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Cardiac magnetic resonance (CMR) imaging is an important tool for the non-invasive

assessment of cardiovascular disease. However, CMR suffers from long acquisition

times due to the need of obtaining images with high temporal and spatial resolution,

different contrasts, and/or whole-heart coverage. In addition, both cardiac and

respiratory-induced motion of the heart during the acquisition need to be accounted for,

further increasing the scan time. Several undersampling reconstruction techniques have

been proposed during the last decades to speed up CMR acquisition. These techniques

rely on acquiring less data than needed and estimating the non-acquired data exploiting

some sort of prior information. Parallel imaging and compressed sensing undersampling

reconstruction techniques have revolutionized the field, enabling 2- to 3-fold scan

time accelerations to become standard in clinical practice. Recent scientific advances

in CMR reconstruction hinge on the thriving field of artificial intelligence. Machine

learning reconstruction approaches have been recently proposed to learn the non-linear

optimization process employed in CMR reconstruction. Unlike analytical methods for

which the reconstruction problem is explicitly defined into the optimization process,

machine learning techniques make use of large data sets to learn the key reconstruction

parameters and priors. In particular, deep learning techniques promise to use deep

neural networks (DNN) to learn the reconstruction process from existing datasets

in advance, providing a fast and efficient reconstruction that can be applied to all

newly acquired data. However, before machine learning and DNN can realize their full

potentials and enter widespread clinical routine for CMR image reconstruction, there

are several technical hurdles that need to be addressed. In this article, we provide

an overview of the recent developments in the area of artificial intelligence for CMR

image reconstruction. The underlying assumptions of established techniques such as

compressed sensing and low-rank reconstruction are briefly summarized, while a greater

focus is given to recent advances in dictionary learning and deep learning based CMR

reconstruction. In particular, approaches that exploit neural networks as implicit or explicit

priors are discussed for 2D dynamic cardiac imaging and 3D whole-heart CMR imaging.

Current limitations, challenges, and potential future directions of these techniques are

also discussed.
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INTRODUCTION

Magnetic resonance imaging (MRI) is a valuable tool for
the non-invasive assessment of cardiovascular disease. Cardiac
MR (CMR) imaging has been established as a clinically
important technique for the assessment of cardiac morphology,
function, perfusion, viability, and more recently quantitative
myocardial tissue characterization (1–3). CMR is currently
used to diagnose congenital heart disease (CHD), ischemic
heart disease, valvular heart disease, pericardial lesions, cardiac
tumors and cardiomyopathies, among others (4, 5). However,
CMR suffers from long acquisition times due to the need of
obtaining images with high temporal and spatial resolution,
different contrasts, and/or whole-heart coverage. In addition,
both cardiac and respiratory-induced motion of the heart during
the acquisition need to be accounted for, further increasing the
scan time.

Several technical advances have been proposed during the last
decades to improve CMR, including the development of efficient
pulse sequences to speed up the scan and improve the contrast of
the images, the development of motion compensation techniques
to account for the respiratory and cardiac induced movement
of the heart, the use of multiple radio-frequency receiver coils
for parallel imaging (PI), and the development of undersampled
reconstruction techniques to acquire less data than needed (in
the Nyquist sense) and thus accelerate the acquisition. PI allows
to decrease the scan time by reducing the number of phase
increment steps (undersampling) and exploiting the sensitivity
encoding of the multiple receiver coils to recover the non-
acquired data. PI has been widely integrated into commercial MR
systems and is routinely used in clinical practice. Undersampled
reconstruction techniques such as compressed sensing (CS) have
been also employed to accelerate CMR imaging. CS works under
the assumption that the k-space data is randomly undersampled,
the image has a sparse representation in some pre-defined basis
or dictionary, and a non-linear reconstruction is performed
to enforce the sparsity of the image and consistency with
the acquired MR data. In practice, CS-based reconstruction
techniques employ pseudo-random trajectories (usually with
variable density) along with one or several (e.g., spatial and
temporal dimensions) sparse transforms such as finite differences
(e.g., total variation) or wavelets operators. Early 2017, the
U.S. Food and Drug administration (FDA) cleared the CS
technology to enable the fast acquisition of CMR images, thus
officially opening the door to the broader clinical use of this
technique (6–8).

Recent efforts have been made to further improve CS-
based reconstruction quality by learning dictionary-based
representations of the sparse domain from the acquired
data itself (or jointly during reconstruction) instead of
exploiting known analytical transform domains. However,
CS-based reconstruction techniques usually suffer from long
computational times and their performance depends on the
choice of the sparsity representation and the tuning of the
corresponding reconstruction parameters. More recently deep
neural networks (DNN) have been proposed to overcome
these challenges by learning optimal reconstruction parameters

and/or transforms from the data itself and enabling extremely
fast computational times (after training), promising to further
advance the field of CMR reconstruction.

In this review paper, we first briefly discuss the CS and
dictionary learning models, which offer a framework for sparse
signal recovery and low-dimensional signal models and serve as
a background for the following section. Recent representative
advances in deep learning (DL) for CMR reconstruction
are next discussed, highlighting theoretical developments and
cardiac applications.

TRANSFORM AND DATA-DRIVEN CMR
RECONSTRUCTION

This section briefly introduces the key concepts that underlie
MR image reconstruction as an inverse problem, that will serve
as background material to the rest of the review. CS-based
and dictionary learning models for CMR reconstruction are
also discussed. We refer the reader to Ye (9) and Jaspan et
al. (10) for further discussion on the application of CS to MR
image reconstruction.

MR Reconstruction as an Inverse Problem
The general (discretized) principles of MR signal generation
and image formation can be expressed as a system of linear
equations (11):

s = Eρ (1)

Where the MR encoding operator E includes the coil sensitivity
profiles, the Fourier transform and the sampling mask, ρ is
the image to be recovered and s is the acquired k-space data
(Figure 1). The image ρ is thus reconstructed by solving an
inverse problem that aims to recover an estimate of ρ from
the known encoding operator E and the acquired signal s. This
inverse problem is ill-posed, i.e., not all the following well-
posedness conditions are satisfied: (i) existence of the solution,
(ii) uniqueness of the solution, and (iii) stability of the solution
(i.e., small disturbances in s do not lead to large perturbations
in ρ). The main factors that make MR reconstruction an ill-
posed problem include the large scale of the optimization,
the system imperfections (e.g., coils sensitivities, signal model
simplifications), the limited amount of phase increment steps
(undersampling) and the acquisition noise which corrupts
the signal.

To overcome the ill-posed nature of the MR image
reconstruction problem, this is typically reformulated as a
regularized optimization:

ρ̂ = argminρ ‖Eρ − s‖ 2
2 + λR (ρ) (2)

where the image ρ̂ is recovered by balancing between a
regularization term R(ρ), which is added as an additional
constraint to stabilize the solution, and a data consistency
‖Eρ − s‖22 < ǫ, where ǫ is the noise level. The weighting
parameter λ controls the degree of regularization and needs to
be chosen according to the noise level of the acquired data.
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FIGURE 1 | Description of the encoding operator E for CMR reconstruction.

