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Objective: Aortic valve disease is commonly found in the elderly population. It is

characterized by dysregulated extracellular matrix remodeling followed by extensive

microcalcification of the aortic valve and activation of valve interstitial cells. The

mechanism behind these events are largely unknown. Studies have reported expression

of hypoxia inducible factor-1 alpha (HIF1α) in calcific nodules in aortic valve disease,

therefore we investigated the effect of hypoxia on extracellular matrix remodeling in aged

aortic valves.

Approach and Results: Western blotting revealed elevated expression of HIF1α and

the complex of matrix metalloprotease 9 (MMP9) and neutrophil gelatinase-associated

lipocalin (NGAL) in aged porcine aortic valves cultured under hypoxic conditions.

Consistently, immunofluorescence staining showed co-expression of MMP9 and NGAL

in the fibrosa layer of these porcine hypoxic aortic valves. Gelatinase zymography

demonstrated that the activity of MMP9-NGAL complex was significantly increased in

aortic valves in 13% O2 compared to 20% O2. Importantly, the presence of ectopic

elastic fibers in the fibrosa of hypoxic aortic valves, also detected in human diseased

aortic valves, suggests altered elastin homeostasis due to hypoxia.

Conclusion: This study demonstrates that hypoxia stimulates pathological extracellular

matrix remodeling via expression of NGAL and MMP9 by valve interstitial cells.

Keywords: aortic valve disease, hypoxia, valve interstitial cells, neutrophil gelatinase-associated lipocalin, elastin

INTRODUCTION

Aortic valve disease (AVD) is one of the most common heart valve diseases, affecting more than
2% of the aged population in the United States (1, 2). Aortic valve replacement either surgically or
through transcatheter aortic valve implantation remains the current treatment modality (3). The
aortic valve (AV) has a unique three-layered leaflet structure: the fibrosa (outflow, aortic side) made
of collagen, ventricularis (inflow, ventricle side) made of elastic fibers, and spongiosa (intermediate
layer) made of proteoglycans and glycosaminoglycans. These heterogeneous extracellular matrix
(ECM) proteins impart adequate durability, stress relaxation and flexibility to the AV and are
regulated by a specialized group of cells called valve interstitial cells (VICs), which are present
across all layers of the AV. In adults, VICs remain quiescent; however the cells undergo phenotypic
activation in diseased AVs, resulting in altered ECM remodeling through heightened synthesis and
activation of matrix metalloproteases (MMPs).
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Although aging is a critical risk factor, AVD is an active
multistep process of fibrocalcification of the AV resulting in
severe stenosis and dysfunction (1). Initiation of AVD is
characterized by endothelial injury triggering inflammation and
infiltration of immune cells such as macrophages. However,
progression of AVD via pathological ECM remodeling occurs
as a separate cell-driven process regulated by VICs (1, 4).
Notably, activated VICs undergo phenotypic transition into
myofibroblasts and osteoblasts by upregulating transforming
growth factor-beta (TGFβ) and nuclear factor kappa B (NFκB)
pathways that facilitate progression of AVD.

Since AVs are largely avascular and oxygen (O2) transfer
within valves occurs via passive diffusion, the thickening of valves
with aging can cause regions within AVs to turn progressively
hypoxic. We recently demonstrated the extent of hypoxia within
both aortic and mitral valves under static conditions (5).
Additionally, hypoxia inducible factor-1 alpha (HIF1α), a marker
of hypoxia, has been shown to be expressed in the calcific nodules
in diseased AVs (6, 7). Nevertheless, the role of hypoxia in the
onset of AVD remains unknown.While it has been demonstrated
that porcine mitral VICs upregulate MMP 2 and 9 in response to
hypoxia (8), dysregulation of matrix remodeling due to hypoxia
in aortic valves is not clearly understood.

