (158). As in the other diseases
profiled, Alzheimer’s presents a compromised mitochondrial
ETC; in particular, the activity of cytochrome c oxidase, an
oxidative metabolic component of Complex IV, has been shown
to be impaired (159). Platelet mitochondria in Alzheimer’s
have been observed as having increased levels of oxidative
stress leading to mitochondrial damage and platelet apoptosis
(160). Studies of mitochondrial function in Parkinson’s disease
have identified mutations or defects in Complex I-IV of the
ETC, α-synuclein, PARKIN, PINK1, DJ-1, and LRRK2 (139). A
decrease in Complexes I and IV can develop quickly within the
first year of Parkinson’s (161, 162), and low levels of activity in
platelet mitochondrial complexes I and II/III in early, untreated
Parkinson’s (163). Other key protein associations include,
NADH CoQ reductase, key to Complex I dysfunction (154),
coenzyme Q10, a key electron receptor in Complexes I and II
of the mitochondrial ETC (164–166) and the neurotransmitter-
degrading enzyme monoamine oxidase B (MAO) (167–169).
Implicated in the pathogenesis of both Alzheimer’s and aging in
general, platelet MAO has been used as a peripheral biomarker
for the onset of Alzheimer’s and Parkinson’s (170, 171). Also
consistent with the association of oxidative stress induced
mitochondrial damage and apoptosis with Parkinson’s disease,
levels of the oxidative protective protein methionine sulfoxide
reductase type 2 (Msrb2) was recently shown to be reduced
in platelets of Parkinson’s disease patients leading to increased
platelet apoptosis (119). Indeed, platelet mitochondria may serve
as an important biomarker in PD. These neurodegenerative
diseases once again demonstrate the essential nature of platelet
mitochondria for survival as reduced function and damage
either through genetic defects or environmental stress leads to
apoptosis and premature platelet death.

With the importance of mitochondria in platelet function and
the potential contributions of mitochondria dysfunction to aging
(49, 130) and age-related diseases, such as diabetes mellitus (58,

93, 94), Parkinson’s (51, 119), and cardiovascular disease (69),
targeting platelet mitochondria may serve as adjunct therapies.
Drugs targeting platelet mitochondria metabolism and apoptosis
may help prevent pathological thrombosis and contributions
to disease. The genomics and proteomics of the mitochondria
(Figure 2) provide multiple potential targets as outlined in an
excellent recent review by Fuentes et al. (172). However, selective
targeting to platelets may require further coupling to platelet
targeting agents.

CONCLUSION

Mitochondria in nucleated cells have been well-described. While
mitochondria functions are similar, its role becomes increasingly
important in the nucleus-free zone of the platelet. As described
in this review, not only are mitochondria involved in energy
metabolism and ATP production in the platelets, they are also the
central drivers of platelet activation and apoptosis; both events
critical for platelet function and lifespan. The pathophysiological
role played by platelet and their mitochondria in many systemic
diseases remain under intense investigation. Therapies targeting
platelet mitochondria may ultimately prove beneficial for such
disease processes.
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