Especially, considering sparsity priors and statistical properties
of the MR images to regularize the reconstruction problem have
shown great promise. The application of these techniques to
speed CMR imaging is the topic of the following subsections.

CS for CMR Imaging
CS MRI reconstruction assumes that the k-space data is
pseudo-randomly undersampled, the image admits a sparse
representation in some transform domain 8, and a non-linear
reconstruction is performed to enforce data consistency and
sparsity of the MR image in the transform domain. A natural
approach to enforce sparsity is by replacing the regularization
term in Equation (2) by the l0 (pseudonorm) of the sparse
coefficients (12), which counts the number of non-zero entries.
However, since the l0 “norm” does not satisfy the convexity
property of a norm and leads to an NP-hard combinatorial
problem, approximate solutions are considered instead by
replacing the l0 term by the convex l1-norm (13):

ρ̂ = argminρ ‖Eρ − s‖ 2
2 + λ‖Φρ‖1 (3)

The problem in Equation (3) is convex and can be solved with
a variety of regularization and convex optimization techniques.
In cardiac MRI, 8 can be chosen e.g., as the temporal Fourier
transform, spatio-temporal total variation, or spatio-temporal
wavelets (Figure 2). CS has been extensively used in numerous
cardiac applications, such as cardiac cine imaging (14, 15), first-
pass cardiac perfusion (16), 3D late gadolinium enhancement
(LGE) imaging (17), 3D whole-heart coronary MR angiography
(CMRA), and more recently for 4D and 5D free-running CMRA
(18–21), among many others. We briefly review some of those
techniques in the next paragraphs.

Cardiac Cine Imaging
Cardiac cine MRI with CS reconstruction has demonstrated
accurate estimation of cardiac function in a single-breath-
hold (22). The study enrolled 81 patients with different

cardiac conditions who were imaged using 2D cine acquisition,
under three heart beats per slice, with high spatial (1.7
× 1.7 mm2) and temporal resolution (41ms). A non-linear
iterative SENSE-type reconstruction was performed with spatio-
temporal regularization using redundant Haar wavelets. The
reconstruction was performed inline in ∼3min for a stack
of eight continuous short-axis image. CS reconstruction led
to slightly worse image quality compared to conventional PI
cardiac cine. A similar acquisition/reconstruction framework
was performed on 100 patients referred for CMR in Vermersch
et al. (23). Free-breathing 2D motion-corrected cine CMR
has been also studied in Usman et al. (14). Acquisition was
performed on five healthy subjects using a golden radial pseudo-
random sampling and non-rigid respiratory motion-corrected
reconstruction with CS temporal regularization was performed
offline (reconstruction time∼2–2.5 h).

A 3D cardiac cine acquisition with CS reconstruction has
been proposed to image the left ventricle in a single breath-
hold (15). Ten healthy subjects and three patients were imaged
at 1.9 × 1.9 × 2.5 mm3 spatial and 42–48ms temporal
resolution in ∼19 s using a Cartesian spiral phyllotaxis sampling
(24). Reconstruction times were ∼4min employing a soft-
gated iterative SENSE reconstruction with spatial and temporal
redundant Haar wavelet transforms. Free-breathing 3D cardiac
cine has also been proposed to alleviate the requirement of
breath-holding in Usman et al. (25). Whole-heart cardiac cine
images were acquired in eight healthy subjects and three patients
in∼4–5min using an accelerated 3D free-running sequence with
2 mm3 isotropic resolution and ∼31–70ms temporal resolution.
A CS-SENSE reconstruction with total variation regularization
and translational respiratory motion correction was performed
offline in∼2.5 h.

3D Late Gadolinium Enhancement Imaging
CS has been employed to increase the spatial resolution and
accelerate scan time of LGE imaging for myocardial scar and
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FIGURE 2 | Schematic diagram of compressed sensing and patch-based low-rank reconstructions for CMR.

fibrosis visualization. Kamesh Iyer et al. (17) proposed a CS
technique for rapid 3D LGE imaging for visualization of ablation-
induced scar in the left atrium wall in patients with a history of
atrial fibrillation and ablation therapy. 3D LGE data was acquired
fully sampled on 8 patients and retrospectively undersampled
using a variable density sampling with a 3.5-fold acceleration
at a resolution of 1.25 × 1.25 × 2.5 mm3 (acquisition time
of ∼10–15min). CS reconstruction was performed offline after
coil compression (four virtual channels reconstructed) using an
efficient Split Bregman optimization (26) for fast reconstruction
(∼8 s for 44 slices) with 3D total variation regularization. The
Split Bregman method has shown to be an efficient solver
for many regularized inverse problems with good convergence
properties and fast minimization (26).

Basha et al. (27) proposed a patch-based CS technique
(“LOST,” see next section) to acquire and reconstruct isotropic
spatial resolution 1.4 × 1.4 × 1.4 mm3 3D LGE data in 270
patients referred for myocardial viability assessment, using a
pseudo random k-space undersampling pattern (28) with up to
5-fold accelerated acquisition (∼4min total acquisition time).
LOST reconstruction was performed inline (via CPU cluster)
in∼ 1 h.

Whole-Heart CMRA
Forman et al. proposed a free-breathing (29) and multi-breath-
hold (28) Cartesian spiral phyllotaxis (6.5-fold) acquisition
combined with an inline multi-coil SENSE reconstruction and
3D total variation regularization to reconstruct high-resolution
(∼1 mm3 isotropic) CMRA images in ∼52 s. Accelerated
non-rigid motion-compensated isotropic (1.2 mm3, 3-fold
acceleration) 3D CMRA was also performed in ∼5min using
3D total variation regularization (reconstruction time ∼44min)
and variable density Cartesian acquisition (30). Haar wavelets

combined with an efficient FISTA optimization were used for
whole-heart navigator-gated CMRA imaging at 3T, employing
a Cartesian spiral phyllotaxis sampling at 9-fold acceleration
(effective scan time of ∼3min 45 s at a resolution of 1.3 × 1.3
× 1.2 mm3) (31). A similar optimization was employed at 1.5T
to reconstruct CMRA images with an isotropic resolution of 0.8
mm3 (32). CS techniques based on discrete wavelet transform
were also implemented on GPU to bring whole-heart CMRA
image reconstruction to<4 s (33).

XD-GRASP (34) and its extensions have been proposed to
enable free-breathing whole-heartmotion-resolved 5D [(x−y−z)
spatial dimensions + respiratory and cardiac phases] CMRA
in a single continuous acquisition by exploiting temporal total
variation along the cardiac and respiratory dimensions (35–
37). In Feng et al. (35), image acquisition was performed with
a continuous 3D golden-angle pattern at isotropic 1.15 mm3

resolution and ∼40–50ms temporal resolution (acquisition time
∼14min). A conjugate gradient optimization was used to reach
offline reconstruction times of ∼6 h 48min. Similar approaches
were also proposed for time-resolved, cardiac-resolved, high-
resolution flow imaging [XD flow (38)].