HIF1α is known to upregulate several proteins capable of
ECM remodeling. For instance, HIF1α can regulate expression
of NFκB (9) and MMPs 2 and 9 (8), as well as neutrophil
gelatinase-associated lipocalin (NGAL) (10). In the recent past,
NGAL has gained interest for its ability to accelerate ECM
breakdown by interacting with MMP9 and has thus been
investigated as a potential biomarker of chronic kidney disease,
cancer, and cardiovascular diseases. Therefore, the goal of this
study was to determine if hypoxia drives ECM remodeling in
adult AVs. Specifically, we tested the hypothesis that hypoxia
stimulates expression of NFκB as well as NGAL, which result in
ECM remodeling in AVD. Additionally, we also tested hypoxia-
mediated activation of the TGFβ pathway via activation of
both Smad2/3 (canonical) and mitogen activated protein kinase
cascades (non-canonical) to induce ECM remodeling in AVs.
We show for the first time that hypoxia upregulated MMP9-
NGAL complex andNFκB in cultured porcine AVs as well as pilot
HuAVIC cultures. These results provide valuable insights on the
role of hypoxia as well as NGAL in valvular ECM remodeling.

MATERIALS AND METHODS

Hypoxic Culture of Porcine AV Leaflets and
HuAVICs
Whole AV leaflets from aged porcine hearts (> 2 years, N = 9)
were obtained from a local commercial abattoir (Animal
Technologies, Tyler, TX). The AV leaflets were immediately
processed for ex vivo culture and histology (6/9), while some
were preserved in−80◦C for protein isolation as fresh tissue
controls (3/9). Culture of whole AV leaflets was performed as
described previously (5). The leaflets were secured in 6-well plates
coated with a 2mm layer of polydimethylsiloxane (PDMS; Dow
Corning, Midland, MI) using a stainless-steel insect pin inserted

through the center of each leaflet and the pin tip was secured
in PDMS to prevent folding of leaflets. The whole leaflets were
cultured for 1 week with culture media (11) containing DMEM
(5 mmol/L glucose), Ham’s F12 (Hyclone, Logan, UT), 10% v/v
bovine growth serum (BGS; Thermo Fisher Scientific, Waltham,
MA), and 1% v/v antibiotic (Thermo Fisher Scientific) in either
normoxic (20% O2) or moderately hypoxic (13% O2) conditions
since severe hypoxia (5% O2) was found to cause significant cell
death in both VICs and endothelial cells in AV leaflets cultured
ex vivo (5). Analysis of protein expression was compared between
AVs cultured in 20 vs. 13% O2, while the baseline expression was
derived from fresh AV controls.

Human hearts with normal AVs were obtained from donors
through the National Disease Research Interchange program. All
donors (N = 4) were over the age 50; they demonstrated normal
cardiac structure and function and died of non-cardiac causes.
Because these hearts had been considered as prospects for organ
donation, they had a warm ischemia time of <6 h prior to their
being shipped on ice overnight to Rice University (11). Overtly
diseased AVs from patients over the age 50 (N = 4) were procured
during valve replacement surgeries at the Houston Methodist
Hospital (Houston, TX) (6, 12). The valve leaflets from normal,
aged and diseased, aged patients were processed for histology.
All tissue handling protocols have been approved by the Rice
University and the Houston Methodist Hospital Institutional
Review Board.

A small pilot analysis was conducted to assess the effects of
hypoxia on human aortic valve cells. HuAVICs were isolated
from AVs (N = 1, healthy, aged > 50 years, male patient) using
collagenase digests, according to previous published methods
(5, 11, 13). Briefly, the whole valve leaflets were cut in half and
incubated in 2 mg/ml of collagenase II (Worthington Scientific,
Lakewood, NJ) inDMEMcontaining 2.5% antibiotic/antimycotic
(ABAM; Mediatech, Herndon, VA) for 30min in a shaking
incubator at 160 rpm and 37◦C and subsequently the loosened
endothelial cells were removed by gently brushing the leaflet
surface with a sterile cotton swab (14). The tissue was then
finely minced and incubated in an enzymatic digestion solution
containing collagenase III, hyaluronidase, and neutral protease
for 4 h. Subsequently, the mixture was filtered and the cells were
pelleted by centrifugation (1,500 × g, 5min) and resuspended
in the media as detailed above. Once confluent, the HuAVICs
were passaged, seeded at 100,000 cells per well of a 6-well
plate, and then subjected to culture for 1 week in different
hypoxic conditions: 20, 13, and 5% O2. Media was changed
every 2 days.

