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Cardiac computed tomography (CT) allows rapid visualization of the heart and coronary

arteries with high spatial resolution. However, analysis of cardiac CT scans for

manifestation of coronary artery disease is time-consuming and challenging. Machine

learning (ML) approaches have the potential to address these challenges with high

accuracy and consistent performance. In this mini review, we present a survey of the

literature on ML-based analysis of coronary artery disease in cardiac CT. We summarize

ML methods for detection and characterization of atherosclerotic plaque as well as

anatomically and functionally significant coronary artery stenosis.
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1. INTRODUCTION

Diagnosis and monitoring of coronary artery disease (CAD) is increasingly based on non-invasive
imaging with computed tomography (CT), allowing excellent visualization of the coronary arteries
with high spatial resolution. Cardiac CT exams consist of hundreds of slices and the number of
cardiac CT studies has been steadily increasing (1). This has led to an increased workload for
medical professionals, which in combination with shortages of trained cardiac imagers (2) might
lead to cardiac CT underuse in the clinic. Machine learning (ML) could offer a way to address
these challenges and facilitate automatic cardiac CT analysis with consistent and accurate results.
Furthermore, ML algorithms might enable an increased range of secondary diagnoses.

This survey provides an overview of ML algorithms for detection, characterization, and
quantification of CAD in cardiac CT. We searched PubMed for articles related to ML-based
assessment of CAD in cardiac CT published within the last 10 years (search strategy in
Supplementary Materials) which led to inclusion of 59 studies. The structure of this survey is as
follows. We provide a brief primer on ML in section 2. Applications of ML for automatic detection
and characterization of atherosclerotic plaque are summarized in section 3. Studies focusing on
ML for anatomical and functional evaluation of luminal stenosis are summarized in section 4.
Finally, section 5 provides a discussion of outstanding challenges for transfer of ML algorithms
into the clinic.
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2. MACHINE LEARNING

Machine learning comes in many flavors, but most applications
in cardiac CT use supervised learning. In supervised learning, a
model is optimized to provide the correct labels as defined by the
reference standard during training, and predict a label to new and
unseen samples during testing.

Each sample can be described based on characteristics or
features. Among the simplest ML algorithms are k-nearest
neighbor (kNN) classifiers, which look for training samples
with similar feature values to a test sample, and assign the test
sample to themajority class among these training samples. Linear
classifier (LC) models like support vector machines (SVM) aim
to find a linear combination of features to separate samples
in different classes. Alternatively, samples can be separated by
thresholding feature values along a single axis. This is unlikely
to lead to highly accurate classifiers, but by consecutively
applying thresholds, a decision tree model can be built for more
accurate classification.

ML performance can often be improved by combining
predictions of multiple models. Ensembles (E) combine
predictions of multiple simultaneously executed models, e.g.,
by averaging predictions of decision trees in a random forest
(RF). In boosting (BO), models are applied consecutively and
each model is trained to correct errors of its predecessors.
Finally, artificial neural networks (ANNs) transform samples
into targets through layers of trainable neurons, which are
loosely based on biological neurons. While ANNs have been
around since the 1950s, it has recently become possible to train
networks that have many layers, i.e., deep learning. The success
of deep learning in medical image analysis has been to a large
extent due to the inclusion of trainable image filters in so-called
convolutional neural networks (CNNs), which can be trained to
extract valuable features from raw image data (3). For a more
in-depth introduction to ML and deep learning, please refer to
Jordan and Mitchell (4).

3. ATHEROSCLEROTIC PLAQUE
DETECTION, CHARACTERIZATION, AND
QUANTIFICATION

CT offers a non-invasive alternative to e.g., catheter-guided X-ray
angiography, optical coherence tomography, and intravascular
ultrasound (IVUS) for atherosclerotic plaque visualization.
Characterization and quantification of plaque in CT provide
insight in different stages of CAD (5). In this section, we survey
analysis of methods for calcified plaque (section 3.1) and non-
calcified and mixed plaque (section 3.2). Reviewed papers are
listed in Table 1.

3.1. Calcified Plaque
Coronary artery calcification (CAC) quantification or scoring is
typically performed in dedicated non-contrast-enhanced, ECG-
triggered, calcium scoring CT images (CSCT). Using dedicated
software, an expert identifies voxels with a density over 130
Hounsfield units (HU) in the coronary arteries. Identified
CAC is then quantified according to its volume, density, or a

TABLE 1 | Publications related to analysis of (A) calcified and (B) non-calcified and

mixed atherosclerotic plaque.