Drawbacks of CS for CMR
Although CS has shown noticeable success in CMR, as reflected
by the many applications and recent integration into routine
clinical scanners, there remains major drawbacks which may
impede its full potential. Firstly, the non-linear nature of the
optimization presents a barrier for fast reconstruction time,
although notable improvement has been made on the maturation
of the algorithms and the move toward GPU implementations
to greatly reduced computational times. Another relevant
weakness of CS-based reconstruction is the need for tuning
regularization parameters that heavily depend on the type of
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image, sampling trajectories, sparsifying transform, acceleration
factor, etc. Finally, while choosing the appropriate transformation
basis 8 can contribute to an efficient sparse representation, the
robustness of the reconstruction will heavily depend on this
specific operator.

Low-Rank-Based Approaches for CMR
Imaging
Another model closely related to sparsity is the notion of low-
rank matrices. Low-rank image reconstruction takes advantage
of the fact that MR images have inherently a high degree of
correlation (e.g., dynamically or locally on a patch scale) and thus
can be represented by a union of low-dimensional subspaces. We
provide below an overview of some reconstruction techniques
incorporating low-rank models employed for CMR imaging.

Globally low-rank (GLR) reconstructions, exploiting low-
rankness on the entire image series, have been exploited in many
cardiac applications such as dynamic cineMRI (39–41), real-time
CMR (42), cardiac perfusion (43), or simultaneous multislice
CMR fingerprinting (44). GLR reconstruction techniques are
particularly suited for image series that exhibit strong correlation
over time. A Casorati matrix is usually formed from the
undersampled image sequence, and the missing k-t samples
are then estimated using low-rank matrix completion (41, 45,
46). Low-rank reconstruction has been combined with CS-
based techniques to further improve image quality, particularly
for high acceleration factors. Low-rank plus sparse (L +

S) matrix decomposition, which separates the temporally
correlated background (L) from the dynamic information (S),
has been proposed for dynamic imaging (cardiac cine, cardiac
perfusion, and time-resolved angiography) (43, 47). The recently
proposed multitasking framework has extended global low-rank
reconstruction to deal with multiple overlapping dynamics such
as T1/T2 recovery and cardiac and respiratory motions, through
tensor decomposition (48, 49).

Locally low-rank (LLR) regularization techniques have also
been proposed for CMR reconstruction to further reduce spatial
blurring often associated with the GLR techniques (50). In
essence, LLR reconstruction techniques exploit low-rankness
structure of an image series on local regions (i.e., patch), and
have been efficiently used for dynamic CMR imaging (51, 52),
high-resolution dynamic myocardial T1 mapping (53) and 5D
flow (18).

More recently, patch-based image reconstructions exploiting
local (i.e., within a patch) and non-local (i.e., between similar
patches) similarities and low-rank matrix representations have
been employed for CMR image reconstruction, leading to
even sparser representations. In those techniques (a.k.a. LOST
and PROST, Figure 2) the similarity of 2D/3D image patches
have been exploited through block-matching and low-rank
decomposition. These techniques have shown to reconstruct
highly undersampled LGE (27, 54) and CMRA images with
improved image quality compared to CS-based techniques (55,
56) (Figure 3). Accelerated free-breathing CMRA in concert with
3D-PROST reconstruction enables isotropic sub-millimeter (0.9
mm3) whole-heart visualization of the coronary vasculature,

including small distal segments, in ∼5–7min acquisition
time and ∼3min reconstruction time (Figure 3). Based on
a similar idea, patch-based reconstruction has been used for
the reconstruction of undersampled 2D cine MR images by
extending the patch search to the cardiac temporal dimension
(58). The technique has been also extended to multi-contrast
CMR reconstruction through high-order tensor decomposition
(59) and demonstrated for highly accelerated simultaneous 3D
myocardial T1/T2 mapping and cine imaging (60), and 3D
whole-heart myocardial T2 mapping (61).

Dictionary Learning-Based Approached for
CMR Imaging
Dictionary learning based CS techniques (also referred as
data-driven techniques) have been also proposed for CMR
reconstruction. As opposed to conventional CS techniques,
where sparse transforms or fixed dictionaries are known a priori,
blind compressed sensing (BCS) techniques adaptively learn
the sparse representation and dictionaries from the acquired
undersampled data itself. These reconstruction techniques have
the advantage to be highly adaptive to the image content at
hand by learning dictionaries specific to the acquired data and
without the need for training data. BCS has shown to outperform
conventional CS approaches in several CMR applications such
as cardiac cine MRI (62, 63) and contrast enhanced dynamic
MRI (64).

Both dictionary learning and CS models can be leveraged to
further increase acceleration factors. In Caballero et al. (62), a
dictionary learning technique was combined with CS to speed
up dynamic CMR imaging (∼8- to 16-fold acceleration). An
optimal dictionary is learnt directly from undersampled data
online, through processing of spatio-temporal 3D patches, and is
used to fill the missing k-space lines. The algorithm was tested
on 10 healthy subjects by retrospectively undersampling fully
sampled dynamic CMR data. Enforcing temporal gradients with
an additional constraint allows to reach higher undersampling
factors and accelerate the convergence rate, while consistently
showing improvement over non-dictionary-based CS techniques.

Those approaches, however, come at the cost of highly
non-convex optimizations, which make theoretical analyses and
convergence guarantees very hard, while being often associated
with high computational burden and long reconstruction times.

DEEP LEARNING FOR CMR
RECONSTRUCTION

Despite the high promise of CS approaches, robustness of
the reconstruction will heavily depend on the choice of the
sparsifying transform which may be incapable of capturing
the complex structure of CMR images. This may lead to
images that look overly smooth or unnatural when too high
acceleration factors are considered. A further major drawback
is the long computational time usually required with iterative
reconstruction algorithms and the need for parameters tuning.
An inaccurate choice of reconstruction parameters leads either
to over-smoothing or to images with remaining undersampling
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FIGURE 3 | Reconstruction comparisons for coronary MR angiography. (A) Example of reformatted images of the right coronary artery from three healthy subjects

acquired at 1.2 mm3 isotropic resolution with a fully sampled whole-heart coronary MR angiography sequence, and with 2 undersampled acquisitions (5- and 9-fold

acceleration with variable density sampling), reconstructed using iterative SENSE (itSENSE), wavelet-based compressed sensing reconstruction (CS) and a 3D

patch-based approach [3D-PROST (56)]. 3D-PROST provides higher image quality and sharpness (red arrows) than itSENSE and CS for both acceleration factors,

achieving similar image quality to the fully sampled reference. Acquisition times (AT) are expressed as min:s. (B) Non-contrast whole-heart sub-millimeter isotropic

CMRA images of 53-year-old female patient acquired in 10min 7 s (5-fold undersampling) and reconstructed with 3D-PROST (56) and non-rigid motion correction

(57). Visual comparison with contrast-enhanced Computed Tomography angiography (bottom row) shows good agreement and delineation of the coronary arteries

with the free-breathing 3D patch-based motion corrected CMRA framework.