Hypoxic cultures for both AV leaflets and VICs were
conducted in an incubator sub-chamber (BioSpherix, Parish, NY)
connected to a gas controller. Briefly, a gas cylinder with custom
gas mixes (13 or 5% O2, each with 5% carbon dioxide and
remaining filled with nitrogen) was connected to the inlet of
a pre-programmable O2 controller (BioSpherix) and the outlet
from oxygen controller was connected to a sub-chamber, which
was housed within the traditional cell culture incubator to control
temperature (37◦C) and humidity. The O2 levels (13 or 5%)
were maintained throughout the duration of each culture period.
Cultures grown under 20% O2 were used as controls.
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Immunohistochemistry and
Immunofluorescence Staining
To evaluate regional ECM composition and organization,
histochemistry was performed on 5µm tissue sections
using Movat’s modified pentachrome stain, which colors
elastic fibers black, collagen fibers yellow, proteoglycans,
and glycosaminoglycans blue, muscle red, and cell nuclei
purple. Antibodies directed against remodeling enzymes and
TGFβ pathway markers (see Supplementary Table) were
used to determine protein expression and localization using
immunofluorescence (IF), or streptavidin/biotin colorimetry and
diaminobenzidine (DAB) detection (5, 11, 15). Antigen retrieval
was performed using heat-mediated citrate buffer. Imaging
was performed with confocal and bright-field microscopy.
ImageJ (NIH, Bethesda, MD) was used to quantitatively
analyze IHC and Movat pentachrome stains, as recently
described (5, 16).

Protein Isolation and Quantification
After 1 week in culture, porcine AV leaflets were harvested
for protein isolation as described previously (17, 18). Briefly,
the leaflets were flash frozen with liquid nitrogen and stored
at −80◦C overnight before being lyophilized for 24 h. The
lyophilized tissues were harvested in T-PER lysis buffer (Thermo
Fisher Scientific) containing 1% HaltTM protease inhibitor
cocktail (Thermo Fisher Scientific) and homogenized using a
Tissue Lyser II (Qiagen, Germantown, MD). The homogenized
tissue lysates were incubated at 4◦C for 1 h, then centrifuged at
10,000 × g for 10min, and the supernatant was collected and
stored at −80◦C. Likewise, after 1 week in culture, cell lysates
from humanVICs were collected as described previously (19, 20).
The protein content was determined using a bicinchoninic acid
protein assay kit (Thermo Fisher Scientific) (20).

Western Blotting
Hypoxia-induced differential expression of proteins in the AV
was semi-quantitatively assessed using western blotting. Briefly,
a maximum of 10–20 µl of the tissue or cell lysate was loaded
into each lane of a 4–12% bis-tris SDS-PAGE gels (Invitrogen,
Carlsbad, CA) under reducing or non-reducing conditions, as
described previously (21, 22). The gels were transferred onto
nitrocellulose membrane (Bio-Rad, Hercules, CA) using a Trans-
Blot semi-dry transfer cell (Bio-Rad), blocked with Li-Cor
blocking buffer (LI-COR, Lincoln, NE) for 1 h, and incubated
with primary antibodies overnight at 4◦C. Primary antibodies
against MMPs 2 and 9 (LifeSpan Biosciences, Seattle, WA),
NGAL (for porcine AV), HIF1α, TGFβ1 (Abcam, Cambridge,
MA), NGAL (for HuAVICs), pSMAD2/3, pERK1/2, and NFκB
p65 (Cell Signaling Technologies, Danvers, MA) were used.
Either beta-actin (β-actin) or GAPDH (Abcam) were used as
loading controls. Secondary antibody labeling was carried out
using IRDye R© 680LT and IRDye R© 800CW antibodies (LI-COR)
for 1 h at room temperature. Bands were detected using an Azure
cSeries (Azure Biosystems, Dublin, CA) or Odyssey scanning
system (LI-COR). Protein band intensities were quantified using
Image Studio Lite software (LI-COR) and represented as fold
difference compared to respective loading control.