(A) Calcified plaque CSCT Chest CT CCTA Training Testing Classifier

de Vos et al. (6) X X 1,554 1,036 CNN

Cano-Espinosa

et al. (7)

X 4,973 1,000 CNN

Lessmann et al. (8) X 1,181 506 CNN

Yang et al. (9) X X 32 40 SVM

Wolterink et al. (10) X 150 100 CNN

Wolterink et al. (11) X 384 570 RF

Shahzad et al. (12) X 209 157 kNN

Išgum et al. (13) X 337 231 kNN,

SVM

Sánchez et al. (14) X 200 76 kNN

Liu et al. (15) X * 31 SVM

Kurkure et al. (16) X 100 105 SVM

Brunner et al. (17) X * 30 SVM

(B) Non-calcified

plaque

Detect Characterize Training Testing Classifier

Kolossváry et al. (18) X * 7 LC

Masuda et al. (19) X * 78 BO

Zreik et al. (20) X X 98 65 CNN

Zhao et al. (21) X X * 18 SVM

Jawaid et al. (22) X * 32 SVM

Wei et al. (23) X * 83 LC

Yamak et al. (24) X - 3 E

Kelm et al. (25) X X * 229 RF

Zuluaga et al. (26) X 1/13† 14/2 SVM

Check marks in (A) indicate detection (Detect) or characterization (Characterize) of plaque,

check marks in (B) indicate analysis in dedicated non-contrast-enhanced calcium scoring

CT (CSCT), chest CT (Chest CT) or coronary CT angiography (CCTA) images. The number

of patients included for method development (Training) and evaluation (Testing) are listed,

* indicates cross-validation and - indicates training on non-patient data. The classifier

with which the primary result was obtained is indicated (Classifier, see section 2 for

abbreviations).
†
A total of 15 scans was divided into training sets ranging from 1 to 13 and respective

test sets comprised of the remaining scans.

combination of both (27). CAC cannot only be quantified in
CSCT, but also in other kinds of CT images visualizing the heart,
such as cardiac CT angiography (CCTA) and non-gated chest
CT. Calcium scoring is not considered a difficult task for trained
clinicians, but it is time-consuming when performed in large
numbers of images. Hence, automatic ML-based methods have

been proposed.
ML-based calcium scoring methods proposed prior to the

advent of deep learning have focused on identification of CAC
lesions among a large set of samples, i.e., groups of connected
voxels above 130 HU. Samples are described with features such
as size, shape, appearance and location to distinguish CAC
from other candidate lesions such as calcifications in the aorta.
Location features are of particular importance, as recognized by
Liu et al. (15), Kurkure et al. (16), and Brunner et al. (17) who
proposed a heart coordinate system. Similarly, Sánchez et al. (14)
described candidate locations relative to anatomical landmarks.
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Išgum et al. (13) used multi-atlas registration to estimate the
location of the coronary artery tree, while Shahzad et al. (12)
and Wolterink et al. (11) estimated the location of three major
coronary arteries for per-vessel calcium scoring. Yang et al.
(9) extracted coronary artery centerlines in CCTA images and
propagated these to CSCT images of the same patients to provide
location features.

Deep learning-based methods have typically classified
individual voxels instead of candidate lesions. Due to the
extreme imbalance between numbers of CAC and background
voxels in CT images, Wolterink et al. (10) proposed to use two
CNNs, where one CNN identified candidate voxels in CCTA
and the second CNN further discriminated among identified
candidates. Similarly, Lessmann et al. (8) used two CNNs to
identify calcified voxels in chest CT. Cano-Espinosa et al. (7)
and de Vos et al. (6) avoid voxel-based classification altogether
by directly regressing calcium scores in chest CT, enabling
automatic scoring in less than a second.

Automatic CAC scoring methods have been validated in large
data sets (28) and in other types of CT scans in which the heart
is routinely visualized, such as attenuation correction images for
PET-CT (29) and CT images acquired for radiotherapy treatment
planning (30–32). Wolterink et al. presented a public data set
with reference standard for standardized evaluation of CAC
scoring in CSCT (33).

3.2. Non-calcified Plaque
Non-calcified plaque is typically lipid-rich and vulnerable to
rupture, causing acute coronary syndrome (34). ML-based
analysis methods in CCTA have been developed for detection or
localization of non-calcified plaque, as well as characterization of
lipid and fibrous plaque components.

