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Aging is associated with structural and functional changes in the heart and is a major

risk factor in developing cardiovascular disease. Many recent studies have focused

on increasing our understanding of the basis of aging at the cellular and molecular

levels in various tissues, including the heart. It is known that there is an age-related

decline in cellular quality control pathways such as autophagy and mitophagy, which

leads to accumulation of potentially harmful cellular components in cardiac myocytes.

There is evidence that diminished autophagy and mitophagy accelerate the aging

process, while enhancement preserves cardiac homeostasis and extends life span. Here,

we review the current knowledge of autophagy and mitophagy in aging and discuss

how age-associated alterations in these processes contribute to cardiac aging and

age-related cardiovascular diseases.
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INTRODUCTION

Aging is a major risk factor in developing cardiovascular disease and increases exponentially
with age. Cardiac aging is characterized by the presence of hypertrophy, fibrosis, accumulation
of misfolded proteins, and dysfunctional mitochondria. Current efforts are dedicated to
understanding the biological process of aging and to identify pathways that can be targeted to
extend health and life spans. Interestingly, it has been demonstrated that many of the pathways
that improve health and extend longevity in various organisms all converge on autophagy (1–8).
Autophagy is a catabolic pathway that is responsible for recycling cellular proteins and organelles
to maintain energy homeostasis. It participates in the elimination of pathogens and prevents
activation of inflammation. It is also a key pathway in cellular quality control by eliminating
dysfunctional or unwanted organelles and protein aggregates. However, there is strong evidence
that autophagy is decreased with age in tissues, including the heart (5, 9–15).

The heart requires a lot of energy which is mainly generated by mitochondria via oxidative
phosphorylation. However, aging is associated with altered cardiac mitochondrial metabolism and
mitochondrial respiratory defects (16). The impaired fatty acid and glucose metabolism, combined
with reduced mitochondrial respiration are also believed to underlie the increased susceptibility
to cardiac injury in the elderly population (16). Normally, these dysfunctional mitochondria are
eliminated by autophagosomes in a selective process termed mitophagy. Predictably, reduced
autophagy in aging contributes to accumulation of dysfunctional mitochondria and decreased
ability to adapt to stress.

Altered autophagy and mitophagy overtime are likely central contributors in the aging process.
Here, we review the current knowledge of autophagy and mitophagy in aging and discuss
how age-associated alterations in these processes contribute to cardiac aging and age-related
cardiovascular diseases.
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AUTOPHAGY

Autophagy involves the sequestration of ubiquitinated cargo into
vesicles called autophagosomes and delivery of the content to
lysosomes via fusion. The cargo is degraded inside lysosomes
and the components are recycled to the cytoplasm. Autophagy
is a highly regulated process and consists of several distinct
steps; initiation, nucleation and formation of phagophore,
sequestration of cargo, and fusion of autophagosome with a
lysosome (Figure 1A). The different steps in the process are
regulated by different autophagy-related proteins (Atg) (17).
The mechanistic target of rapamycin (mTOR) functions as
a gate keeper and prevents activation of autophagy. When
mTOR is inhibited, it leads to activation of the unc-51 like
autophagy activating kinase 1 (Ulk1/Atg1) which initiates the
nucleation of the autophagosome via Beclin1 (18). At baseline,
Beclin1 is sequestered by Bcl-2 and Rubicon to suppress
autophagy but its release allows it to initiate autophagosome
formation (19–21). The elongation and maturation of the
growing autophagosome membrane requires two conjugation
pathways. The E1-like and E2-like enzymes Atg7 and Atg10
conjugate Atg5 to Atg12. The Atg5-Atg12 complex then interacts
with Atg16. Atg16 is required for the proper localization of
the complex to the pre-autophagosomal membrane (22). The

FIGURE 1 | Overview of (A) autophagy and (B) mitophagy pathways. Stars and triangle mark proteins that have been reported to be altered with age.

Atg5-12-16 complex then functions as an E3-like enzyme in the
second conjugation pathway, where LC3 is covalently linked to
phosphatidylethanolamine (PE). The conjugation of LC3 to PE
to form LC3II is mediated by Atg7 (E1-like) and Atg3 (E2-like),
respectively (17). LC3II is also involved in cargo recognition
where it binds to adaptor proteins such as p62 (23). Several
proteins in this pathway are altered with age which ultimately
leads to diminished autophagy.