Zymography
The effect of hypoxia on the enzyme activity of MMPs 2 and
9 was analyzed using gel zymography (18, 20). A total of 10
and 4 µg of tissue and cell lysates, respectively, were loaded in
each lane of 10% gelatin zymogram gels (Invitrogen) and run
for 2 h at 125V. Subsequently, the gels were washed with 2.5%
v/v TritonX-100 for 30min, incubated in substrate development
buffer (G Biosciences, St. Louis, MO) for 48 h, stained with
Coomassie Brilliant Blue (Bio-Rad), and de-stained with water
until clear bands were visible. The bands were then visualized
using an Azure cSeries scanning system (Azure Biosystems) and
quantified as described above.

Statistical Analysis
The statistical analyses were performed using one-way ANOVA
with Tukey’s post-hoc tests to assess the differences between
porcine AVs cultured in 20 vs. 13% O2 compared to fresh
tissues and for comparisons between HuAVICs cultured in 20,
13, and 5% O2. A total of N = 3 animals or replicate cultures
per condition were analyzed. All values are represented as
mean± standard deviation. Differences were deemed significant
for p < 0.05. GraphPad Prism software was used for all
statistical analyses.

RESULTS

Hypoxia Stimulated MMP9-NGAL Complex
Expression in Porcine AVs
Since hypoxia was shown to upregulate MMPs 2 and 9
in young AVs, it is of interest to determine the effects
of hypoxia on aged AVs, to understand their influence in
the initiation and progression of AVD. We first determined
whether our hypoxic conditions (13% O2) stimulated HIF1α
expression. We found that HIF1α had significantly greater
expression in cultured porcine AVs relative to fresh AV controls
and was the highest in 13% O2 AVs compared to 20%
O2 (Figure 1). Previously, our simulation studies on oxygen
diffusion within AVs showed hypoxic regions even under
normoxia; indeed, expression of HIF1α in 20% O2 likely
suggests moderate hypoxia and hence that AVs in 13% O2

may experience moderate to severe hypoxia (5). Similarly,
expression of active MMP2 was increased in cultured AVs.
Different to young AVs, we detected expression of MMP9-
NGAL complex (160 kDa), which was significantly higher in aged
AVs cultured in both 20 and 13% O2 compared to fresh AVs.
Furthermore, expression of this complex was also confirmed in
cultured AVs by probing separately for NGAL (Figure 1), thus
suggesting that hypoxia stimulates expression of MMP9-NGAL
in aged AVs.

Although hypoxia is known to stimulate expression of
NGAL in cancer and kidney diseases, its expression in AVs
or AVD has not been previously reported. To validate if
hypoxia stimulated NGAL in AVs and investigate whether
NGAL is associated with AVD, we analyzed expression
of NGAL in hypoxic porcine and diseased human AVs,
respectively. Both NGAL and MMP9 was expressed in the
fibrosa of human diseased AVs as well as in hypoxic porcine
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FIGURE 1 | Hypoxia promotes expression of matrix remodeling enzymes in aged (>2 years) porcine aortic valves (AVs) in culture. (A) Western blot analysis of tissue

lysates from fresh, normoxic (20% O2) and hypoxic (13% O2) porcine AVs cultured for 1 week. (B) Quantification of western blot band intensities using densitometry

and normalized to βActin. Data shown are mean ± SD from N = 3 animals. *P < 0.05, **P < 0.01, ***P < 0.001 vs. fresh AV controls, and †P < 0.05 between 20 and

13% O2 cultured AVs. Significance determined by one-way ANOVA using Tukey post-hoc test. MMP9-NGAL and NGAL-MMP9 represent bands for the complex

detected when probed separately for MMP9 and NGAL, respectively.