Coronary artery localization by means of centerline extraction
is a typical preprocessing step for ML-based plaque analysis.
Traditionally, many automatic centerline extraction methods
have been based on minimum cost paths between proximal
and distal artery points (35, 36). ML has been used to verify
automatic centerline extraction results with an RF (25) or CNN
(37). Alternatively, centerlines can be iteratively extracted based
on a single seed point. Wolterink et al. (38) showed how such
a tracker can be guided by a 3D CNN that locally detects the
artery orientation.

Coronary artery centerlines can be used to reconstruct CCTA
volumes into images that allow better plaque visualization and
identification. Zhao et al. (21), Jawaid et al. (22), Wei et al.
(23), and Zuluaga et al. (26) used cross-sectional images along
the coronary artery centerline to extract features describing
the vessel wall shape and texture. In Jawaid et al. (22) and
Wei et al. (23), these features were used in an SVM or linear
classifier to determine whether the image contained non-calcified
plaque. Similarly, Zuluaga et al. (26) used such features to
train an SVM classifying lesion segments as either healthy
or diseased, i.e., containing non-calcified or calcified plaque.
Zhao et al. (21) trained an SVM to classify cross-sectional
images as healthy or containing non-calcified, calcified, or mixed
plaque. For the same task, Zreik et al. (20) trained a recurrent
CNN that did not depend on hand-crafted feature extraction.

Kelm et al. (25) used an RF classifier to classify whether non-
calcified or calcified plaque was present along a coronary artery
centerline segment.

Characterization of individual components in non-calcified
plaque is a challenging task due to low-contrast boundaries
between plaque components (39). Yamak et al. (24) exploited
additional attenuation data provided by dual-energy CT to
characterize plaque in manually determined regions of interest
in axial slices. To validate their model in patient scans, manual
CCTA annotations by an expert were used. However, obtaining
reliable manual reference annotations for non-calcified plaque
in CCTA is challenging. Kolossváry et al. (18) determined the
reference standard in CCTA through registration of histology
images to ex-vivo CCTA scans. Features were extracted for
each cross-sectional image and lesions were classified into
advanced or early stage atherosclerosis using a linear classifier.
Alternatively, Masuda et al. (19) used an in-vivo IVUS-
based reference standard to train a boosting classifier with
histogram-based features distinguishing fibrous from lipid
plaque in CCTA.

4. CORONARY STENOSIS DETECTION
AND CHARACTERIZATION

Non-invasive assessment of CAD-induced stenotic lesions in
CT prior to invasive treatment may prevent unnecessary costs
and complications (40). Therefore, CT images have long been
used to assess the anatomical significance of lesions by a local
measurement of luminal narrowing. However, determination
of the functional significance of a lesion by taking physiology
into account can better stratify patients in need of treatment
(41). In this section, we review ML algorithms for the detection
and quantification of anatomically (section 4.1) and functionally
(section 4.2) significant stenosis. Reviewed papers are listed
in Table 2.

4.1. Anatomical Significance
Identification of anatomically significant stenotic lesions in
CCTA, i.e., those lesions causing a luminal narrowing of at least
50%, allows a first assessment of the severity of stenosis in patients
with symptoms of CAD. While this assessment is often based on
visual estimation by a clinician, this is a difficult task (56) with
substantial inter-observer variability (57). ML-based automatic
approaches could reduce this variability.

Stenosis detection typically requires a local measurement
of the lumen diameter and an estimation of the healthy
lumen diameter. These estimates can be based on automatically
extracted centerlines (section 3.2). Many centerline extraction
methods also estimate the luminal radius at each centerline
point, assuming a circular coronary artery profile (25, 38).
However, circular artery profiles are not a realistic assumption
for diseased vessel segments. Automatically extracted centerlines
can also be used as an initialization for more detailed
lumen segmentation. Huang et al. (44) used centerlines
to obtain a reformatted image in which the lumen was
segmented using a 3D CNN. Lee et al. (42) use centerlines to
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TABLE 2 | Publications related to (A) anatomically and (B) functionally significant

stenosis detection.

