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Deep learning has become the most widely used approach for cardiac image

segmentation in recent years. In this paper, we provide a review of over 100 cardiac

image segmentation papers using deep learning, which covers common imaging

modalities includingmagnetic resonance imaging (MRI), computed tomography (CT), and

ultrasound and major anatomical structures of interest (ventricles, atria, and vessels). In

addition, a summary of publicly available cardiac image datasets and code repositories

are included to provide a base for encouraging reproducible research. Finally, we discuss

the challenges and limitations with current deep learning-based approaches (scarcity

of labels, model generalizability across different domains, interpretability) and suggest

potential directions for future research.
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1. INTRODUCTION

Cardiovascular diseasess (CVDs) are the leading cause of death globally according toWorld Health
Organization (WHO). About 17.9 million people died from CVDs in 2016, from CVD, mainly
from heart disease and stroke1. The number is still increasing annually. In recent decades, major
advances have been made in cardiovascular research and practice aiming to improve diagnosis
and treatment of cardiac diseases as well as reducing the mortality of CVD. Modern medical
imaging techniques, such as magnetic resonance imaging (MRI), computed tomography (CT)
and ultrasound are now widely used, which enable non-invasive qualitative and quantitative
assessment of cardiac anatomical structures and functions and provide support for diagnosis,
disease monitoring, treatment planning, and prognosis.

Of particular interest, cardiac image segmentation is an important first step in numerous
applications. It partitions the image into a number of semantically (i.e., anatomically) meaningful
regions, based on which quantitative measures can be extracted, such as the myocardial mass, wall
thickness, left ventricle (LV) and right ventricle (RV) volume as well as ejection fraction (EF) etc.
Typically, the anatomical structures of interest for cardiac image segmentation include the LV, RV,
left atrium (LA), right atrium (RA), and coronary arteries. An overview of typical tasks related
to cardiac image segmentation is presented in Figure 1, where applications for the three most
commonly used modalities, i.e., MRI, CT, and ultrasound, are shown.

1https://www.who.int/cardiovascular_diseases/about_cvd/en/
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Before the rise of deep learning, traditional machine learning
techniques, such as model-based methods (e.g., active shape and
appearance models) and atlas-based methods had been shown
to achieve good performance in cardiac image segmentation (1–
4). However, they often require significant feature engineering
or prior knowledge to achieve satisfactory accuracy. In contrast,
deep learning (DL)-based algorithms are good at automatically
discovering intricate features from data for object detection
and segmentation. These features are directly learned from data
using a general-purpose learning procedure and in end-to-end
fashion. This makes DL-based algorithms easy to apply to other
image analysis applications. Benefiting from advanced computer
hardware [e.g., graphical processing units (GPUs) and tensor
processing units (TPUs)] as well as increased available data
for training, DL-based segmentation algorithms have gradually
outperformed previous state-of-the-art traditional methods,
gaining more popularity in research. This trend can be observed
in Figure 2A, which shows how the number of DL-based papers
for cardiac image segmentation has increased strongly in the
last years. In particular, the number of the publications for MR
image segmentation is significantly higher than the numbers of
the other two domains, especially in 2017. One reason, which can
be observed in Figure 2B, is that the publicly available data for
MR segmentation has increased remarkably since 2016.

In this paper, we provide an overview of state-of-the-art deep
learning techniques for cardiac image segmentation in the three
most commonly used modalities (i.e., MRI, CT, ultrasound)

Abbreviations: Imaging-related terminology: CT, computed tomography;
CTA, computed tomography angiography; LAX, long-axis; MPR, multi-planar
reformatted; MR, magnetic resonance; MRI, magnetic resonance imaging; LGE,
late gadolinium enhancement; RFCA, radio-frequency catheter ablation; SAX,
short-axis; 2CH, 2-chamber; 3CH, 3-chamber; 4CH, 4-chamber.
Cardiac structures and indexes: AF, atrial fibrillation; AS, aortic stenosis; AO,
aorta; CVD, cardiovascular diseases; CAC, coronary artery calcium; DCM, dilated
cardiomyopathy; ED, end-diastole; ES, end-systole; EF, ejection fraction; HCM,
hypertrophic cardiomyopathy; LA, left atrium; LV, left ventricle; LVEDV, left
ventricular end-diastolic volume; LVESV, left ventricular end-systolic volume;
MCP, mixed-calcified plaque; MI, myocardial infarction; Myo, left ventricular
myocardium; NCP, non-calcified plaque; PA, pulmonary artery; PV, pulmonary
vein; RA, right atrium; RV, right ventricle; RVEDV, right ventricular end-diastolic
volume; RVESV, right ventricular end-systolic volume; RVEF, right ventricular
ejection fraction; WHS, whole heart segmentation.
Machine learning terminology: AE, autoencoder; ASM, active shape model;
BN, batch normalization; CONV, convolution; CNN, convolutional neural
network; CRF, conditional random field; DBN, deep belief network; DL, deep
learning; DNN, deep neural network; EM, expectation maximization; FCN, fully
convolutional neural network; GAN, generative adversarial network; GRU, gated
recurrent units; MSE, mean squared error; MSL, marginal space learning; MRF,
markov random field; LSTM, Long-short termmemory; ReLU, rectified linear unit;
RNN, recurrent neural network; ROI, region-of-interest; SMC, sequential monte
carlo; SRF, structured random forest; SVM, support vector machine.
Cardiac image segmentation datasets: ACDC, Automated Cardiac Diagnosis
Challenge; CETUS, Challenge on Endocardial Three-dimensional Ultrasound
Segmentation;MM-WHS,Multi-ModalityWhole Heart Segmentation; LASC, Left
Atrium Segmentation Challenge; LVSC, Left Ventricle Segmentation Challenge;
RVSC, Right Ventricle Segmentation Challenge.
Others: EMBC, The International Engineering in Medicine and Biology
Conference; GDPR, The General Data Protection Regulation; GPU, graphic
processing unit; FDA, United States Food and Drug Administration; ISBI, The
IEEE International Symposium on Biomedical Imaging; MICCAI, International
Conference on Medical Image Computing and Computer-assisted Intervention;
TPU, tensor processing unit; WHO, World Health Organization.

in clinical practice and discuss the advantages and remaining
limitations of current deep learning-based segmentation
methods that hinder widespread clinical deployment. To our
knowledge, there have been several review papers that presented
overviews about applications of DL-based methods for general
medical image analysis (5–7), as well as some surveys dedicated
to applications designed for cardiovascular image analysis (8, 9).
However, none of them has provided a systematic overview
focused on cardiac segmentation applications. This review paper
aims at providing a comprehensive overview from the debut to
the state-of-the-art of deep learning algorithms, focusing on a
variety of cardiac image segmentation tasks (e.g., the LV, RV, and
vessel segmentation) (section 3). Particularly, we aim to cover
most influential DL-related works in this field published until
1st August 2019 and categorized these publications in terms of
specific methodology. Besides, in addition to the basics of deep
learning introduced in section 2, we also provide a summary of
public datasets (see Table 6) as well as public code (see Table 7),
aiming to present a good reading basis for newcomers to the
topic and encourage future contributions. More importantly,
we provide insightful discussions about the current research
situations (section 3.4) as well as challenges and potential
directions for future work (section 4).

1.1. Search Criterion
To identify related contributions, search engines like Scopus and
PubMed were queried for papers containing (“convolutional”
OR “deep learning”) and (“cardiac”) and (“image segmentation”)
in title or abstract. Additionally, conference proceedings for
MICCAI, ISBI, and EMBC were searched based on the titles of
papers. Papers which do not primarily focus on segmentation
problems were excluded. The last update to the included papers
was on Aug 1, 2019.

2. FUNDAMENTALS OF DEEP LEARNING

Deep learning models are deep artificial neural networks. Each
neural network consists of an input layer, an output layer, and
multiple hidden layers. In the following section, we will review
several deep learning networks and key techniques that have been
commonly used in state-of-the-art segmentation algorithms. For
a more detailed and thorough illustration of the mathematical
background and fundamentals of deep learning we refer the
interested reader to Goodfellow (43).

2.1. Neural Networks
In this section, we first introduce basic neural network
architectures and then briefly introduce building blocks which
are commonly used to boost the ability of the networks to learn
features that are useful for image segmentation.