AVs (Figure 2A), thus suggesting the possible interplay
between hypoxia and NGAL in AVD. Additionally, we
found increased expression of HIF1α, MMPs2, and 9 in
the fibrosa of AVs cultured in 13% O2 compared to 20%
O2 (Figure 2B).

Hypoxia Stabilized MMP9 Activity via NGAL
in Porcine AVs
It is known that NGAL stabilizes MMP9 to promote sustained
proteolytic activity; therefore, we investigated the activity of
MMP9-NGAL complex in hypoxic AVs. Our results showed
significant activity of MMP9-NGAL complex in 13% O2

compared to 20% O2 (Figure 3). While pro-MMP9 was
significantly increased in both AVs in 20 and 13% O2, it was the

highest in 20% O2, thus suggesting that hypoxia may influence
both expression as well as activity of MMP9. However, no
differences in the activity of MMP2 was observed between the
cultured AVs (Figure 3B).

Expression of NFκB in Hypoxic Porcine AVs
Since NGAL is predominantly upregulated in inflammatory
conditions by NFκB (23) and since hypoxia can induce NFκB
expression (24), we assessed the expression of NFκB in hypoxic
AVs. NFκB p65 was strongly expressed in the fibrosa of 13% O2

AVs compared to both 20% O2 (Figure 3C). Additionally, our
IF results showed co-expression of HIF1α and NFκB p65 within
the fibrosa of 13% O2 AVs (Figure 3D), suggesting that NFκB
activation was likely mediated by HIF1α.
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FIGURE 2 | Hypoxia induces expression of matrix metalloproteases (MMPs) 2 and 9 in aged (>2 years) porcine aortic valve (AV) tissue. (A) Immunofluorescence

staining showing expression of MMP9 and neutrophil gelatinase-associated lipocalin (NGAL) in fibrosa of both porcine AVs cultured in 13% O2 and human diseased

AV (sclerotic/calcific). Scale bar: 100µm. Dotted white lines indicate the tissue boundary and arrows indicate expression of NGAL in sclerotic/calcific regions in human

AV. (B) Immunohistochemistry analysis showing expression of HIF1α, MMPs 2 and 9 in fresh, normoxic (20% O2) and hypoxic (13% O2) porcine AVs cultured for 1

week. Scale bar: 200µm. F, fibrosa; S, spongiosa; V, ventricularis.

Dysregulated TGFβ1 Signaling in Cultured
Porcine AVs
Next, we investigated the TGFβ1 pathway, since studies have
demonstrated increased expression of active TGFβ1 and its
pathway activation factors such as pSMAD2/3 (canonical) and
activation of mitogen-activated protein kinase pathway cascade
such as the pERK1/2 (non-canonical) in diseased AVs (25,
26). Similarly, we found increased expression of active TGFβ1
(detected as a dimer) as well as pSMAD2/3 in both the cultured
AVs, whereas expression of pERK1/2 was significant only in 20%
O2 (Figures 4A,B), thus suggesting potential dysregulation of
TGFβ1 pathway in aged AVs due to hypoxia. These observations
were also validated using IHC staining (Figure 4C).

Altered Elastic Matrix Homeostasis in
Hypoxic AVs
While hypoxia is known to regulate collagen as well as
glycosaminoglycans in AVs (8, 27), its effects on elastin is not
known.We observed fragmented elastic fibers in the ventricularis
of both 20 and 13% O2 AVs compared to fresh AVs. Importantly,
we also visualized ectopic, nascent elastic fibers in the fibrosa of
AVs in 13% O2 (Figures 5A,C), which is unusual considering
that elastin is predominantly observed in the ventricularis. Thus,
this suggests the potential role of hypoxia in initiating ECM
remodeling in the fibrosa.