artifacts. Taking encouragement from early success in the use
of DL in image classification and computer vision, several
DL-based MRI reconstruction approaches have been recently
proposed to learn models that better describe the reconstruction
process and to shift the required optimization effort to an offline
training stage, performed beforehand. In other words, rather
than performing a reconstruction procedure to compute an
appropriate transform between raw data and images for each
new data set, DL reconstruction techniques propose to learn

the parameters of that reconstruction procedure in advance, so
that it can be applied to all new undersampled data as a simple
operation. When using an analytical approach to solve Equation
(3) for MR image reconstruction, the applied regularization
operator is explicitly described, and the optimization approach
is carefully chosen. Generally, the more sophisticated the
modeling adopted in reconstruction, the more demanding the
optimization process. The aim in DL-based MRI reconstruction,
is to replace this optimization with a convenient function
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fφ (·) which is expressed as a DNN with parameters φ. Thus,
a computationally efficient direct mapping from the acquired
data s to the reconstructed image ρ can be obtained as a
result of the neural network’s training procedure. Training of
a neural network implies changing its weights to optimize the
network’s output. This is performed by applying an optimization
algorithm on a function measuring the difference of the outputs
with respect to a target dataset, referred as loss function.
Once these weights are learned, a network can be utilized
to reconstruct new, unobserved data, and therefore learn to
generalize. We will further discuss the training procedure in the
section Training Procedure for DL-Based MRI Reconstruction.
Themain advantage of DL-based reconstruction techniques, with
respect to conventional analytical reconstruction techniques, lies
in the capability of a DNN to utilize the prior information
learnt from the great number of routinely performed MRI
exams, to help the reconstruction process. However, due to the
problem’s high dimensionality, a large dataset of raw k-space
data s and target MRI images ρ need to be available to avoid
over-fitting in the learning process. Collection of large MRI
datasets can be challenging and proposed techniques for MRI
reconstruction usually depend on the use of data-augmentation
techniques, which is discussed in the section Data Availability
for CMR Reconstruction. Given these preliminary remarks, a
fundamental question may arise: Under which conditions would
we expect DL approaches to outperform CS approaches in terms
of reconstruction accuracy in CMR imaging (computational
considerations aside)? In this section, we do not aim to provide a
definitive answer to this question. Our objective is to provide the
reader with a critical approach in reviewing the literature, to be
used as guidance in solving their DL-based CMR reconstruction
problems. DNN architectures and neural network training
procedures will be described first for generic MRI reconstruction,
followed by a review of the approaches that have been designed
for cardiac applications.

Neural Networks Architectures for
DL-Based MRI Reconstruction
Careful selection and design of the neural network architecture
is fundamental to solve the MRI reconstruction problem at
hand, since the architecture’s design controls the set of available
functions fφ (·) that are investigated during the learning process.
A Neural Network is composed of an input layer, followed by
hidden layers that transform the data in a new representation;
and it ends with an output layer that generates the neural
network’s prediction. Each layer is composed of multiple neuron
units. The output of the neurons in each layer is given by
the weighted sum of the input neurons, followed by a non-
linear function termed Activation Function. A series of fully
connected layers and activation functions is referred to as
fully-connected neural network. The major advantage of fully
connected networks is that they are “structure agnostic,” which
means that no special assumptions need to be made about the
network’s input. In the following subsections we briefly discussed
neural networks architectures that have been proposed to enable
MR image reconstruction.

Convolutional Neural Networks
Convolutional neural networks (CNN) (65) differ from fully-
connected neural networks by the application of convolutions to
each layer. As multiple convolution kernels are applied, several
feature maps are defining a novel image characterization. In
CNNs, there are usually less parameters with respect to fully-
connected neural networks, since the kernel’s weights are fixed
as they move across the input image. The reduction in number
of parameters simplifies the network’s optimization problem.
CNNs have been shown to learn interesting features from
medical images and to be particularly appropriate to capture
their multiscale structure. The use of residual blocks (66) also
plays a fundamental role in training DNNs. Instead of learning
a complete mapping function between consecutive layers; by
adding skip connections between two ormore layers, it is possible
to learn the residual from the input to the output of a residual
block or to the output of the whole neural network. The use of
skip connection has been shown to be particularly well-suited to
learn image features, such as edges or noise-like artifacts (66).

Encoder-Decoder CNN
While for conventional CNNs feature map dimensions are
fixed, for encoder-decoder CNNs the feature maps are gradually
downsampled at each layer down to a convolution with a kernel
of size 1 × 1, and then upsampled to the output’s size. The first
half of the network, the encoder part, learns a representation in
a smaller manifold of the input image, and is then given as input
to the decoder part of the network to obtain an image with the
most meaningful features. Since the encoder part of the network
compresses the feature maps’ spatial information, a loss of details
in the output can be encountered using an encoding-decoding
network (67). This issue can be overcome by inserting symmetric
skip connections, therefore preserving the important details that
are present in the input image. An encoder-decoder network with
skip connections is commonly referred to as U-Net network (67).

Variational Neural Network
In the conventional CNN architectures described above, the
input data is convolved with a set of filter kernels which are
usually followed by a simple, non-learnable, activation function,
e.g., rectified linear unit (ReLU). In a variational neural network
(VNN), the regularization term R in Equation (3) is defined as a
field of experts model (68):

R (ρ) =

FK∑

k=1

〈Ψk (χkρ) , 1〉 (4)

Where R is a linear operator that models convolutions of the
image ρ with FK filter kernels χk ∈ Rv×v of size v, and learnable
non-linear activation function ψk. In the fields of experts model
(68), the convolutional kernels and the parameters of the non-
linear activation functions are learned from the data. In contrast
to other techniques that make use of ReLU, the parametrizable
activation functions ψk, used in Equation (4), are defined as a
weighted combination of AF Gaussian radial basis functions. In a
VNN architecture, the learning power is therefore shifted from
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the sole learning of the filter kernels to the learning of both
kernels and non-linear activation functions.

Training Procedure for DL-Based MRI
Reconstruction
In the previous section, generic DNN architecture blocks have
been described for solving MRI reconstruction problems. The
choice of the architecture structure and of its constitutive
elements determines a set of learnable functions, but it is
during the training phase that the set of optimal functions
for the given reconstruction task is determined. In general,
the training procedure can be designed in a supervised or
unsupervised fashion. Supervised methods are mostly used for
MRI reconstruction, while unsupervised methods are an active
topic of ongoing investigation. Therefore, for the rest of this
section, we will focus on supervised approaches. In order to learn
the network’s parameters for the reconstruction procedure at
hand, an optimization problem that minimizes a cost function
needs to be defined. The training loss function can be defined as:

C (φ) =
1

2B

B∑

b =1

‖ρϒb (φ)− ρ
target

b
‖
2

2
(5)

Where φ are all the trainable parameters of the reconstruction
network. ϒ is the total number of layers in the network,
corresponding to the network’s gradient steps υ = 1, . . . , ϒ .
b is the current training output image. B is a randomly selected
subset of the complete set of training data, referred as data batch.
To solve the non-convex optimization problem in Equation (5), a
variant of gradient descent, e.g., stochastic gradient descent or the
ADAMoptimizer are often used (69). The necessary computation
of the gradient with respect to network parameters φ can be
computed via backpropagation (70):

δC(φ)

δφυ
=

δρυ+1

δφυ
·
δρυ+2

δρυ+1
. . . ·

δρϒ

δρϒ−1
·
δC (φ)

δρϒ
(6)

These optimization algorithms require the tuning of hyper-
parameters, such as strength of regularization or learning rate
decay. The choice of the loss function is also crucial for
a successful outcome of the training procedure. Because the
reconstruction problem is usually formulated as a regression
problem, the mean squared error is conventionally utilized as
a cost function. Other popular choices are the l1 norm of
the difference and the structural similarity index. Research on
generative adversarial networks (71, 72) and learned content loss
functions are currently in progress. Once the optimal parameters
φ are learned, the reconstructed image ρ can then be estimated
from the observed k-space data s by simply computing ρ = fφ (s)
using the trained network. This efficient functional relationship
is a major advantage of neural networks over conventional CS
techniques that may require complex inference procedures (73).