2.1.1. Convolutional Neural Networks (CNNs)
In this part, we will introduce convolutional neural network
(CNN), which is the most common type of deep neural networks
for image analysis. CNN have been successfully applied to
advance the state-of-the-art on many image classification, object
detection and segmentation tasks.
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FIGURE 1 | Overview of cardiac image segmentation tasks for different imaging modalities. For better understanding, we provide the anatomy of the heart on the left

(image source: Wikimedia Commons, license: CC BY-SA 3.0). Of note, for simplicity, we list the tasks for which deep learning techniques have been applied, which will

be discussed in section 3.

FIGURE 2 | (A) Overview of numbers of papers published from 1st January 2016 to 1st August 2019 regarding deep learning-based methods for cardiac image

segmentation reviewed in this work. (B) The increase of public data for cardiac image segmentation in the past 10 years. A list of publicly available datasets with

detailed information is provided in Table 6. CT, computed tomography; MR, magnetic resonance.

As shown in Figure 3A, a standard CNN consists of an
input layer, an output layer and a stack of functional layers in
between that transform an input into an output in a specific
form (e.g., vectors). These functional layers often contains
convolutional layers, pooling layers and/or fully-connected
layers. In general, a convolutional layer CONVl contains kl
convolution kernels/filters, which is followed by a normalization

layer [e.g., batch normalization (44)] and a non-linear activation
function [e.g., rectified linear unit (ReLU)] to extract kl feature
maps from the input. These feature maps are then downsampled
by pooling layers, typically by a factor of 2, which remove
redundant features to improve the statistical efficiency andmodel
generalization. After that, fully connected layers are applied to
reduce the dimension of features from its previous layer and
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find the most task-relevant features for inference. The output of
the network is a fix-sized vector where each element can be a
probabilistic score for each category (for image classification), a
real value for a regression task (e.g., the left ventricular volume
estimation) or a set of values (e.g., the coordinates of a bounding
box for object detection and localization).

A key component of CNN is the convolutional layer. Each
convolutional layer has kl convolution kernels to extract kl
feature maps and the size of each kernel n is chosen to be small
in general, e.g., n = 3 for a 2D 3 × 3 kernel, to reduce the
number of parameters2. While the kernels are small, one can
increase the receptive field (the area of the input image that
potentially impacts the activation of a particular convolutional
kernel/neuron) by increasing the number of convolutional layers.
For example, a convolutional layer with large 7×7 kernels can be
replaced by three layers with small 3×3 kernels (45). The number
of weights is reduced by a factor of 72/(3 × (32)) ≈ 2 while the
receptive field remains the same (7 × 7). An online resource3

is referred here, which illustrates and visualizes the change of
receptive field by varying the number of hidden layers and the
size of kernels. In general, increasing the depth of convolution
neural networks (the number of hidden layers) to enlarge the
receptive field can lead to improved model performance, e.g.,
classification accuracy (45).

CNNs for image classification can also be employed for
image segmentation applications without major adaptations to
the network architecture (46), as shown in Figure 3B. However,
this requires to divide each image into patches and then train
a CNN to predict the class label of the center pixel for every
patch. One major disadvantage of this patch-based approach
is that, at inference time, the network has to be deployed for
every patch individually despite the fact that there is a lot of
redundancy due to multiple overlapping patches in the image.
As a result of this inefficiency, the main application of CNNs
with fully connected layers for cardiac segmentation is object
localization, which aims to estimate the bounding box of the
object of interest in an image. This bounding box is then used to
crop the image, forming an image pre-processing step to reduce
the computational cost for segmentation (47). For efficient, end-
to-end pixel-wise segmentation, a variant of CNNs called fully
convolutional neural network (FCN) is more commonly used,
which will be discussed in the next section.

2.1.2. Fully Convolutional Neural Networks (FCNs)
The idea of FCN was first introduced by Long et al. (48) for
image segmentation. FCNs are a special type of CNNs that

2In a convolution layer l with kl 2D n × n convolution kernels, each convolution

kernel CONV(i)
l
, i ∈ (1, kl) has a weight matrix w

(i)
l

and a bias term b
(i)
l

as

parameters and can be formulated as: y = w
(i)
l

◦ xin + b
(i)
l
, where w

(i)
l

∈

R
n×n×lin , b(i)

l
∈ R, xin ∈ R

H×W×lin , y ∈ R
H′×W′×kl , lin denotes the number

of channels in the input xin and ◦ denotes the convolution operation. Thus, the
number of parameters in a convolutional layer is kl × (n2 × lin + 1). For a
convolutional layer with 16 3 × 3 filters where the input is a 28 × 28 × 1 2D gray
image, the number of parameters in this layer is 16× (32× 1+ 1) = 160. For more
technical details about convolutional neural networks, an online tutorial is referred
here: http://cs231n.github.io/convolutional-networks.
3https://fomoro.com/research/article/receptive-field-calculator

do not have any fully connected layers. In general, as shown
in Figure 4A, FCNs are designed to have an encoder-decoder
structure such that they can take input of arbitrary size and
produce the output with the same size. Given an input image,
the encoder first transforms the input into high-level feature
representation whereas the decoder interprets the feature maps
and recovers spatial details back to the image space for pixel-
wise prediction through a series of upsampling and convolution
operations. Here, upsampling can be achieved by applying
transposed convolutions, e.g., 3 × 3 transposed convolutional
kernels with a stride of 2 to up-scale feature maps by a factor
of 2. These transposed convolutions can also be replaced by
unpooling layers and upsampling layers. Compared to a patch-
based CNN for segmentation, FCN is trained and applied to the
entire images, removing the need for patch selection (50).

FCN with the simple encoder-decoder structure in Figure 4A

may be limited to capture detailed context information in
an image for precise segmentation as some features may be
eliminated by the pooling layers in the encoder. Several variants
of FCNs have been proposed to propagate features from the
encoder to the decoder, in order to boost the segmentation
accuracy. The most well-known and most popular variant of
FCNs for biomedical image segmentation is the U-net (49).
On the basis of the vanilla FCN (48), the U-net employs skip
connections between the encoder and decoder to recover spatial
context loss in the down-sampling path, yielding more precise
segmentation (see Figure 4B). Several state-of-the-art cardiac
image segmentation methods have adopted the U-net or its 3D
variants, the 3D U-net (51) and the 3D V-net (52), as their
backbone networks, achieving promising segmentation accuracy
for a number of cardiac segmentation tasks (26, 53, 54).

2.1.3. Recurrent Neural Networks (RNNs)
Recurrent neural networks (RNNs) are another type of artificial
neural networks which are used for sequential data, such as cine
MRI and ultrasound image sequences. An RNN can “remember”
the past and use the knowledge learned from the past to
make its present decision (see Figures 5A,B). For example,
given a sequence of images, an RNN takes the first image
as input, captures the information to make a prediction and
then memorize this information which is then utilized to make
a prediction for the next image. The two most widely used
architectures in the family of RNNs are LSTM (56) and gated
recurrent unit (GRU) (57), which are capable of modeling long-
term memory. A use case for cardiac segmentation is to combine
an RNN with a 2D FCN so that the combined network is capable
of capturing information from adjacent slices to improve the
inter-slice coherence of segmentation results (55).

2.1.4. Autoencoders (AE)
Autoencoders (AEs) are a type of neural networks that are
designed to learn compact latent representations from data
without supervision. A typical architecture of an autoencoder
consists of two networks: an encoder network and a decoder
network for the reconstruction of the input (see Figure 6).
Since the learned representations contain generally useful
information in the original data, many researchers have
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FIGURE 3 | (A) Generic architecture of convolutional neural networks (CNN). A CNN takes a cardiac MR image as input, learning hierarchical features through a stack

of convolutions and pooling operations. These spatial feature maps are then flattened and reduced into a vector through fully connected layers. This vector can be in

many forms, depending on the specific task. It can be probabilities for a set of classes (image classification) or coordinates of a bounding box (object localization) or a

predicted label for the center pixel of the input (patch-based segmentation) or a real value for regression tasks (e.g., left ventricular volume estimation). (B)

Patch-based segmentation method based on a CNN classifier. The CNN takes a patch as input and outputs the probabilities for four classes where the class with the

highest score is the prediction for the center pixel (see the yellow cross) in this patch. By repeatedly forwarding patches located at different locations into the CNN for

classification, one can finally get a pixel-wise segmentation map for the whole image. LV, left ventricle cavity; RV, right ventricle cavity; BG, Background; Myo, left

ventricular myocardium. The blue number at the top indicates the number of channels of the feature maps. Here, each convolution kernel is a 3 × 3 kernel (stride = 1,

padding = 1), which will produces an output feature map with the same height and width as the input.

employed autoencoders to extract general semantic features or
shape information from input images or labels and then use those
features to guide the cardiac image segmentation (58, 62, 63).