To further validate our findings, we investigated diseased
human AVs. We found evidences of a thin layer of elastic fiber
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FIGURE 3 | Expression of matrix metalloprotease (MMP) 9 and neutrophil gelatinase-associated lipocalin (NGAL) complex and nuclear factor kappa B (NFκB) in aged

(> 2 years) porcine aortic valves (AVs). (A) Zymography showing activity of MMP9-NGAL complex, Pro-MMP9, and MMP2 in fresh, normoxic (20% O2) and hypoxic

(13% O2 ) porcine AVs cultured for 1 week. (B) Quantification of band intensities using densitometry. Data shown are mean ± SD from N = 3 animals. * and †

represent significant differences vs. fresh AV controls and between 20 and 13% O2 cultured AVs, respectively. *, †P < 0.05, **P < 0.01, †††P < 0.001, ****P < 0.0001

determined by one-way ANOVA using Tukey post-hoc test. (C) Immunohistochemistry analysis showing expression of NFκB p65 in fresh and cultured porcine AVs in

20, and 13% O2. Scale bar: 200µm. F, fibrosa; S, spongiosa; V, ventricularis. (D) Immunofluorescence staining showing co-expression of NFκB and HIF1α in porcine

AVs cultured in 13% O2. Scale bar: 100µm.

in the fibrosa in the diseased AVs, whereas fragmented elastic
fibers were noted in the ventricularis of both normal and diseased
human AVs (Figures 5B,C). Together, these results suggest a
link between hypoxia and elastic fiber remodeling in the fibrosa,
which may play a role in AVD.

Pilot Study of Expression of NGAL in
Hypoxic Human Aortic VICs
To understand if hypoxia promoted NGAL expression in
VICs, we performed a pilot experiment to assess expression
of MMP9 and NGAL by HuAVICs isolated from a healthy,
aged patient, under 20, 13%, and severely hypoxic 5% O2

conditions. While AV leaflets were cultured in moderately
hypoxic 13% O2, the VICs within these AVs may experience
rather severe hypoxic stress, therefore 5% O2 conditions
were used. Although the results reported here (and shown
in the Supplementary Figure 1) are limited in scope as the
VICs were from a single human valve, the pilot study was
informative. When probed under strong reducing conditions,
different to that performed for the porcine AV leaflet samples,
we detected no complex of MMP9-NGAL, however the
levels of pro-MMP9 and unbound-NGAL was significantly
higher in VICs cultured in 5% compared to 20% O2

(Supplementary Figure 1A). The MMP-NGAL complex was
only detected in the HuAVICs in 5% O2 under non-reducing
and non-denaturing conditions (Supplementary Figure 1B).

Due to the very limited sample size of this pilot analysis,
further study will be needed to assess whether severe hypoxia
induces expression and stabilization of MMP9-NGAL complex
in HuAVICs.

DISCUSSION

Here, we demonstrated the effects of hypoxia in aged AVs. Given
that almost all studies that investigated role of hypoxia in valve
disease employed valves from young animals (5, 8, 27), our
major goal was to study aged AVs from pigs and humans to
gain better insights on the influence of hypoxia on valve disease.
We sought to study porcine AVs because pigs have been shown
to be a good model to study heart valve diseases. Considering
the anatomical and structural similarity to aged humans (60–
70 years), porcine AVs (>2 years) were used. The AVs were
cultured for 1 week only as we noticed tissue necrosis beyond
that time frame.

Hypoxic stress was confirmed by upregulation of HIF1α
in AVs cultured in both 13 and 20% O2, in agreement with
our previous published work (5). Similarly, individual effects
of hypoxia on upregulating MMP2, MMP9 expression and
activity was found to be consistent with other studies. For the
first time, we showed expression of MMP9-NGAL complex
in the cultured AV leaflets. The pilot study of VICs was
consistent with that result but required a more severe state
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FIGURE 4 | Dysregulation of TGFβ pathway in hypoxic aged (>2 years) porcine aortic valve (AV) tissue. (A) Western blot analysis of tissue lysates from fresh, normoxic

(20% O2 ) and hypoxic (13% O2) porcine AVs cultured for 1 week. (B) Quantification of western blot band intensities using densitometry and normalized to GAPDH.

Data shown are mean ± SD from N = 3 animals. *P < 0.05, **P < 0.01 vs. fresh AV controls, significance determined by one-way ANOVA using Tukey post-hoc test.