MITOPHAGY

PINK1/Parkin-Mediated Mitophagy
The PINK1/Parkin pathway contains three key elements: a
mitochondrial membrane depolarization sensor (PINK1),
a signal amplifier (Parkin) and a downstream signal
effector (ubiquitin chains) (Figure 1B) (24). Under normal
cellular conditions, PINK1 is partly imported into the inter
mitochondrial membrane space where it is cleaved by resident
proteases such as the presenilin-associated rhomboid-like
protease (PARL) (25, 26). However, this process is disrupted
upon loss of mitochondrial membrane potential, leading to
accumulation of PINK1 on the outer mitochondrial membrane
(OMM), where PINK1 in turn recruits the E3 ubiquitin ligase
Parkin (25, 27, 28). PINK1 phosphorylates both ubiquitin and
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Parkin which contribute to both its activation and anchoring
at the mitochondria (29). PINK1 has also been reported to
phosphorylate MFN2 which then functions as a docking site
for Parkin at mitochondria (30). This allows activated Parkin to
ubiquitinate various outer mitochondrial membrane proteins
(31). However, a recent study reported an alternative function
for MFN2 during mitophagy where MFN2 must be degraded
for mitophagy to proceed (32). MFN2 is known to tether
mitochondria to ER at specific contact sites. McLelland et al.
found that Parkin-mediated ubiquitination and degradation
of MFN2 disrupts the contact sites and releases mitochondria
from the ER. The release provides Parkin full access to its
other substrates and allows for mitophagy to proceed (32).
The mitochondrial proteins ubiquitinated by Parkin are
recognized by various adaptor proteins, such as p62/SQSTM1
and Optineurin (33, 34). These adaptors bind to the ubiquitin-
chains on proteins in the OMM via their ubiquitin-associated
(UBA) domain and simultaneously directly interact with LC3
on the autophagosome via their LC3 Interacting Region (LIR)
motifs (23, 33, 35).

Mitophagy Receptors
Mitochondrial proteins in the OMM can also target
mitochondria to autophagosomes (Figure 1B). BNIP3,
NIX/BNIP3L, FUNDC1, Bcl2L13, FKBP8, and Prohibitin-2
(PHB2) are some of the mitophagy receptors that have been
identified to date (36–41). These proteins are integrated
mitochondrial membrane proteins that are facing the
cytosol. The exception is PHB2, which is localized in the
inner mitochondrial membrane. PHB2 promotes removal
of remaining mitochondrion after outer membrane rupture
(36). The mitophagy receptors contain LIRs and can therefore
bind directly to LC3 on the autophagosome membrane
bypassing the need for ubiquitin and adaptor proteins. The
phospholipid cardiolipin can also function as a mitophagy
receptor (Figure 1B). Cardiolipin is localized on the inner
mitochondrial membrane but is externalized on dysfunctional
mitochondria where it facilitates mitophagy by interacting
with LC3 (42). However, it is possible that, similar to PHB2,
cardiolipin can ensure mitophagy of the inner mitochondrial
compartment after outer mitochondrial membrane rupture.
Although they have all been established as mitophagy receptors,
it is unclear how most of them are activated to induce mitophagy
of mitochondria. These proteins are also known to have
alternative functions and how they switch between the two
functions is not completely clear.

The physiological conditions dictating activation of the two
distinct mitophagy pathways are still unclear and under intense
investigation. Recently, it has been proposed that PINK1/Parkin-
mediated mitophagy plays a minimal role in basal mitophagy
(43, 44) and that this pathway plays a more important role in
stress adaptation and repair (45, 46). Other studies have reported
that mitophagy receptors are key regulators of programmed
mitophagy during development or differentiation (47–49). Thus,
the two different mitophagy pathways appear to have distinct
functions in the cell but additional studies are clearly needed.
Moreover, cross talk clearly exists between the two mitophagy

pathways (50, 51). For instance, the protein phosphatase PGAM5
dephosphorylates FUNDC1 which enhances the interaction
between FUNDC1 and LC3 (52). PGAM5 also coordinates with
PHB2 to promote PINK1/Parkin-mediated mitophagy where
PHB2 decreases PINK1 processing by inhibiting PARL while
PGAM5 stabilizes PINK1 on the OMM (53). Taken together,
there is clearly coordination between these two pathways, and
they can compensate for each other to some extent.