Structure Patients

Artery Myocardium Training Testing Classifier

(A) Anatomical significance

Lee et al. (42) X 412 136 CNN

Freiman et al. (43) X * 90 CNN

Zreik et al. (20) X 98 65 CNN

Huang et al. (44) X 45 7 CNN

Kang et al. (45) X * 42 SVM

Xiong et al. (46) X * 140 BO

Mukhopadhyay

et al. (47)

X * 27 ANN

Kelm et al. (25) X * 229 RF

Zuluaga et al. (48) X 9 9 SVM

(B) Functional significance

Kumamaru et al. (49) X * 131 CNN

Wang et al. (50) X 8 63 ANN

Hae et al. (51) X 932 279 BO

Dey et al. (52) X * 254 BO

Zreik et al. (53) X * 166 SVM

Han et al. (54) X * 252 BO

Itu et al. (55) X - 87 ANN

Check marks indicate arterial (Artery) or myocardial (Myocardium) analysis. The number

of patients included for method development (Training) and evaluation (Testing) are listed,

*indicates cross-validation and - indicates training on non-patient data. The classifier

with which the primary result was obtained is indicated (Classifier, see section 2 for

abbreviations).

obtain a tube-shaped prior that is deformed to segment the
coronary lumen.

Lumen segmentation is often considered a preprocessing
step for stenosis detection, but it has been shown that stenosis
degree can also be directly determined based on image data.
Zuluaga et al. (48) detected stenosis and artery bifurcations
with an SVM based on features obtained from concentric
circles in cross-sectional images. Similarly, Kang et al. (45) used
geometrical and plaque features in an SVM to detect obstructive
lesions (> 50% narrowing) and non-obstructive lesions (25–50%
narrowing). Zreik et al. (20) used a recurrent CNN to detect
anatomically significant stenosis along the centerline. Freiman
et al. (43) detected stenosis of at least intermediate severity
(> 40% narrowing) using deep sparse autoencoders, a variation
on CNNs.

Coronary stenoses are located in the arteries, but may restrict
blood flow to myocardial segments. Mukhopadhyay et al. (47)
used an ML approach to identify myocardial segments (58)
affected by coronary stenosis. Hand-crafted feature vectors
describing the endocardial surface shape were combined using a
bag-of-words approach and classified with an ANN to identify
affected segments. Xiong et al. (46) performed analysis of the
full myocardium to detect existence of at least one anatomically
significant stenosis. Instead of the shape of the endocardial

surface, features in this approach described the attenuation and
wall thickness of myocardial segments.

4.2. Functional Significance
The sensitivity of CCTA-based anatomical stenosis evaluation
for detection of functionally significant stenosis is high when
evaluated visually, but its specificity is moderate (41). The current
reference standard for determination of functional significance
of a stenosis is given by its fractional flow reserve (FFR), i.e.,
the ratio of flow distal of the stenosis to the flow proximal of
the stenosis. FFR is measured invasively by inserting a special
catheter in the coronary artery under hyperemic conditions. FFR
below 0.80 indicates need for intervention (59). Treatment based
on invasive FFR measurements can improve patient outcomes
(59), butmeasurement of FFR is still relatively uncommon, which
is due to associated cost and risk, as well as lack of vasodilator
drugs (60).

FFR estimation based on CCTA scans (FFRCT) could provide
reproducible physical measurement without the drawbacks of
invasive procedures. FFRCT has traditionally been based on
computational fluid dynamics (CFD) (61, 62), i.e., numerical
simulation of blood flow in a coronary tree model extracted
from CCTA using lumen segmentation methods (section 4.1).
These methods are accurate (63) but computationally expensive
due to their iterative nature. This precludes their deployment
on local workstations, and instead CFD simulations are typically
performed on off-site dedicated systems. ML could be used to
significantly speed up estimation of FFRCT.

Itu et al. (55) proposed an ANN model to predict an FFR
value for each segment in the coronary artery tree, given local
features based on the segment’s geometry and global features
based on the most severe stenoses. To train this model, a large
data set of 12,000 synthetic coronary artery trees was generated
and a reference standard was obtained through conventional
CFD simulation. By only performing CFD simulations once in a
training phase, the time required to perform FFRCT was reduced
by two orders of magnitude. The diagnostic value of this method
has been demonstrated thoroughly (64–76). Yu et al. (77) further
demonstrated additional prognostic value of CT morphological
index for the method proposed by Itu et al. (55). Wang et al.
(50) proposed to use a recurrent ANN that can model long-range
dependencies between segments.