Data Availability for DL-Based CMR
Reconstruction
The inference step between input and output of the
reconstruction model is highly dependent on the set of

input k-space data and of reference images seen during training.
This requires the availability of a large set of fully sampled
multi-coil k-space data. Undersampled data can be obtained
by retrospectively removing k-space data entries according
to a sampling trajectory in the forward operator E. This data
can be used as input for the reconstruction network during
training. The lack of freely accessible databases of fully sampled
multi-channel raw k-space data, is an open issue for DL-based
CMR reconstruction. In addition, since the dataset used to train
a certain model becomes an essential component that defines
its performance, it is difficult to compare different approaches
if the training data is not publicly available. Even if initiatives
for release of annotated CMR images are growing (e.g., UK
Biobank), very limited public or institutional k-space CMR raw
data have been provided to the research community. Moreover,
large data bases of annotated CMR images, such us UK Biobank,
are limited to specific type of exams. The DL reconstruction
techniques presented in the following section are therefore
mostly applied to retrospectively simulated k-space data and are
restricted to specific MRI sequences (e.g., cardiac cine MRI).

Neural Networks Architectures for
DL-Based CMR Reconstruction
In this section, we review representative approaches proposed
in the literature for MRI image reconstruction with a focus on
CMR applications. The different approaches are summarized in
Table 1.

Encoder-Decoder CNN for Image Dealiazing
U-net type of networks that perform an end-to-end mapping
in image space have been successfully employed in many
MRI post-processing applications (e.g., image segmentation)
showing promising results. In the field of image recovery from
undersampled k-space data, U-net architectures have been used
by several groups to reduce noise-like image artifacts in post
processing (see Figure 4A).

In Hauptmann et al. (74), a 3D residual U-net have
been employed to reduce undersampling artifacts for 2D
golden-angle radial cardiac cine MRI. This residual U-Net
contains a contracting multi-scale decomposition path and
a symmetric expanding path with skip connections at each
scale (see Figure 5). The 3D-convolutions are trained on entire
image sequences (x − y − t) to enforce temporal consistency
between cardiac frames. This technique demonstrated robustness
with respect to the flickering artifacts that would be present
if 2D convolutions were separately applied to each frame.
The proposed U-net architecture was trained from 13-fold
retrospectively undersampled images using a simulated tiny
golden angle radial trajectory. These images were obtained from
Cartesian breath-hold (BH) bSSFP cine acquisitions of 250
patients with congenital heart disease (CHD). The trained 3D U-
net was then applied to real-time 13-fold accelerated tiny golden
angle 2D radial bSSFP data acquired under free-breathing in 10
previously unseen patients with CHD. The radial bSSFP data
were recovered with the proposed 3D U-net and reconstructed
with CS for image quality and computational time comparisons.
Ventricular volume measurements for 10–15 contiguous slices,
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TABLE 1 | Summary of methods that, to the best of our knowledge, have used a

deep-learning-based approach for CMR reconstruction and which have been

referred to in this article.

References Application Method/Network

architecture

Training/Validation

data

Hauptmann

et al. (74)

Cine MRI 3D U-net applied in

post-processing to reduce

streaking artifacts

Single-coil

retrospective/Single-

coil

prospective

Kofler et al.

(75)

Cine MRI 2D U-net applied to the

spatio-temporal domain in

post-processing

Single-coil

retrospective/Single-

coil

prospective

Schlemper

et al. (76)

Cine MRI End-to-end cascade of

CNN regularization blocks

and data-consistency

blocks

Single-coil

retrospective/Single-

coil

retrospective

Fuin et al.

(77)

CMRA End-to-end cascade of

Multi-Scale VNN

regularization blocks with

data-consistency

operators

Multi-coil

retrospective/Multi-

coil

prospective

Biswas et

al. (78)

Cine MRI End-to-end cascade of

CNN operators, an

analytically defined

SToRM prior, and

conjugate gradient data

consistency steps

Multi-coil

retrospective/Multi-

coil

retrospective

Qin et al.

(79)

Cine MRI End-to-end cascade of

recurrent CNN

regularization blocks and

data-consistency blocks

Single-coil

retrospective/Single-

coil

retrospective

Akçakaya

(80)

Myocardial

T1

mapping

CNN for k-space

interpolation

Scan-specific

Autocalibrating

Signal data

Wang et al.

(81)

Cine MRI A first CNN for k-space

interpolation followed by a

concatenated CNN

network architecture for

image dealiazing

Single-coil

retrospective/Single-

coil

retrospective

obtained using both the CS reconstructed images and 3D U-
net, were compared to a reference Cartesian fully sampled BH-
bSSFP cardiac cine data. The overall reconstruction time with
the residual 3D U-net implemented on graphics processing unit
(GPU) was five times faster than conventional CS techniques
implemented on CPU (74). Moreover, the overall image quality
of the ventricular volume measurements from the 3D U-net
recovered images were superior than the CS reconstructions
(Figure 6). In this study, the validation data was acquired during
free-breathing, while the training data was obtained during a
breath-hold; the effects of cardiac and respiratory motions were
therefore not taken into consideration.

The work presented in Hauptmann et al. (74) demonstrates
that 3D CNNs can be employed to map entire undersampled
2D sequences to the corresponding fully-sampled 2D cardiac
cine sequences. However, employing 3D convolutional layers
requires a higher number of parameters and thus increases the
amount of data needed to efficiently train a network and prevent
overfitting. In Kofler et al. (75), the authors proposed a technique

to recover undersampled 2D golden-angle radial cine CMR by
training a modified 2D U-net on the 2D spatio-temporal domain
(x− t) extracted from the image sequences (Figure 7). This study
suggests that the learning process can be improved by training the
network on 2D x − t images extracted from the spatio-temporal
domain of the cardiac cine sequence. This technique obtained
similar results with respect to the 3D U-Net (74) by training
the network on a substantially smaller training data set and also
proved to be robust with respect to rotations in image space.

The main limitation of the approaches presented in this
section, as for all DL techniques applied in post-processing, is that
the actual validation data consists of coil-combined magnitude
images, instead of multi-coil complex k-space data. Therefore,
these approaches do not learn a full reconstruction procedure
that accounts for consistency with respect to the acquired k-space
data (see Figure 4), but also do not take advantage of the full
benefits of coil sensitivity encoding underlying parallel imaging.