2.1.5. Generative Adversarial Networks (GAN)
The concept of Generative adversarial network (GAN) was
proposed by Goodfellow et al. (64) for image synthesis from
noise. GANs are a type of generative models that learn to model
the data distribution of real data and thus are able to create
new image examples. As shown in Figure 7A, a GAN consists of
two networks: a generator network and a discriminator network.
During training, the two networks are trained to compete against
each other: the generator produces fake images aimed at fooling
the discriminator, whereas the discriminator tries to identify real
images from fake ones. This type of training is referred to as

“adversarial training,” since the twomodels are both set to win the
competition. This training scheme can also be used for training
a segmentation network. As shown in Figure 7B, the generator
is replaced by a segmentation network and the discriminator is
required to distinguish the generated segmentation maps from
the ground truth ones (the target segmentation maps). In this
way, the segmentation network is encouraged to produce more
anatomically plausible segmentation maps (65, 66).

2.1.6. Advanced Building Blocks for Improved

Segmentation
Medical image segmentation, as an important step for
quantitative analysis and clinical research, requires high
pixel-wise accuracy. Over the past years, many researchers
have developed advanced building blocks to learn robust,
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FIGURE 4 | (A) Architecture of a fully convolutional neural network (FCN). The FCN first takes the whole image as input, learns image features though the encoder,

gradually recovers the spatial dimension by a series of upscaling layers (e.g., transposed convolution layers, unpooling layers) in the decoder and then produce

4-class pixel-wise probabilistic maps to predict regions of the left ventricle cavity (blue region), the left ventricular myocardium (green region) and the right ventricle

cavity (red region) and background. The final segmentation map is obtained by assigning each pixel with the class of the highest probability. One use case of this

FCN-based cardiac segmentation can be found in Tran (24). (B) Architecture of a U-net. On the basis of FCN, U-net adds “skip connections” (gray arrows) to

aggregate feature maps from coarse to fine through concatenation and convolution operations. For simplicity, we reduce the number of downsampling and

upsampling blocks in the diagram. For detailed information, we recommend readers to the original paper (49).

representative features for precise segmentation. These
techniques have been widely applied to state-of-the-art neural
networks (e.g., U-net) to improve cardiac image segmentation
performance. Therefore, we identified several important
techniques reported in the literature to this end and present
them with corresponding references for further reading. These
techniques are:

1. Advanced convolutional modules for multi-scale feature
aggregation:

• Inception modules (44, 67, 68), which concatenate multiple
convolutional filter banks with different kernel sizes to
extract multi-scale features in parallel (see Figure 8A);

• Dilated convolutional kernels (72), which are modified
convolution kernels with the same kernel size but different
kernel strides to process input feature maps at larger scales;

• Deep supervision (73), which utilizes the outputs
from multiple intermediate hidden layers for
multi-scale prediction;

• Atrous spatial pyramid pooling (74), which applies spatial
pyramid pooling (75) with various kernel strides to input
feature maps for multi-scale feature fusion;

2. Adaptive convolutional kernels designed to focus on
important features:

• Attention units (69, 70, 76), which learn to adaptively
recalibrate features spatially (see Figure 8B);

• Squeeze-and-excitation blocks (77), which are used to
recalibrate features with learnable weights across channels;

3. Interlayer connections designed to reuse features from
previous layers:

• Residual connections (71), which add outputs from a
previous layer to the feature maps learned from the current
layer (see Figure 8C);

• Dense connections (78), which concatenate outputs from
all preceding layers to the feature maps learned from the
current layer.
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FIGURE 5 | (A) Example of FCN with an RNN for cardiac image segmentation. The yellow block with a curved arrow represents a RNN module, which utilizes the

knowledge learned from the past to make the current decision. In this example, the network is used to segment cardiac ventricles from a stack of 2D cardiac MR

slices, which allows propagation of contextual information from adjacent slices for better inter-slice coherence (55). This type of RNN is also suitable for sequential

data, such as cine MR images and ultrasound movies to learn temporal coherence. (B) Unfolded schema of the RNN module for visualizing the inner process when

the input is a sequence of three images. Each time, this RNN module will receive an input i[t] at time step t, and produce an output o[t], considering not only the input

information but also the hidden state (“memory”) h[t− 1] from the previous time step t− 1.

FIGURE 6 | A generic architecture of an autoencoder. An autoencoder employs an encoder-decoder structure, where the encoder maps the input data to a

low-dimensional latent representation and the decoder interprets the code and reconstructs the input. The learned latent representation has been found effective for

cardiac image segmentation (58, 59), cardiac shape modeling (60) and cardiac segmentation correction (61).

2.2. Training Neural Networks
Before being able to perform inference, neural networks must
be trained. Standard training process requires a dataset that
contains paired images and labels {x, y} for training and testing,

an optimizer (e.g., stochastic gradient descent, Adam) and a
loss function to update the model parameters. This function
accounts for the error of the network prediction in each iteration
during training, providing signals for the optimizer to update the
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FIGURE 7 | (A) Overview of GAN for image synthesis. (B) Overview of adversarial training for image segmentation.

network parameters through backpropagation (43, 79). The goal
of training is to find proper values of the network parameters to
minimize the loss function.

2.2.1. Common Loss Functions
For regression tasks (e.g., heart localization, calcium scoring,
landmark detection, image reconstruction), the simplest loss
function is the mean squared error (MSE):

LMSE =
1

n

n∑

i=1

(yi − ŷi)
2, (1)

where yi is the vector of target values and ŷi is the vector
of the predicted values; n is the number of data samples at
each iteration.

Cross-entropy is the most common loss for both image
classification and segmentation tasks. In particular, the
cross-entropy loss for segmentation summarizes pixel-wise
probability errors between a predicted probabilistic output
pci and its corresponding target segmentation map yci for
each class c4:

LCE = −
1

n

n∑

i=1

C∑

c=1

yci log(p
c
i ), (2)

4At inference time, the predicted segmentation map for each image is
obtained by assigning each pixel with the class of the highest probability:
ŷi = argmaxc pci .
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FIGURE 8 | (A) Naive version of the inception module (44). In this module, convolutional kernels with varying sizes are applied to the same input for multi-scale feature

fusion. On the basis of the naive structure, a family of advanced inception modules with more complex structures have been developed (67, 68). (B) Schematic

diagram of the attention module (69, 70). The attention module teaches the network to pay attention to important features (e.g., features relevant to anatomy) and

ignore redundant features. (C) Schematic diagram of a residual unit (71). The yellow arrow represents a residual connection which is applied to reusing the features

from a previous layer. The numbers in the green and orange blocks denote the sizes of corresponding convolutional or pooling kernels. Here, for simplicity, all

diagrams have been reproduced based on the illustration in the original papers.

where C is the number of all classes. Another loss function which
is specifically designed for object segmentation is called soft-
Dice loss function (52), which penalizes the mismatch between
a predicted segmentation map and its target map at pixel-level:

LDice = 1−
2
∑n

i=1

∑C
c=1 y

c
ip

c
i∑n

i=1

∑C
c=1(y

c
i + pci )

. (3)

In addition, there are several variants of the cross-entropy or soft-
Dice loss, such as the weighted cross-entropy loss (25, 80) and
weighted soft-Dice loss (29, 81) that are used to address potential
class imbalance problem in medical image segmentation tasks
where the loss term is weighted to account for rare classes or
small objects.