Both conventional CFD-based FFRCT and the methods
proposed in Wang et al. (50) and Itu et al. (55) are based only
on the geometry of the coronary artery tree model, and are thus
susceptible to errors by the segmentation method used to obtain
this model (78). Instead, Dey et al. (52) proposed to combine
geometric features with semi-automatically obtained plaque and
attenuation gradient measurements to identify arteries with
functionally significant stenosis. Other methods skip explicit
coronary artery centerline extraction and lumen segmentation
altogether. Kumamaru et al. (49) trained a CNN to extract a map
showing the contrast-enhanced territories in CCTA and used
this map in a classifier to predict the minimum FFR value in a
patient. Alternatively, analysis can be moved from the cause—
the coronary arteries—to the effect, i.e., the myocardium. Han
et al. (54) subdivided the separated endocardium and epicardium

Frontiers in Cardiovascular Medicine | www.frontiersin.org 4 November 2019 | Volume 6 | Article 172

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Hampe et al. Machine Learning in Cardiac CT

into the American Heart Association (AHA) 17 segments (58),
with 3 features per segment characterizing perfusion and wall
thickness. However, the trained boosting classifier showed only
moderate accuracy for patientwise prediction of abnormal FFR
values. For the same purpose, Zreik et al. (53) trained an SVM
based on features frommyocardial regions extracted fromCCTA.
Clinical evaluation of this method yielded improved diagnostic
accuracy of FFRCT over visual evaluation of stenosis (79). Hae
et al. (51) increased accuracy of FFR-prediction by including
the tissue volume subtended to a stenotic lesion in analysis.
However, determination of lesion position required additional
analysis including artery tree segmentation.

5. DISCUSSION

We have presented a survey of applications of ML for detection,
characterization and quantification of atherosclerotic plaque and
stenosis in cardiac CT. We found that while ML has been
a mainstay of cardiac image analysis for years, the recent
emergence of deep learning has accelerated progress in the field.
Machine learning has the potential to unburden clinicians from
time-consuming tasks and change diagnostic procedures, thereby
reducing healthcare costs. Moreover, low-cost ML-based analysis
could be added to screening studies as a secondary goal. In
this survey, we have focused on ML for CAD analysis. For
a broader scope the reader is referred to Al’Aref et al. (80),
Litjens et al. (81), Nicol et al. (82), Petersen et al. (83), and
Singh et al. (84).

We have reviewed plaque and stenosis analysis methods
in separate sections, but formation of plaque and stenosis is
naturally related and many papers have proposed simultaneous
analysis [e.g., (48, 53)]. Moreover, (semi-)automatic
identification of plaque or stenosis is often only an intermediate
step for prediction of cardiovascular events. Motwani et al.
(85) used stenosis scores and plaque characteristics to develop
a model for 5 years all-cause mortality prediction. Similarly,
Johnson et al. (86) showed that an ML model taking into account
per segment coronary artery characteristics can outperform
hand-crafted models for prediction of adverse cardiac events.
Van Rosendael et al. (87) developed a model for all-cause
mortality prediction in combination with future myocardial
infarction based only on hand-crafted features derived from
CCTA scans. Furthermore, some methods directly predict
presence of CAD from medical images, i.e., chest CT (88) or
non-contrast-enhanced cardiac CT (89). While these approaches
only require one label per patient and large data sets are thus
not expensive to obtain, the interpretability of predictions may
be limited. Interpretability might constitute an opportunity,
not only to improve reliability but also as it might increase

medical knowledge by quantifying the diagnostic relevance of
underlying phenomena.

The readiness of automatic analysis methods for clinical
implementation depends on the complexity of the task, but
also on other factors. ML algorithms require large training
sets, and tasks with abundant data may be easier to automate.
For example, obtaining a ground truth for e.g., non-calcified
plaque characterization is very challenging. Therefore, data sets
are generally small and ML algorithms remain at an early
developmental stage. In contrast, large data sets are available for
the development of ML-based CAC scoring methods, which has
led to highly accurate results in both dedicated cardiac CT images
(11) and other CT images visualizing the heart (8, 32). Similarly,
ML-based FFRCT development is aided by the availability of
large data sets with CFD-derived reference values. An important
remaining step toward clinical application of FFRCT lies in
performance evaluation specifically for subjects around the FFR
threshold of 0.8, which were shown to be most challenging (90).
Furthermore, a recent study showed that not all CCTA exams are
suitable for FFRCT analysis (78).

Many challenges in the adoption of machine learningmethods
in the clinic are not exclusive to CAD detection in cardiac CT.
For example, ML algorithms could show unexpected behavior,
motivating research into ML interpretability and explainability
(91). Furthermore, it is important to point out that ML
algorithms are often trained and evaluated on single center
studies with high risk for selective biases, and under exclusion
of low quality scans.

Despite these challenges, current rapid development allows for
justifiable hope that the importance of ML algorithms in cardiac
CT will not cease to increase in near future, with benefits for
clinicians and patients alike.
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