Unrolled Convolutional Neural Networks
In this section, we describe how a DNN can be guided
to learn operations that are similar to those performed in
conventional iterative CS reconstruction, therefore bridging
the gap with conventional iterative techniques. Incorporating
domain expertise in a DNN framework can in fact facilitate the
learning procedure of the model and result in better estimates
of the MR images. For CS-based variable splitting techniques,
the optimization problem in Equation (3) is usually solved using
an alternating algorithm, iterating between a regularization stage
and a data consistency stage. Instead of explicitly defining the
regularization term, several DL techniques have been proposed
to directly learn the regularization term by using CNNs. These
techniques, such as Deep-ADMM net (83), VNN (84), or
CascadeNet (76), represent a DL framework of an unrolled
version of the iterative constrained reconstruction where the
network parameters are trained in order to reconstruct the MR
images directly from the undersampled k-space data as an input
(see Figure 4B).

In particular, Schlemper et al. (76) proposed a framework
for the reconstruction of 2D cardiac cine MR images from
highly undersampled data using a cascade of CNNs, termed
CascadeNet. Since a simple CNN is not efficient in learning
the regularization operator iteratively; the authors proposed to
concatenate a new CNN on the output of the previous CNN to
create a DNN that iterates between CNN regularization operators
and data consistency operators. The resulting network consists
in convolutional layers, followed by ReLU, residual connections,
and data consistency layers. The authors employed a hard-
projection solution to enforce data consistency: for each stage of
the unrolled model, if the k-space samples are initially unknown
(non-acquired), then k-space values obtained from the FT of
the previous layer’s output are used. For the k-space entries that
have been acquired, a linear combination between the estimated
values from the previous layer and the original measurements is
applied. Since the data consistency step has a simple expression,
it is possible to treat it as a layer of a network and to specify
the rules for forward and backward propagation for training.
By defining the forward and back-backpropagation rules for the
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FIGURE 4 | Illustration of two types of deep learning-based image reconstruction networks. (A) Image domain networks and (B) End-to-end unrolled networks,

where NN denotes a CNN or VNN denoising operator and DC denotes the data consistency layer.

FIGURE 5 | 3D U-net architecture for cine MRI spatio-temporal de-aliasing. Reconstructions from undersampled cine MRI data are given as an input. The numbers on

top of the blue bars denote the number of channels for each layer. The resolution for each multilevel decomposition is shown in gray on the left. Each convolutional

layer is equipped with a rectified linear unit (ReLU) as non-linear activation function. The residual U-net contains a skip connection at each scale between encoder and

decoder path (concat and/or addition).

data consistency layer, all stages of the network can be trained
in an end-to-end fashion, therefore building one deep network.
The authors also demonstrated that spatio-temporal correlations
can be efficiently learned by CNNs, combining 3D (x − y − t)
convolutions and data sharing approaches. Assuming that for
adjacent cardiac frames the difference in data content is relatively
small, the neighboring k-space frames along the temporal-axis
share similar information. The missing k-space samples for each
time frame can then be approximated using the samples from
the adjacent cardiac frames. The authors therefore extended the
proposed network architecture adding data “sharing layers that
take an input image and generate multiple data-shared images”
(76). The obtained images are then concatenated along the
channel-axis of the network and fed into the proposed cascading
network. For separate reconstruction of 2D cardiac single frames,
this technique was compared to Dictionary Learning MRI
(85), for retrospective undersampling factors of 3- and 9-fold.

For reconstruction of cardiac cine MRI, the technique was
compared to state-of-the-art CS and low-rank approaches, such
as dictionary learning with temporal gradient (62), k-t sparse and
low-rank (kt-SLR) (46), and L+Smatrix decomposition (43). The
presented results demonstrated that the CascadeNet outperforms
CS and low-rank approaches in terms of reconstruction error
and perceptual quality, particularly for high undersampling
rates (Figure 8). In addition, for 2D reconstruction, each image
could be reconstructed in 23ms, therefore enabling real-time
applications, while for the reconstruction of cine MRI, an entire
sequence was reconstructed within 10 s.

It is worth noting that in the experiments shown in Schlemper
et al. (76), training and validation data were obtained by
retrospectively undersampling single-coil data, thus further
validations are required to understand the full potential of
this technique for multi-coil prospective acquisitions. Other
techniques have applied an unrolled end-to-end framework
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FIGURE 6 | Cine MRI images for one representative patient with congenital heart disease, acquired with prospective undersampling of 13-fold. Reconstructed images

are presented in peak systole and peak diastole for a reference breath-held balanced steady-state free precession sequence (BH-bSSFP, first column), the real-time

radial sequence reconstructed with GRASP (82) (second column) and the residual 3D U-net (third column), as proposed in Ronneberger et al. (67). Images

reconstructed with GRASP and the proposed residual 3D U-Net show spatial and temporal blurring, that could be a result of undersampling and incomplete motion

correction.

FIGURE 7 | Different 2D and 3D deep learning-based approaches for radial undersampling artifacts reduction (post-processing) presented in Kofler et al. (75). (A) 2D

U-net for frame-to-frame mapping. (B) 2D U-net for sequence-to-sequence mapping with cardiac phases aligned along the channel dimension. (C) 3D U-net for

sequence-to-sequence mapping with 3D convolutional kernels. (D) 2D U-net for recovery of two-dimensional spatio-temporal images.

in the more realistic scenario of multi-channel coil complex
MR data. For example, Hammernik et al. proposed a trainable
formulation for undersampled MRI reconstruction (84), which

embedded a PI and a CS reconstruction within a DL unrolled
end-to-end framework. Undersampled k-space data and coil
sensitivity maps are provided as input to this unrolled model
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FIGURE 8 | Comparison of reconstructed 2D cardiac cine MR image sequences employing Dictionary Learning with Temporal Gradient (DLTG) (62) and CascadeNet

(CNN-S) (76), from one representative healthy subject with retrospectively undersampling. (A) Ground truth fully-sampled cine MR image, (B) 9x retrospectively

undersampled acquisition, (C,D) CascadeNet reconstruction with data sharing and its error map, (E,F) CascadeNet reconstruction without data sharing (CNN) and its

error map, (G,H) DLTG reconstruction and its error map. Red ellipses highlight the anatomy that was reconstructed better by CNN than DLTG.

for DL reconstruction, and high-quality MR images are obtained
as an output in an end-to-end fashion. The regularization
term of this network was implemented as a VNN, and
the data consistency term was implemented as the l2 norm

with respect to the acquired k-space data, as in Equation
(3). The use of a VNN was first introduced for multi-coil
complex-valued MRI reconstruction of 2D static images of
the knee.
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Building on this work, Fuin et al. (77) extended the previously
introduced VNN approach to enable fast reconstruction of
undersampled motion-compensated free-breathing whole-heart
3D CMRA. A multi-scale VNN (MS-VNN) architecture was
introduced in order to better capture the small caliber of the
coronary arteries, as well as whole-heart structural features
(x − y − z) in a 3D CMRA image. In order to increase the
representation potential of the network, a wider network was
implemented, using a multi-scale approach that can capture
complementary and richer information at different resolutions.
In addition, a training scheme suited for reconstruction of
respiratory motion corrupted data was applied. The MS-VNN
was trained on retrospectively undersampled (5- and 9-fold)
translational motion corrected complex k-space data in an end-
to-end fashion, in order to ensure that the effect of bulk,
respiratory, and cardiac motion was identical in both output
and target images during the training process. The MS-VNN
reconstruction was then applied to newly acquired prospectively
5- and 9-fold undersampled data and compared to wavelet-based
CS (12) reconstructions, as presented in Figure 9. MS-VNN
outperformed the conventional CS in terms of quantitative right
coronary artery sharpness and visible vessel length, with results
comparable to the fully sampled scan. MS-VNN combined with
100% respiratory scan efficiency and variable density spiral-like
Cartesian undersampling, allowed the acquisition of high-quality
1.2 mm3 isotropic CMRA images in a short and predictable scan
time of∼2–4min and their reconstruction in∼14 s.