(C) Immunohistochemistry analysis showing expression of TGFβ1, pSMAD2/3, and pERK1/2 in fresh and cultured porcine AVs in 20, and 13% O2. Scale bar:

200µm. F, fibrosa; S, spongiosa; V, ventricularis.
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FIGURE 5 | Hypoxic aged (>2 years) porcine aortic valve (AV) and human diseased AV demonstrate ectopic elastic fiber expression in the fibrosa. (A,B) Movat

histochemical staining in porcine AVs (fresh and cultured in 20 and 13% O2 for 1 week) and human normal and diseased (sclerotic/calcified) AVs. Scale bar = 200µm,

50µm (top right), and 100µm (lower right). (C) Immunofluorescence staining for elastin (green) on porcine AV cultured in 13% O2 for 1 week and human diseased

(sclerotic/calcified) AV. F, fibrosa; S, spongiosa; V, ventricularis. Arrows denote elastin expression. *indicate calcific nodule. Scale bar = 100µm.

of experimental hypoxic stress, which we speculate is due to
the cells deep within the leaflets being naturally subjected
to a hypoxic environment. Several studies in cancer (28–
30), kidney (10, 31, 32), and cardiovascular diseases (33–
35) have demonstrated association of NGAL with MMP9 to
facilitate ECM remodeling. Furthermore, NGAL is secreted
in hypoxic conditions primarily by neutrophils or by other
cell types including endothelial cells (36), macrophages (36),
cardiomyocytes (37), and epithelial cells (38), but no reports on
NGAL expression by VICs exists.

Although interaction between NGAL and MMP9 is still not
clearly understood, we believe that the complex demonstrated
in this work contains the homotrimer NGAL (70 kDa) and
pro-MMP9 (28). However, in most studies the complex was
cleaved under strong reducing and denaturing conditions (39);
our observation of the intact complex under similar conditions
suggests that the interaction is likely hydrophobic in aged
porcine AVs cultured under hypoxia, as demonstrated by Kiczak
et al. (40). Hence, this strong association of NGAL with
MMP9 explains the heightened activity of the MMP9-NGAL
complex in 13% O2.

The general consensus that AVD originates in the fibrosa,
since it is the most affected layer during AVD (41, 42),
was supported by our IHC results. Analysis of HIF1α,
MMP2, and MMP9 as well as the co-staining of MMP9 and
NGAL showed strong expression in the fibrosa of AVs in
13% O2. Furthermore, given that NFκB as well as HIF1α
can stimulate synthesis of NGAL (10), we believe that the

increased expression of NGAL in AVs was likely mediated
by NFκB/HIF1α pathway, which was also found to be co-
expressed in the fibrosa of AVs in 13% O2. Another major
signaling cascade implicated in AVD is the TGFβ pathway.
TGFβ pathways regulate VIC phenotype as well as ECM
remodeling via activation of the components in the pathway
(43, 44). Our results showed increased expression of active
TGFβ1, pSMAD2/3, and pERK1/2 in the cultured AVs, thus
suggesting possible dysregulation of the TGFβ pathway under
hypoxic stress.

Since hypoxia upregulated the activity of MMP9-NGAL
complex, we investigated its effects on valvular elastin
remodeling. Our findings of ectopic elastic fibers in the
fibrosa of 13% O2 AVs as well as human diseased AVs
suggest increased crosslinking of the elastin monomers
by lysyl oxidase, an enzyme found to be increased under
hypoxic conditions (45, 46). Therefore, together with the
increased expression of MMP9 and NGAL in the fibrosa, our
results confirmed the association of hypoxia in elastic fiber
remodeling in AVD and implicates NGAL as a potential
marker for initiation of AVD. Our future studies will
expand upon this outcome to delineate the mechanism
of hypoxia-mediated VIC stimulation toward AVD using
leaflets and quiescent VICs isolated from several human
donor hearts.

Overall, the current study demonstrates the influence of
hypoxia on the pathological remodeling in aged AVs possibly
by upregulating expression and activity of MMP9-NGAL. The
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findings in this study will provide insights into understanding the
role of NGAL on AVD pathogenesis.
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