AUTOPHAGY AND AGING

A growing body of data support the anti-aging effects
of enhanced autophagy. Many studies have demonstrated
that enhancing autophagy by limiting caloric intake, genetic
manipulation or pharmacological treatments increases lifespan
in various organisms (1–6). For instance, transgenic mice with
systemic overexpression of Atg5 have enhanced autophagic
activity in tissues which leads to health benefits such as reduced
weight gain with age and extended life spans compared to wild
type mice (2). Although this study did not specifically focus
on the myocardium, the authors reported increased autophagic
activity as well as reduced fibrosis with age in hearts of
the transgenic mice. The cardioprotective effects of enhanced
autophagy during the aging process were recently confirmed by
the Levine group, who developed a Becn1F121A/F121A knock-in
mouse model with constitutively increased basal autophagy due
to a disruption in the Bcl-2 binding to Beclin1. They found that
health and life spans are significantly increased in the knock-
in mice. Moreover, aged Becn1F121A/F121A knock-in mice have
reduced cardiac hypertrophy and interstitial fibrosis compared
to aged-matched wild type mice (20), confirming that preserving
autophagy in the heart delays or even prevents cardiac aging.
In contrast, selective disruption of autophagy in the heart leads
to accelerated cardiac aging with accumulation of ubiquitinated
proteins and dysfunctional mitochondria and development of
cardiac hypertrophy (54). Preserving autophagy is clearly critical
in the heart to prevent biological aging.

MITOPHAGY AND AGING

Reduced mitophagy also recapitulates the age-related
accumulation of dysfunctional mitochondria in tissues. Thus,
the forced increase in autophagy in the above studies can also be
linked to enhancedmitophagy as it would enhance elimination of
dysfunctional mitochondria. Several studies have confirmed that
genetic and pharmacological interventions promoting enhanced
mitophagy also lead to extended life span (55, 56), while
disrupting mitophagy leads to accelerated aging phenotypes
(57, 58). For instance, Urolithin A is a natural compound that
induces mitophagy and extends life span in C.elegans (56).
Both systemic and neuron-specific overexpression of Parkin
in flies slows aging and extends lifespan, although lifespan
extension is greater with ubiquitous Parkin overexpression (59).
A link also exists between Parkin-mediated mitophagy and
NLRP3 inflammasome activation. The NLRP3 inflammasome
is activated by the presence of mitochondrial DNA in the
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cytosol that have been released from damaged mitochondria.
Thus, Parkin-mediated mitophagy of damaged mitochondria
functions to prevent activation of the inflammasome (60).
The PINK1/Parkin pathway also diminishes STING-induced
inflammation by a similar mechanism (61).

Several early studies reported that PINK1 or Parkin
deficiency in Drosophila causes accumulation of dysfunctional
mitochondria, flight muscle degeneration and reduced lifespan
(62–64). Also, Cornelissen et al. found that mitophagic activity
in flight muscle increased with aging in flies and that the
age-dependent rise is abrogated by either PINK1 or Parkin
deficiency (57). Parkin-deficient mice have an accelerated aging
phenotype and accumulate aberrant mitochondria in aging heart
(58, 65) while cardiac specific overexpression of Parkin can
delay cardiac aging by enhancing mitochondrial turnover (65).
These studies present evidence that enhancing mitophagy by
targeting the Parkin pathway is beneficial. However, the anti-
aging effect of Parkin is likely dose-dependent as aged transgenic
mice with higher levels of Parkin overexpression develop cardiac
fibrosis likely due to an imbalance between ubiquitination and
autophagic degradation (66).

Much less is known about what happens to mitophagy
receptors during aging. It was recently reported that mice
deficient in both Akt2 and AMPK are predisposed to cardiac
aging possible due to compromisedmitophagy. These hearts have
reduced levels of several mitophagy proteins including BNIP3
and FUNDC1 (15). A mouse model carrying a proofreading-
defective mtDNA polymerase γ (POLG) accumulate mtDNA
mutations which leads to accelerated aging (67). Unexpectedly,
Parkin plays a minimal role in clearing cardiac mitochondria
in POLG mice as cardiac aging is unaffected by cardiac-
specific overexpression or global deletion of Parkin (66).
Instead, hearts in aged POLG mice have elevated levels
of the mitophagy receptor BNIP3 coupled with enhanced
mitochondrial biogenesis, indicating enhanced baseline
mitochondrial turnover (66). The fact that NIX/BNIP3 double
knockout mice accumulate dysfunctional mitochondria in the
heart at an accelerated rate with age compared to wild type
mice confirms that these mitophagy receptors play a key role in
baseline mitochondrial maintenance (68). Furthermore, Rana
et al. recently demonstrated that promoting Drp1-mediated
mitochondrial fission in midlife leads to increased mitophagy
and rejuvenated mitochondria in flies. This leads to improved
health span and delays the onset of pathology linked to aging
(69). Together, these findings support the notion that reduced
mitophagy might be a significant underlying factor in the
accumulation of dysfunctional mitochondria in aged organisms
contributing to their health decline and mortality. Also, the
mitophagy pathway may represent a therapeutic target to
counteract aging.