Aggarwal et al. (86) introduced a similar network design,
termed MoDL, where conventional CNNs are used for the
implementation of the regularization term, but where all network
stages share the same set of parameters. This unrolled technique
with shared parameters, also applies a conjugate-gradient data
consistency step instead of the simple gradient based approach
utilized in Hammernik et al. (84). The use of a conjugate-gradient
step within the network translates into improved results for a
given number of iterations at the expense of a slightly longer run
time. Another work from the same team combines DL MoDL
reconstruction along with complementary analytical image
regularization constraints to recover free-breathing cardiac cine
MR images from highly undersampled multi-coil measurements
(78). This framework alternates between a learned regularization
of the image using CNN, an analytically defined SmooThness
regularization on manifolds (SToRM) prior (87), and a conjugate
gradient data consistency step. The method was tested on only
two simulated datasets, but it promises to combine the benefits
of CNNs with analytical image regularization priors, such as
SToRM, which exploits subject-specific information including
cardiac and respiratory patterns.

Unrolled Convolutional Recurrent Neural Networks
A recurrent neural network can be thought of as multiple copies
of the same network stage, each passing a message to a successor
stage. The stage of the recurrent network has a memory that
stores the stage time states, and therefore it allows information
to be reflected to the next time stage without overloading the
system. Qin et al. (79) proposed a novel unrolled convolutional
recurrent neural network architecture, termed CRNN-MRI,

which reconstructs cine CMR images from highly undersampled
k-space data. The proposed CRNN-MRI architecture utilize
recurrent connections over each layer of an unrolled network
with data consistency layers to reproduce the recurrence existing
in the sequential steps of a reconstruction algorithm. Compared
to independently learned CNN at each stage of an unrolled
network (76), the iteration connections of the CRNN layers allow
spatial information learned at a given iteration to be passed to
the following iteration. Each stage of the network is therefore
optimized depending on the resulting output but also depending
on features from previous iterations that can memorize the
learned feature and propagate them to the next stage. Secondly,
at every stage of the network, the receptive field of a CNRR layer
in the spatial domain increases, whereas for a conventional CNN
it resets at each stage. Finally, since the network parameters are
shared over iterations, the total number of parameters is greatly
reduced in comparison to CNNs, potentially offering improved
generalization properties. An additional limitation of CNNs is
that they accept fixed-sized images as input and produce a fixed-
sized image as output. Conversely, recurrent nets allow to operate
over sequences of images: sequences in the input, the output, or
in the most general case in both input and output. Exploiting
this property of recurrent networks, the network architecture
presented in Qin et al. (79) incorporates bidirectional recurrent
convolutional layers that evolve over time to utilize the temporal
correlations of the cardiac cine MRI. Consequently, the model
architecture evolves in a recurrent manner over time and over
steps/iterations. The CRNN-MRI network therefore comprises of
bidirectional convolutional recurrent layers, residual connections
and hard-projection data consistency layers [as in (76)]. The
residual connections were added to address the potential problem
of vanishing gradients during back-propagation. Training and
validation data were produced by retrospective undersampling
complex images obtained from single-coil data as in Schlemper
et al. (76). The experimental results demonstrated that CRNN-
MRI outperformed state-of-the-art CS-based dynamic MRI and
low-rank reconstruction algorithms, such as k-t FOCUSS (88)
and k-t SLR (46) for 9- and 16-fold retrospectively undersampled
data. Additionally, CRNN-MRI demonstrated to outperform
CascadeNet (76), that employs conventional CNNs in the
regularization term.

DL Techniques for K-Space Based CMR

Reconstruction
One of the most frequently used techniques for PI undersampled
reconstruction in k-space is GRAPPA (89), which employs shift-
invariant convolutions to recover/interpolate non-acquired k-
space entries. The convolutional kernels, called autocalibrating
signal (ACS), are estimated for each subject from either a
fully sampled region at the k-space center or from a separate
reference scan (autocalibrating signal or ACS). A CNNs based
technique has been recently proposed to improve non-linear
k-space interpolation for undersampled PI MRI reconstruction
(80). Similar to existing approaches, such as non-linear GRAPPA
(90), robust artificial-neural-networks for k-space interpolation
(RAKI) (80) trains CNNs on ACS data with an l2 norm loss;
and uses these for interpolating missing k-space samples from
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FIGURE 9 | Coronary MR angiography images in coronal view and reformatted along the left (LAD) and right (RCA) coronary arteries, for one representative healthy

subject. Acquisitions were performed with isotropic resolution 1.2 mm3 and 100% respiratory scan efficiency (no respiratory gating). Prospective undersampled

acquisitions with acceleration factors 5x (first and second rows) and 9x (third and fourth rows) are shown. Images were reconstructed using zero-filling (ZF), a

wavelet-based CS reconstruction (CS), and the Multi-Scale VNN (MS-VNN) reconstruction framework proposed in Fuin et al. (77). Corresponding (consecutively

acquired) fully sampled acquisition are shown in the last column for comparison. Multi-scale VNN provides higher image quality than ZF and CS achieving similar

image quality to the fully sampled scan. Reconstruction time was ∼14 s with MS-VNN and ∼5min with wavelet-based CS.

acquired ones. The RAKI network architecture was applied for
the reconstruction of myocardial 2D T1 mapping data. Eleven
images with different T1 weights were acquired in a single
breath-hold using a Cartesian fully sampled bSSFP sequence.
Experimental results were then performed on 4- and 5-fold
retrospectively undersampled data and RAKI showed improved
noise resilience with respect to non-regularized GRAPPA
reconstruction. As RAKI is a scan-specific technique and does
not require a training data base, it could in theory be applied
for the reconstruction of CMR data for which a fully sampled
reference acquisition scan cannot be performed, as for example

in perfusion or real-time CMR.However, being scan-specific, this
approach also comes with downsides, such as high computational
burden, computationally expensive training of a neural network
for each scan, and the requirement for additional calibration data.

Recently, a technique that combines DL for k-space
interpolation and image dealiazing for retrospectively
undersampled 2D cardiac cine MRI has been proposed
(81). This approach consists of a first frequency domain
network architecture for k-space data interpolation followed by
a concatenated image domain network architecture for image
dealiazing. Both networks consist of concatenated CNN and
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ReLU layers, followed by a data consistency layer. The first and
second networks are connected by a Fourier inversion and only
one pass through the network is performed. Additionally, the
authors propose a multi-supervised network training technique
to constrain the frequency domain information and spatial
domain information at different levels.