2.2.2. Reducing Over-Fitting
The biggest challenge of training deep networks for medical
image analysis is over-fitting, due to the fact that there is often
a limited number of training images in comparison with the
number of learnable parameters in a deep network. A number of
techniques have been developed to alleviate this problem. Some
of the techniques are the following ones:

• Weight regularization: Weight regularization is a type of
regularization techniques that add weight penalties to the
loss function. Weight regularization encourages small or
zero weights for less relevant or irrelevant inputs. Common
methods to constrain the weights include L1 and L2
regularization, which penalize the sum of the absolute weights
and the sum of the squared weights, respectively;

• Dropout (82): Dropout is a regularization method that
randomly drops some units from the neural network
during training, encouraging the network to learn a
sparse representation;

• Ensemble learning: Ensemble learning is a type of machine
learning algorithms that combine multiple trained models
to obtain better predictive performance than individual
models, which has been shown effective for medical image
segmentation (83, 84);

• Data augmentation: Data augmentation is a training strategy
that artificially generates more training samples to increase the
diversity of the training data. This can be done via applying
affine transformations (e.g., rotation, scaling), flipping or
cropping to original labeled samples;
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• Transfer learning: Transfer learning aims to transfer
knowledge from one task to another related but different
target task. This is often achieved by reusing the weights of a
pre-trained model, to initialize the weights in a new model
for the target task. Transfer learning can help to decrease the
training time and achieve lower generalization error (85).

2.3. Evaluation Metrics
To quantitatively evaluate the performance of automated
segmentation algorithms, three types of metrics are commonly
used: (a) volume-based metrics (e.g., Dice metric, Jaccard
similarity index); (b) surface distance-based metrics (e.g., mean
contour distance, Hausdorff distance); (c) clinical performance
metrics (e.g., ventricular volume and mass). For a detailed
illustration of common used clinical indices in cardiac image
analysis, we recommend the review paper by Peng et al. (2).
In our paper, we mainly report the accuracy of methods in
terms of the Dice metric for ease of comparison. The Dice
score measures the ratio of overlap between two results (e.g.,
automatic segmentation vs. manual segmentation), ranging from
0 (mismatch) to 1 (perfect match). It is also important to note that
the segmentation accuracy of different methods are not directly
comparable in general, unless these methods are evaluated on the
same dataset. This is because, even for the same segmentation
task, different datasets can have different imaging modalities,
different patient populations and different methods of image
acquisition, which will affect the task complexities and result in
different segmentation performances.

3. DEEP LEARNING FOR CARDIAC IMAGE
SEGMENTATION

In this section, we provide a summary of deep learning-
based applications for the three main imaging modalities: MRI,
CT, and ultrasound regarding specific applications for targeted
structures. In general, these deep learning-based methods
provide an efficient and effective way to segmenting particular
organs or tissues (e.g., the LV, coronary vessels, scars) in
different modalities, facilitating follow-up quantitative analysis
of cardiovascular structure and function. Among these works,
a large portion of these methods are designed for ventricle
segmentation, especially in MR and ultrasound domains.
The objective of ventricle segmentation is to delineate the
endocardium and epicardium of the LV and/or RV. These
segmentation maps are important for deriving clinical indices,
such as left ventricular end-diastolic volume (LVEDV), left
ventricular end-systolic volume (LVESV), right ventricular end-
diastolic volume (RVEDV), right ventricular end-systolic volume
(RVESV), and EF. In addition, these segmentation maps are
essential for 3D shape analysis (60, 86), 3D + time motion
analysis (87), and survival prediction (88).

3.1. Cardiac MR Image Segmentation
Cardiac MRI is a non-invasive imaging technique that can
visualize the structures within and around the heart. Compared
to CT, it does not require ionizing radiation. Instead, it relies
on the magnetic field in conjunction with radio-frequency waves

to excite hydrogen nuclei in the heart, and then generates
an image by measuring their response. By utilizing different
imaging sequences, cardiac MRI allows accurate quantification
of both cardiac anatomy and function (e.g., cine imaging) and
pathological tissues, such as scars (late gadolinium enhancement
(LGE) imaging). Accordingly, cardiac MRI is currently regarded
as the gold standard for quantitative cardiac analysis (89).

A group of representative deep learning based cardiac MR
segmentation methods are shown in Table 1. From the table, one
can see that a majority of works have focused on segmenting
cardiac chambers (e.g., LV, RV, LA). In contrast, there are
relatively fewer works on segmenting abnormal cardiac tissue
regions, such as myocardial scars and atrial fibrosis from
contrast-enhanced images. This is likely due to the limited
relevant public datasets as well as the difficulty of the task. In
addition, to the best of our knowledge, there are very few works
that apply deep learning techniques to atrial wall segmentation,
as also suggested by a recent survey paper (161). In the following
sections, we will describe and discuss these methods regarding
different applications in detail.

3.1.1. Ventricle Segmentation

3.1.1.1. Vanilla FCN-based segmentation
Tran (24) was among the first ones to apply a FCN (50) to
segment the left ventricle, myocardium and right ventricle
directly on short-axis cardiac magnetic resonance (MR) images.
Their end-to-end approach based on FCN achieved competitive
segmentation performance, significantly outperforming
traditional methods in terms of both speed and accuracy.
In the following years, a number of works based on FCNs have
been proposed, aiming at achieving further improvements in
segmentation performance. In this regard, one stream of work
focuses on optimizing the network structure to enhance the
feature learning capacity for segmentation (29, 80, 91, 162–165).
For example, Khened et al. (29) developed a dense U-net with
inception modules to combine multi-scale features for robust
segmentation across images with large anatomical variability.
Jang et al. (80), Yang et al. (81), Sander et al. (166), and Chen
et al. (167) investigated different loss functions, such as weighted
cross-entropy, weighted Dice loss, deep supervision loss and
focal loss to improve the segmentation performance. Among
these FCN-based methods, the majority of approaches use 2D
networks rather than 3D networks for segmentation. This is
mainly due to the typical low through-plane resolution and
motion artifacts of most cardiac MR scans, which limits the
applicability of 3D networks (25).

3.1.1.2. Introducing spatial or temporal context
One drawback of using 2D networks for cardiac segmentation
is that these networks work slice by slice, and thus they do not
leverage any inter-slice dependencies. As a result, 2D networks
can fail to locate and segment the heart on challenging slices, such
as apical and basal slices where the contours of the ventricles are
not well-defined. To address this problem, a number of works
have attempted to introduce additional contextual information
to guide 2D FCN. This contextual information can include shape
priors learned from labels or multi-view images (109, 110, 168).
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TABLE 1 | A summary of representative deep learning methods on cardiac MRI segmentation.

Application Selected works Description Type of images Structure(s)

Ventricle segmentation

FCN-based

Tran (24) 2D FCN SAX Bi-ventricle

Lieman-Sifry et al. (90) A lightweight FCN (E-Net) SAX Bi-ventricle

Isensee et al. (26) 2D U-net +3D U-net (ensemble) SAX Bi-ventricle

Jang et al. (80) 2D M-Net with weighted cross entropy loss SAX Bi-ventricle

Baumgartner et al. (25) 2D U-net with cross entropy SAX Bi-ventricle

Bai et al. (31) 2D FCN trained and verified on a large dataset (∼ 5000 subjects); SAX, 2CH, 4CH Four chambers

Tao et al. (53) 2D U-net trained and verified on a multi-vendor, multi-scanner

dataset

SAX LV, Myo

Khened et al. (29) 2D Dense U-net with inception module SAX Bi-ventricle

Fahmy et al. (91) 2D FCN SAX LV, Myo

Introducing spatial or temporal context

Poudel et al. (55) 2D FCN with RNN to model inter-slice coherency SAX Bi-ventricle

Patravali et al. (92) 2D multi-channel FCN to aggregate inter-slice information SAX Bi-ventricle

Wolterink et al. (93) Dilated U-net to segment ED and ES simultaneously SAX Bi-ventricle

Applying anatomical constraints

Oktay et al. (59) FCN trained with additional anatomical shape-based regularization SAX; Ultrasound LV, Myo

Multi-stage networks

Tan et al. (94) Semi-automated method; CNN (localization) followed by another

CNN to derive contour parameters

SAX LV, Myo

Zheng et al. (27) FCN (localization) + FCN (segmentation); Propagate labels from

adjacent slices

SAX Bi-ventricle

Vigneault et al. (95) U-net (initial segmentation) + CNN (localization and transformation)

+ Cascaded U-net (segmentation)

SAX, 2CH, 4CH Four chambers

Hybrid segmentation methods

Avendi et al. (47, 96) CNN (localization) + AE (shape initialization) + Deformable model SAX LV, Myo/RV