AGE-RELATED REDUCTION IN
AUTOPHAGY AND MITOPHAGY

Although autophagy is clearly diminished with age in tissues,
including the heart (5, 9–12), exactly why cardiac autophagy

is reduced during aging is still unclear. Most of our current
knowledge comes from studies in cell lines or other tissues.
Oxidative stress can inhibit autophagy by promoting oxidation
of the autophagy enzymes involved in autophagy (70). Under
baseline conditions when autophagy is not activated, LC3 is
covalently bound to inactive Atg3 and Atg7, which protects
cysteine residues in their catalytic sites from oxidation. However,
the release of LC3 upon activation of autophagy leads to exposure
of the cysteines, making them available to direct oxidation
during high levels of oxidative stress (70). Moreover, Parkin is
also prone to oxidation of its cysteine residues which affects
its E3 ubiquitin ligase activity and promotes its misfolding
and aggregation (71, 72). Also, both PINK1 and Parkin can
be S-nitrosylated which leads to attenuated mitophagy (73,
74). As cardiac aging is characterized by increased oxidative
stress (75, 76), it is possible that this directly contributes
to reduced autophagosome formation and impaired Parkin-
mediated mitophagy in aged myocytes.

Low levels of chronic inflammation has also been linked
to age-related diseases (77). The NLRP3 inflammasome
is a cytosolic protein complex that initiates activation of
inflammatory responses by inducing cell death and triggering
the release of proinflammatory cytokines (77). Deregulation
of the NLRP3 inflammasome has been linked to inhibition of
autophagy and aging. NLRP3-deficient mice have improved
health span and attenuated age-related functional decline,
including reduced bone loss, improved memory and cognitive
performance, and motor performance (78). Recently, it was
reported that aged NLRP3-deficient mice have reduced cardiac
hypertrophy and fibrosis and increased life spans compared to
wild type mice (14). This study linked the NLRP3-deficiency in
aged mice to reduced mTOR suppression resulting in increased
autophagic activity (14).

Moreover, it is also likely that proteins involved in regulating
autophagy are altered with age. For instance, Rubicon is a
negative regulator of Beclin1 and it was recently reported that
Rubicon expression increases in worm, fly and mouse tissues
with age (5). Rubicon knockdown ameliorates age-dependent
phenotypes and extends life span in both worms and flies, while
Rubicon systemic-knockout mice have reduced age-associated
phenotypes such as decreased kidney fibrosis (5). This suggests
that Rubicon could be one of the factors contributing to the
decline in autophagy during aging. However, other regulators
might also be altered with age in tissues.

Finally, lysosomes function in the terminal step of autophagy
(Figure 1) and lysosomal function is compromised with age (79).
For instance, the activity of lysosomal hydrolases responsible
for degrading cargo is dependent on the acidic milieu of the
lysosome. After fusion with an autophagosome, the lysosome
must undergo reacidification to restore the acidic pH and activate
the hydrolases. The v-type ATPase is responsible for maintaining
the acidic milieu by pumping proton into the lysosomal
lumen and studies indicate that the v-ATPase activity and
acidification are reduced with age (80). Lysosomal dysfunction
has been identified in age-related neurological pathologies,
such as Parkinson’s and Alzheimer’s disease (80). Lysosomal
impairment has also been associated with decreased lifespan,
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while enhancing lysosomal functional capacity can promote
longevity (81, 82). In addition, the adult brain contains a pool
of neural stem cells (NSCs) that can generate new neurons but
the function of NSCs declines with age. Interestingly, there is
an age-dependent decrease in lysosome levels in NSCs which
results in fewer lysosomes available to fuse with autophagosomes
(83). It is currently unclear if lysosomal function is altered in the
aged heart.

CONCLUSION

In summary, declines in autophagy and mitophagy in tissues
clearly play a role in the aging process and contribute to
development of age-related diseases. The main questions that
remain unanswered include: why are autophagy and mitophagy
suppressed with age and can these pathways be restored
in the aged heart? Relatively little is still known about the
molecular mechanism underlying the decrease in autophagy
and mitophagy and whether there are tissue specific differences.

Although manipulation of autophagy and mitophagy pathways
are protective in pre-clinical models, the level of activity must be
carefully monitored as excessive autophagy can lead to excessive
degradation of key cellular components. Increased knowledge
into how these pathways are regulated as well as altered with age
will allow for more specific manipulation. Further understanding
will also provide important insights into how future therapies can
protect the heart against age-specific functional decline.
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