DISCUSSION

During the last decades, several undersampled MR
reconstruction techniques have been developed to speed up
CMR acquisition. These techniques rely on acquiring less
data than needed (in the Nyquist sense) and estimating the
non-acquired data exploiting some sort of prior information
about the images. PI and CS undersampling reconstruction
techniques have revolutionized the field, enabling high scan time
accelerations to become standard in clinical practice. Despite
of its maturity and recent FDA approval for clinical use, some
major technical issues associated with CS reconstruction for
CMR remain, including high complexity of the algorithms
and long reconstruction times, image degradation at high
accelerations, and the need for parameters tuning. Therefore,
recent AI-based scientific advances have emerged as solutions
to transfer the complexity of the CMR reconstruction from
the inline side to the offline training side. Unlike analytical
techniques for which the reconstruction problem is explicitly
defined into the optimization process, DL-based techniques
employ large data sets to learn the key reconstruction parameters
and priors during an up-front training procedure, providing
a fast and efficient reconstruction that can be applied to all
newly-acquired cardiac data.

Strengths and Recent Advances in AI for
CMR Reconstruction
The sudden resurgence and popularity of DL approaches
for medical image reconstruction can be attributed to their
ability to analyze high-dimensional datasets, the availability of
computing power, algorithms, web-based storage information,
and real-time reconstruction. Although the application of DL
to CMR reconstruction is still at an early stage, promising
cardiac applications (e.g., dynamic cine MRI or CMRA) have
been proposed.

In particular, end-to-end unrolled neural networks models
have shown great potential to obtain CMR images that are
comparable, in terms of anatomical structure and features, to
images obtained with conventional iterative techniques. For
example, MS-VNN (77) has shown to obtain high quality
static images for prospectively undersampled whole-heart 3D
CMRA imaging. Cascade-Net (76) and CRNN-MRI (79),
were specifically designed for dynamic imaging and have
demonstrated to outperform conventional CS techniques for
retrospectively undersampled 2D cardiac cine MRI. Fewer
techniques exist for the use of DNN as a k-space estimation
problem. This may be due to the non-uniform features of the
k-space data (especially for non-Cartesian trajectories), which
make it difficult to translate some of the DL techniques that have

been developed for image processing of natural images to CMR
reconstruction. However, techniques such as RAKI (80) are scan-
specific and do not require a training database; and thus, could
in theory be applied to cases for which a reference fully-sampled
acquisition cannot be performed.

Limitations and Pitfalls
Although DL-based reconstruction techniques for CMR are
showing promising results, there are several remaining challenges
that need to be addressed before enabling widespread clinical use.

Simulation and Lack of Clinical Validation
Most of the existing early DL-based techniques for CMR
reconstruction are purely based on simulated data, using
retrospective undersampling experiments on fully sampled
datasets, and limited to single-coil MR acquisition model.
Therefore, it remains to be seen how those techniques will work
in a multi-coil setting with prospective undersampling, where
additional factors can drastically disrupt the reconstruction and
degrade the image quality (e.g., eddy current related effects
due to gradient jump, blurring due to off resonant spins
with spiral trajectories, more complex noise models, unknown
coil sensitivity profiles, cardiac and respiratory motion) and
intrinsically result in a reduction of the achievable acceleration
factor. Furthermore, those different studies have been so far
limited to healthy or small selected patient cohorts, which
unfortunately limits their current clinical applicability and
clinical impact in more complex scenarios. Further clinical
validations are thus warranted to demonstrate the robustness of
those techniques.

Generalization and Reconstruction Quality
A key strength of CMR is the ability to provide images
with different contrast for a comprehensive assessment of
the disease. Therefore, one open question regarding the
applicability of DL-based reconstruction techniques, in practice,
is generalization. The generalization potential and effectiveness
of these reconstruction techniques should be further investigated
in case of, for example, different imaging resolutions, pulse
sequences, acquisition trajectories, magnetic fields strength, MR
vendors or clinical sites. While it would be feasible to pre-
train separate neural networks for different exams, the poor
generalization performance of a DL model to different sequence
settings, anatomy, physiology, or to unique pathologies, will limit
its translation into clinical practice. On this account, there is still
an open question that needs to be investigated: can we design
a reconstruction network which accurately and precisely extract
unique information from limited samples, while generalizing to
different acquisition settings and pathologies?

Data Availability
Another major drawback of DL reconstruction approaches lies
in the availability of a specific training data set. The approaches
presented in the previous sections have been trained on small
samples of hundreds of cases rather than millions, as it is often
the case in DL for classification or computer vision. However, the
training of reconstruction network still requires the availability
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of organized and specific data sets that will allow the model
to generalize toward new, unseen, test data. Moreover, most
of the models presented are developed for few specific cardiac
sequences, such as cardiac cine MRI, for which large image
datasets are available to researchers (e.g., UK Biobank).

Quality of the Training Set
In addition to its size, the quality, and composition of the
training set is of utmost importance. Several sequences in
CMR, e.g., sub-millimeter CMRA or real-time CMR, cannot
be acquired with fully-sampled data due to resolution and
time constraints. This hinders the application of supervised
training approaches for such datasets, justifying the necessity
for future research in scan-specific strategies or unsupervised
training. We anticipate that future research could focus on
the development of neural networks architectures designed to
learn features from different cardiac modalities or different MR
acquisitions from other organs, in an unsupervised manner, and
the incorporation of more conventional regularizations into the
networks. The selection of the cost function also has an influence
on the network training and optimization, and it is therefore
the topic of currently ongoing research. Research on generative
adversarial networks and learned content loss functions are also
under progress.

Motion Compensated Reconstruction
Additionally, the considerable respiratory- and cardiac-induced
motion of the heart during the MR acquisition can significantly
impair image quality by showing blurring and/or ghosting like
artifacts. Multiple accelerated motion corrected reconstruction
frameworks have been developed to simultaneously accelerate
scan time and correct for motion during reconstruction. In
conventional iterative reconstruction approaches, it is more
straightforward to account for motion correction in the
reconstruction, as a non-rigid motion model can be directly
included in the encoding operator E. Some preliminary
simulation work in DL reconstruction have tackled the problem

of correcting motion-related artifacts in 2D cardiac cine images
during reconstruction by adding an adversarial element to
the network architecture (91). However, no DL reconstruction
technique has yet explicitly modeled non-rigid motion directly in
the reconstruction process. The efficient implementation of 3D
non-rigid transformations in a DNN architecture could in fact
prove to be challenging and research on the topic is currently
in progress.

Workflow Integration
Finally, most of the DL techniques proposed for CMR
reconstruction are implemented offline. Whilst this may be
suitable for initial testing, the inline integration of those
techniques will be key for their full adoption in clinical practice.
Several frameworks, such as Gadgetron (92) or Yarra (https://
yarra.rocks), have already been proposed for the easy integration
of in-house reconstruction techniques into MR scanners; we
expect them to play a key role for supporting DL-based
reconstruction as well. Many clinical cardiac applications, such
as real-time MR-guided cardiac interventions (93) will largely
benefit from such inline real-time reconstruction.
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