Yang et al. (97) CNN combined with Multi-atlas SAX LV, Myo

Ngo et al. (98) Level-set based segmentation with deep belief networks SAX LV, Myo

Atrial segmentation

Mortazi et al. (99) Multi-view CNN with adaptive fusion strategy 3D scans LA

Xiong et al. (100) Patch-based dual-stream 2D FCN LGE MRI LA

Xia et al. (54) Two-stage pipeline; 3D U-net (localization) + 3D U-net

(segmentation)

LGE MRI LA

Scar segmentation

Yang et al. (101) Fully automated;
Multi-atlas method for LA segmentation followed by an AE to find

the atrial scars

LGE MRI LA; atrial scars

Chen et al. (102) Fully automated; Multi-view two-task recursive attention model LGE MRI LA; atrial scars

Zabihollahy et al. (103) Semi-automated; 2D CNN for scar tissue classification LGE MRI Myocardial scars

Moccia et al. (104) Semi-automated; 2D FCN for scar segmentation LGE MRI Myocardial scars

Xu et al. (105) Fully automated; RNN for joint motion feature learning and scar

segmentaion

cine MRI Myocardial scars

Aorta segmentation Bai et al. (32) RNN to learn temporal coherence; Propagate labels from labeled

frames to unlabeled adjacent frames for semi-supervised learning;

cine MRI Aorta

Whole heart segmentation

Yu et al. (30) 3D U-net with deep supervision 3D scans Blood pool +

Myocardium of the

heart

Li et al. (106) 3D FCN with deep supervision 3D scans Blood pool +

Myocardium of the

heart

Wolterink et al. (107) dilated CNN with deep supervision 3D scans Blood pool +

Myocardium of the

heart

By default, LV/RV and LA/RA segmentation refer to the left/right ventricle cavity segmentation and left/right atrium cavity segmentation, respectively. The same applies to Tables 2–5.

SAX, short-axis view; 2CH, 2-chamber view; 4CH, 4-chamber view; ED, end-diastolic; ES, end-systolic; Myo, Left ventricular myocardium.
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Others extract spatial information from adjacent slices to assist
the segmentation, using recurrent units (RNNs) or multi-slice
networks (2.5D networks) (27, 55, 92, 169). These networks
can also be applied to leveraging information across different
temporal frames in the cardiac cycle to improve spatial and
temporal consistency of segmentation results (28, 93, 169–171).

3.1.1.3. Applying anatomical constraints
Another problem that may limit the segmentation performance
of both 2D and 3D FCNs is that they are typically trained with
pixel-wise loss functions only (e.g., cross-entropy or soft-Dice
losses). These pixel-wise loss functions may not be sufficient
to learn features that represent the underlying anatomical
structures. Several approaches therefore focus on designing and
applying anatomical constraints to train the network to improve
its prediction accuracy and robustness. These constraints are
represented as regularization terms which take into account the
topology (172), contour and region information (173), or shape
information (59, 63), encouraging the network to generate more
anatomically plausible segmentations. In addition to regularizing
networks at training time (61), proposed a variational AE to
correct inaccurate segmentations, at the post-processing stage.

3.1.1.4. Multi-task learning
Multi-task learning has also been explored to regularize
FCN-based cardiac ventricle segmentation during training by
performing auxiliary tasks that are relevant to the main
segmentation task, such as motion estimation (174), estimation
of cardiac function (175), ventricle size classification (176),
and image reconstruction (177–179). Training a network for
multiple tasks simultaneously encourages the network to extract
features which are useful across these tasks, resulting in improved
learning efficiency and prediction accuracy.

3.1.1.5. Multi-stage networks
Recently, there is a growing interest in applying neural networks
in a multi-stage pipeline which breaks down the segmentation
problem into subtasks (27, 94, 95, 108, 180). For example, Zheng
et al. (27) and Li et al. (108) proposed a region-of-interest
(ROI) localization network followed by a segmentation network.
Likewise, Vigneault et al. (95) proposed a network called Omega-
Net which consists of a U-net for cardiac chamber localization, a
learnable transformation module to normalize image orientation
and a series of U-nets for fine-grained segmentation. By explicitly
localizing the ROI and by rotating the input image into a
canonical orientation, the proposed method better generalizes to
images with varying sizes and orientations.

3.1.1.6. Hybrid segmentation methods
Another stream of work aims at combining neural networks
with classical segmentation approaches, e.g., level-sets (98, 181),
deformable models (47, 96, 182), atlas-based methods (97, 111),
and graph-cut based methods (183). Here, neural networks are
applied in the feature extraction and model initialization stages,
reducing the dependency on manual interactions and improving
the segmentation accuracy of the conventional segmentation
methods deployed afterwards. For example, Avendi et al. (47)
proposed one of the first DL-based methods for LV segmentation

in cardiac short-axis MR images. The authors first applied a
CNN to automatically detect the LV and then used an AE
to estimate the shape of the LV. The estimated shape was
then used to initialize follow-up deformable models for shape
refinement. As a result, the proposed integrated deformable
model converges faster than conventional deformable models
and the segmentation achieves higher accuracy. In their later
work, the authors extended this approach to segment RV (96).
While these hybrid methods demonstrated better segmentation
accuracy than previous non-deep learning methods, most of
them still require an iterative optimization for shape refinement.
Furthermore, these methods are often designed for one particular
anatomical structure. As noted in the recent benchmark
study (17), most state-of-the-art segmentation algorithms for bi-
ventricle segmentation are based on end-to-end FCNs, which
allows the simultaneous segmentation of the LV and RV.

To better illustrate these developments for cardiac ventricle
segmentation from cardiac MR images, we collate a list of bi-
ventricle segmentationmethods that have been trained and tested
on the Automated Cardiac Diagnosis Challenge (ACDC) dataset,
reported in Table 2. For ease of comparison, we only consider
those methods which have been evaluated on the same online
test set (50 subjects). As the ACDC challenge organizers keep the
online evaluation platform open to the public, our comparison
not only includes the methods from the original challenge
participants [summarized in the benchmark study paper from
Bernard et al. (17)] but also three segmentation algorithms that
have been proposed after the challenge [i.e., (61, 108, 109)].
From this comparison, one can see that top algorithms are the
ensemble method proposed by Isensee et al. (26) and the two-
stage method proposed by Li et al. (108), both of which are
based on FCNs. In particular, compared to the traditional level-
set method (112), both methods achieved considerably higher
accuracy even for the more challenging segmentation of the left
ventricular myocardium (Myo), indicating the power of deep
learning based approaches.

3.1.2. Atrial Segmentation
Atrial fibrillation (AF) is one of the most common cardiac
electrical disorders, affecting around 1 million people in the
UK5. Accordingly, atrial segmentation is of prime importance
in the clinic, improving the assessment of the atrial anatomy
in both pre-operative AF ablation planning and post-operative
follow-up evaluations. In addition, the segmentation of atrium
can be used as a basis for scar segmentation and atrial fibrosis
quantification from LGE images. Traditional methods, such as
region growing (184) andmethods that employ strong priors [i.e.,
atlas-based label fusion (185) and non-rigid registration (186)]
have been applied in the past for automated left atrium
segmentation. However, the accuracy of these methods highly
relies on good initialization and ad-hoc pre-processing methods,
which limits the widespread adoption in the clinic.

Recently, Vigneault et al. (95) and Bai et al. (31) applied
2D FCNs to directly segment the LA and RA from standard
2D long-axis images, i.e., 2-chamber (2CH), 4-chamber (4CH)

5https://www.nhs.uk/conditions/atrial-fibrillation/
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TABLE 2 | Segmentation accuracy of state-of-the-art segmentation methods verified on the cardiac bi-ventricular segmentation challenge (ACDC) dataset (17).

Methods Description LV Myo RV

Isensee et al. (26) 2D U-net + 3D U-net (ensemble) 0.950 0.911 0.923

Li et al. (108) Two 2D FCNs for ROI detection and segmentation, respectively; 0.944 0.911 0.926

Zotti et al. (109) 2D GridNet-MD with registered shape prior 0.938 0.894 0.910

Khened et al. (29) 2D Dense U-net with inception module 0.941 0.894 0.907

Baumgartner et al. (25) 2D U-net with cross entropy loss 0.937 0.897 0.908

Zotti et al. (110) 2D GridNet with registered shape prior 0.931 0.890 0.912

Jang et al. (80) 2D M-Net with weighted cross entropy loss 0.940 0.885 0.907

Painchaud et al. (61) FCN followed by an AE for shape correction 0.936 0.889 0.909

Wolterink et al. (93) Multi-input 2D dilated FCN, segmenting paired ED and ES frames simultaneously 0.940 0.885 0.900

Patravali et al. (92) 2D U-net with a Dice loss 0.920 0.890 0.865

Rohé et al. (111) Multi-atlas based method combined with 3D CNN for registration 0.929 0.868 0.881

Tziritas and Grinias

(112)

Level-set + markov random field (MRF); Non-deep learning method 0.907 0.798 0.803

Yang et al. (81) 3D FCN with deep supervision 0.820 N/A 0.780

All the methods were evaluated on the same test set (50 subjects). Bold numbers are the highest overall Dice values for the corresponding structure. LV, left ventricle cavity; RV, right

ventricle cavity; Myo, left ventricular myocardium; ED, end-diastolic; ES, end-systolic. Last update: 2019.8.1.

Note that for simplicity, we report the average Dice scores for each structure over ED and ES phases. More detailed comparison for different phases can be found on the public

leaderboard in the post-testing part (https://acdc.creatis.insa-lyon.fr) as well as corresponding published works in this table.

views. Notably, their networks can also be trained to segment
ventricles from 2D short-axis stacks without any modifications
to the network architecture. Likewise, Xiong et al. (100), Preetha
et al. (187), Bian et al. (188), and Chen et al. (34) applied 2D
FCNs to segment the atrium from 3D LGE images in a slice-
by-slice fashion, where they optimized the network structure
for enhanced feature learning. 3D networks (54, 189–192) and
multi-view FCN (99, 193) have also been explored to capture
3D global information from 3D LGE images for accurate
atrium segmentation.

In particular, Xia et al. (54) proposed a fully automatic
two-stage segmentation framework which contains a first 3D
U-net to roughly locate the atrial center from down-sampled
images followed by a second 3D U-net to accurately segment
the atrium in the cropped portions of the original images at full
resolution. Their multi-stage approach is both memory-efficient
and accurate, ranking first in the left atrium segmentation
challenge 2018 (LASC’18) with a mean Dice score of 0.93
evaluated on a test set of 54 cases.

3.1.3. Scar Segmentation
Scar characterization is usually performed using LGE MR
imaging, a contrast-enhanced MR imaging technique. LGE MR
imaging enables the identification of myocardial scars and
atrial fibrosis, allowing improved management of myocardial
infarction and atrial fibrillation (194). Prior to the advent of
deep learning, scar segmentation was often performed using
intensity thresholding-based or clustering methods which are
sensitive to the local intensity changes (103). The main limitation
of these methods is that they usually require the manual
segmentation of the region of interest to reduce the search space
and the computational costs (195). As a result, these semi-
automated methods are not suitable for large-scale studies or
clinical deployment.

Deep learning approaches have been combined with
traditional segmentation methods for the purpose of scar
segmentation: Yang et al. (101, 196) applied an atlas-based
method to identify the left atrium and then applied deep
neural networks to detect fibrotic tissue in that region.
Relatively to end-to-end approaches, Chen et al. (102) applied
deep neural networks to segment both the left atrium and
the atrial scars. In particular, the authors employed a
multi-view CNN with a recursive attention module to fuse
features from complementary views for better segmentation
accuracy. Their approach achieved a mean Dice score of
0.90 for the LA region and a mean Dice score of 0.78 for
atrial scars.

In the work of Fahmy et al. (197), the authors applied
a U-net based network to segment the myocardium and the
scars at the same time from LGE images acquired from
patients with hypertrophic cardiomyopathy (HCM), achieving
a fast segmentation speed. However, the reported segmentation
accuracy for the scar regions was relatively low (mean Dice:
0.58). Zabihollahy et al. (103) and Moccia et al. (104) instead
adopted a semi-automated method which requires a manual
segmentation of the myocardium followed by the application of
a 2D network to differentiate scars from normal myocardium.
They reported higher segmentation accuracy on their test sets
(mean Dice >0.68). At the moment, fully-automated scar
segmentation is still a challenging task since the infarcted regions
in patients can lead to kinematic variabilities and abnormalities
in those contrast-enhanced images. Interestingly, Xu et al.
(105) developed an RNN which leverages motion patterns to
automatically delineate myocardial infarction area from cine MR
image sequences without contrast agents. Their method achieved
a high overall Dice score of 0.90 when compared to the manual
annotations on LGE MR images, providing a novel approach for
infarction assessment.

Frontiers in Cardiovascular Medicine | www.frontiersin.org 13 March 2020 | Volume 7 | Article 25

https://acdc.creatis.insa-lyon.fr
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Chen et al. Deep Learning for Cardiac Segmentation

3.1.4. Aorta Segmentation
The segmentation of the aortic lumen from cine MR images
is essential for accurate mechanical and hemodynamic
characterization of the aorta. One common challenge for
this task is the typical sparsity of the annotations in aortic cine
image sequences, where only a few frames have been annotated.
To address the problem, Bai et al. (32) applied a non-rigid
image registration method (198) to propagate the labels from
the annotated frames to the unlabeled neighboring ones in the
cardiac cycle, effectively generating pseudo annotated frames
that could be utilized for further training. This semi-supervised
method achieved an average Dice metric of 0.96 for the ascending
aorta and 0.95 for the descending aorta over a test set of 100
subjects. In addition, compared to a previous approach based
on deformable models (199), their approach based on FCN and
RNN can directly perform the segmentation task on a whole
image sequence without requiring the explicit estimation of
the ROI.

3.1.5. Whole Heart Segmentation
Apart from the above mentioned segmentation applications
which target one particular structure, deep learning can also
be applied to segmenting the main substructures of the heart
in 3D MR images (30, 106, 107, 200). An early work from
Yu et al. (30) adopted a 3D dense FCN to segment the
myocardium and blood pool in the heart from 3D MR
scans. Recently, more and more methods began to apply
deep learning pipelines to segment more specific substructures
[including four chambers, aorta, pulmonary vein (PV)] in both
3D CT and MR images. This has been facilitated by the
availability of a public dataset for whole heart segmentation
[Multi-ModalityWhole Heart Segmentation (MM-WHS)] which
consists of both CT and MRI images. We will discuss these
segmentation methods in the next CT section in further
detail (see section 3.2.1).

3.2. Cardiac CT Image Segmentation
CT is a non-invasive imaging technique that is performed
routinely for disease diagnosis and treatment planning. In
particular, cardiac CT scans are used for the assessment of
cardiac anatomy and specifically the coronary arteries. There
are two main imaging modalities: non-contrast CT imaging and
contrast-enhanced coronary CT angiography (CTA). Typically,
non-contrast CT imaging exploits density of tissues to generate
an image, such that different densities using various attenuation
values, such as soft tissues, calcium, fat, and air can be easily
distinguished, and thus allows to estimate the amount of
calcium present in the coronary arteries (201). In comparison,
contrast-enhanced coronary CTA, which is acquired after the
injection of a contrast agent, can provide excellent visualization
of cardiac chambers, vessels and coronaries, and has been
shown to be effective in detecting non-calcified coronary
plaques. In the following sections, we will review some of
the most commonly used deep learning-based cardiac CT
segmentation methods. A summary of these approaches is
presented in Table 3.

3.2.1. Cardiac Substructure Segmentation
Accurate delineation of cardiac substructures plays a crucial
role in cardiac function analysis, providing important
clinical variables, such as EF, myocardial mass, wall
thickness etc. Typically, the cardiac substructures that
are segmented include the LV, RV, LA, RA, Myo, aorta
(AO), and pulmonary artery (PA).

3.2.1.1. Two-step segmentation
One group of deep learning methods relies on a two-step
segmentation procedure, where a ROI is first extracted and then
fed into a CNN for subsequent classification (113, 202). For
instance, Zreik et al. (113) proposed a two-step LV segmentation
process where a bounding box for the LV is first detected using
the method described in de Vos et al. (203), followed by a
voxel classification within the defined bounding box using a
patch-based CNN. More recently, FCN, especially U-net (49),
has become the method of choice for cardiac CT segmentation.
Zhuang et al. (19) provides a comparison of a group of methods
(36, 114, 115, 117, 118, 137) for whole heart segmentation
(WHS) that have been evaluated on the MM-WHS challenge.
Several of these methods (37, 114–116) combine a localization
network, which produces a coarse detection of the heart, with
3D FCNs applied to the detected ROI for segmentation. This
allows the segmentation network to focus on the anatomically
relevant regions, and has shown to be effective for whole
heart segmentation. A summary of the comparison between the
segmentation accuracy of the methods evaluated on MM-WHS
dataset is presented in Table 4. These methods generally achieve
better segmentation accuracy on CT images compared to that of
MR images, mainly because of the smaller variations in image
intensity distribution across different CT scanners and better
image quality (19). For a detailed discussion on these listed
methods, please refer to Zhuang et al. (19).

3.2.1.2. Multi-view CNNs
Another line of research utilizes the volumetric information
of the heart by training multi-planar CNNs (axial, sagittal,
and coronal views) in a 2D fashion. Examples include Wang
et al. (117) and Mortazi et al. (118) where three independent
orthogonal CNNs were trained to segment different views.
Specifically, Wang et al. (117) additionally incorporated shape
context in the framework for the segmentation refinement, while
Mortazi et al. (118) adopted an adaptive fusion strategy to
combine multiple outputs utilizing complementary information
from different planes.

3.2.1.3. Hybrid loss
Several methods employ a hybrid loss, where different loss
functions (such as focal loss, Dice loss, and weighted categorical
cross-entropy) are combined to address the class imbalance
issue, e.g., the volume size imbalance among different
ventricular structures, and to improve the segmentation
performance (36, 119).

In addition, the work of Zreik et al. (120) has proposed
a method for the automatic identification of patients with
significant coronary artery stenoses through the segmentation
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TABLE 3 | A summary of selected deep learning methods on cardiac CT segmentation.

Application Selected works Description Imaging

modality

Structure(s)

Cardiac substructure

segmentation

Two-step segmentation

Zreik et al. (113) Patch-based CNN CTA Myo

Payer et al. (114) A pipeline of two FCNs MR/CT WHS

Tong et al. (115) Deeply supervised 3D U-net MR/CT WHS

Wang et al. (116) Two-stage 3D U-net with dynamic ROI extraction MR/CT WHS

Xu et al. (37) Faster RCNN and U-net CT WHS

Multi-view CNNs

Wang and Smedby

(117)

Orthogonal 2D U-nets with shape context MR/CT WHS

Mortazi et al. (118) Multi-planar FCNs with an adaptive fusion strategy MR/CT WHS

Hybrid loss

Yang et al. (36) 3D U-net with deep supervision MR/CT WHS

Ye et al. (119) 3D deeply-supervised U-net with multi-depth fusion CT WHS

Others

Zreik et al. (120) Multi-scale FCN CTA Myo

Joyce et al. (121) Unsupervised segmentation with GANs MR/CT LV, Myo, RV

Coronary artery

segmentation

End-to-end CNNs

Moeskops et al. (122) Multi-task CNN CTA Vessel

Merkow et al. (38) 3D U-net with deep multi-scale supervision CTA Vessel

Lee et al. (123) Template transformer network CTA Vessel

CNN as pre-/post-processing

Gülsün et al. (124) CNN as path pruning CTA coronary artery

centerline

Guo et al. (125) Multi-task FCN with a minimal patch extractor CTA Coronary artery

centerline

Shen et al. (126) 3D FCN with level set CTA Vessel

Others

Wolterink et al. (127) CNN to estimate direction classification and radius regression CTA Coronary artery

centerline

Wolterink et al. (128) Graph convolutional network CTA Vessel

Coronary artery calcium

and plaque segmentation

Two-step segmentation

Wolterink et al. (129) CNN pairs CTA CAC

Lessmann et al. (130) Multi-view CNNs CT CAC

Lessmann et al. (131) Two consecutive CNNs CT CAC

Liu et al. (132) 3D vessel-focused ConvNets CTA CAC, NCP, MCP

Direct segmentation

Santini et al. (133) Patch-based CNN CT CAC

Shadmi et al. (134) U-net and FC DenseNet CT CAC

Zhang et al. (135) U-DenseNet CT CAC

Ma and Zhang (136) DenseRAU-net CT CAC

and analysis of the LV myocardium. In this work, a multi-
scale FCN is first employed for myocardium segmentation, and
then a convolutional autoencoder is used to characterize the LV
myocardium, followed by a support vector machine (SVM) to
classify patients based on the extracted features.

3.2.2. Coronary Artery Segmentation
Quantitative analysis of coronary arteries is an important step for
the diagnosis of cardiovascular diseases, stenosis grading, blood
flow simulation and surgical planning (204). Though this topic
has been studied for years (4), only a small number of works
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TABLE 4 | Segmentation accuracy of methods validated on MM-WHS dataset.

Methods LV RV LA RA Myo AO PA WHS

Payer et al. (114) 91.8/91.6 90.9/86.8 92.9/85.5 88.8/88.1 88.1/77.8 93.3/88.8 84.0/73.1 90.8/86.3

Yang et al. (137) 92.3/75.0 85.7/75.0 93.0/82.6 87.1/85.9 85.6/65.8 89.4/80.9 83.5/72.6 89.0/78.3

Mortazi et al. (118) 90.4/87.1 88.3/83.0 91.6/81.1 83.6/75.9 85.1/74.7 90.7/83.9 78.4/71.5 87.9/81.8

Tong et al. (115) 89.3/70.2 81.0/68.0 88.9/67.6 81.2/65.4 83.7/62.3 86.8/59.9 69.8/47.0 84.9/67.4

Wang et al. (116) 80.0/86.3 78.6/84.9 90.4/85.2 79.4/84.0 72.9/74.4 87.4/82.4 64.8/78.8 80.6/83.2

Ye et al. (119) 94.4/– 89.5/– 91.6/– 87.8/– 88.9/– 96.7/– 86.2/– 90.7/–

Xu et al. (37) 87.9/– 90.2/– 83.2/– 84.4/– 82.2/– 91.3/– 82.1/– 85.9/–

The training set contains 20 CT and 20 MRI whereas the test set contains 40 CT and 40 MRI. Reported numbers are Dice scores (CT/MRI) for different substructures on both CT

and MRI scans. For more detailed comparisons, please refer to Zhuang et al. (19). The bold number in each column represents the highest score for the corresponding structure on

CT images.

investigate the use of deep learning in this context. Methods
relating to coronary artery segmentation can be mainly divided
into two categories: centerline extraction and lumen (i.e., vessel
wall) segmentation.

3.2.2.1. CNNs as a post-/pre-processing step
Coronary centerline extraction is a challenging task due to the
presence of nearby cardiac structures and coronary veins as
well as motion artifacts in cardiac CT. Several deep learning
approaches employ CNNs as either a post-processing or pre-
processing step for traditional methods. For instance, Gülsün
et al. (124) formulated centerline extraction as finding the
maximum flow paths in a steady state porous media flow,
with a learning-based classifier estimating anisotropic vessel
orientation tensors for flow computation. A CNN classifier was
then employed to distinguish true coronary centerlines from
leaks into non-coronary structures. Guo et al. (125) proposed a
multi-task FCN centerline extraction method that can generate
a single-pixel-wide centerline, where the FCN simultaneously
predicted centerline distance maps and endpoint confidence
maps from coronary arteries and ascending aorta segmentation
masks, which were then used as input to the subsequent minimal
path extractor to obtain the final centerline extraction results. In
contrast, unlike the aforementioned methods that used CNNs
either as a pre-processing or post-processing step, Wolterink
et al. (127) proposed to address centerline extraction via a 3D
dilated CNN, where the CNN was trained on patches to directly
determine a posterior probability distribution over a discrete set
of possible directions as well as to estimate the radius of an artery
at the given point.

3.2.2.2. End-to-end CNNs
With respect to the lumen or vessel wall segmentation, most
deep learning based approaches use an end-to-end CNN
segmentation scheme to predict dense segmentation probability
maps (38, 122, 126, 205). In particular, Moeskops et al.
(122) proposed a multi-task segmentation framework where a
single CNN can be trained to perform three different tasks
including coronary artery segmentation in cardiac CTA and
tissue segmentation in brain MR images. They showed that
such a multi-task segmentation network in multiple modalities
can achieve equivalent performance as a single task network.
Merkow et al. (38) introduced deep multi-scale supervision into

a 3D U-net architecture, enabling efficient multi-scale feature
learning and precise voxel-level predictions. Besides, shape priors
can also be incorporated into the network (123, 206, 207).
For instance, Lee et al. (123) explicitly enforced a roughly
tubular shape prior for the vessel segments by introducing a
template transformer network, through which a shape template
can be deformed via network-based registration to produce an
accurate segmentation of the input image, as well as to guarantee
topological constraints. More recently, graph convolutional
networks have also been investigated by Wolterink et al. (128)
for coronary artery segmentation in CTA, where vertices on the
coronary lumen surface mesh were considered as graph nodes
and the locations of these tubular surface mesh vertices were
directly optimized. They showed that such method significantly
outperformed a baseline network that used only fully-connected
layers on healthy subjects (mean Dice score: 0.75 vs. 0.67).
Besides, the graph convolutional network used in their work is
able to directly generate smooth surface meshes without post-
processing steps.

3.2.3. Coronary Artery Calcium and Plaque

Segmentation
Coronary artery calcium (CAC) is a direct risk factor for
cardiovascular disease. Clinically, CAC is quantified using the
Agatston score (208) which considers the lesion area and the
weighted maximum density of the lesion (209). Precise detection
and segmentation of CAC are thus important for the accurate
prediction of the Agatston score and disease diagnosis.

3.2.3.1. Two-step segmentation
One group of deep learning approaches to segmentation
and automatic calcium scoring proposed to use a two-step
segmentation scheme. For example, Wolterink et al. (129)
attempted to classify CAC in cardiac CTA using a pair of
CNNs, where the first CNN coarsely identified voxels likely
to be CAC within a ROI detected using De et al. (203) and
then the second CNN further distinguished between CAC and
CAC-like negatives more accurately. Similar to such a two-
stage scheme, Lessmann et al. (130, 131) proposed to identify
CAC in low-dose chest CT, in which a ROI of the heart or
potential calcifications were first localized followed by a CAC
classification process.
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3.2.3.2. Direct segmentation
More recently, several approaches (133–136) have been proposed
for the direct segmentation of CAC from non-contrast cardiac
CT or chest CT: the majority of them employed combinations
of U-net (49) and DenseNet (78) for precise quantification of
CAC which showed that a sensitivity over 90% can be achieved
(133). These aforementioned approaches all follow the same
workflow where the CAC is first identified and then quantified.
An alternative approach is to circumvent the intermediate
segmentation and to perform direct quantification, such as in
de Vos et al. (209) and Cano-Espinosa et al. (210), which have
proven that this approach is effective and promising.

Finally, for non-calcified plaque (NCP) and mixed-calcified
plaque (MCP) in coronary arteries, only a limited number
of works have been reported that investigate deep learning
methods for segmentation and quantification (132, 211). Yet,
this is a very important task from a clinical point of view, since
these plaques can potentially rupture and obstruct an artery,
causing ischemic events and severe cardiac damage. In contrast
to CAC segmentation, NCP and MCP segmentation are more
challenging due to their similar appearances and intensities as
adjacent tissues. Therefore, robust and accurate analysis often
requires the generation of multi-planar reformatted (MPR)
images that have been straightened along the centerline of the
vessel. Recently, Liu et al. (132) proposed a vessel-focused 3D
convolutional network with attention layers to segment three
types of plaques on the extracted and reformatted coronary
MPR volumes. Zreik et al. (211) presented an automatic
method for detection and characterization of coronary artery
plaques as well as determination of coronary artery stenosis
significance, in which a multi-task convolutional RNN was
used to perform both plaque and stenosis classification by
analyzing the features extracted along the coronary artery in an
MPR image.

3.3. Cardiac Ultrasound Image
Segmentation
Cardiac ultrasound imaging, also known as echocardiography, is
an indispensable clinical tool for the assessment of cardiovascular
function. It is often used clinically as the first imaging
examination owing to its portability, low cost and real-time
capability. While a number of traditional methods, such as
active contours, level-sets and active shape models have been
employed to automate the segmentation of anatomical structures
in ultrasound images (212), the achieved accuracy is limited by
various problems of ultrasound imaging, such as low signal-to-
noise ratio, varying speckle noise, low image contrast (especially
between the myocardium and the blood pool), edge dropout and
shadows cast by structures, such as dense muscle and ribs.

As in cardiac MR and CT, several DL-based methods have
been recently proposed to improve the performance of cardiac
ultrasound image segmentation in terms of both accuracy and
speed. The majority of these DL-based approaches focus on LV
segmentation, with only few addressing the problem of aortic
valve and LA segmentation. A summary of the reviewed works
can be found in Table 5.

3.3.1. 2D LV Segmentation

3.3.1.1. Deep learning combined with deformable models
The imaging quality of echocardiography makes voxel-wise
tissue classification highly challenging. To address this challenge,
deep learning has been combined with deformable model for
LV segmentation in 2D images (138, 139, 141–145). Features
extracted by trained deep neural networks were used instead of
handcrafted features to improve accuracy and robustness.

Several works applied deep learning in a two-stage pipeline
which first localizes the target ROI via rigid transformation
of a bounding box, then segments the target structure within
the ROI. This two-stage pipeline reduces the search region
of the segmentation and increases robustness of the overall
segmentation framework. Carneiro et al. (138, 139) first adopted
this DL framework to segment the LV in apical long-axis
echocardiograms. The method uses DBN (213) to predict
the rigid transformation parameters for localization and the
deformable model parameters for segmentation. The results
demonstrated the robustness of DBN-based feature extraction
to image appearance variations. Nascimento and Carneiro (140)
further reduced the training and inference complexity of the
DBN-based framework by using sparse manifold learning in the
rigid detection step.

To further reduce the computational complexity, some works
perform segmentation in one step without resorting to the two-
stage approach. Nascimento and Carneiro (141, 142) applied
sparse manifold learning in segmentation, showing a reduced
training and search complexity compared to their previous
version of the method, while maintaining the same level of
segmentation accuracy. Veni et al. (143) applied a FCN to
produce coarse segmentation masks, which is then further
refined by a level-set based method.

3.3.1.2. Utilizing temporal coherence
Cardiac ultrasound data is often recorded as a temporal sequence
of images. Several approaches aim to leverage the coherence
between temporally close frames to improve the accuracy and
robustness of the LV segmentation. Carneiro and Nascimento
(144, 145) proposed a dynamic modeling method based on a
sequential monte carlo (SMC) (or particle filtering) framework
with a transition model, in which the segmentation of the current
cardiac phase depends on previous phases. The results show that
this approach performs better than the previous method (138)
which does not take temporal information into account. In a
more recent work, Jafari et al. (146) combined U-net, long-short
term memory (LSTM) and inter-frame optical flow to utilize
multiple frames for segmenting one target frame, demonstrating
improvement in overall segmentation accuracy. The method was
also shown to be more robust to image quality variations in a
sequence than single-frame U-net.

3.3.1.3. Utilizing unlabeled data
Several works proposed to use non-DL based segmentation
algorithms to help generating labels on unlabeled images,
effectively increasing the amount of training data. To achieve this,
Carneiro and Nascimento (147, 148) proposed on-line retraining
strategies where segmentation network (DBN) is firstly initialized
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TABLE 5 | A summary of reviewed deep learning methods for ultrasound image segmentation.

Application Selected works Method Structure Imaging modality

2D LV

Combined with deformable models

Carneiro et al. (138, 139) DBN with two-step approach: localization and fine segmentation LV 2D A2C, A4C

Nascimento and

Carneiro (140)

deep belief networks (DBN) and sparse manifold learning for the localization

step

LV 2D A2C, A4C

Nascimento and

Carneiro (141, 142)

DBN and sparse manifold learning for one-step segmentation LV 2D A2C, A4C

Veni et al. (143) FCN (U-net) followed by level-set based deformable model LV 2D A4C

Utilizing temporal coherence

Carneiro and

Nascimento (144, 145)

DBN and particle filtering for dynamic modeling LV 2D A2C, A4C

Jafari et al. (146) U-net and LSTM with additional optical flow input LV 2D A4C

Utilizing unlabeled data

Carneiro and

Nascimento (147, 148)

DBN on-line retrain using external classifier as additional supervision LV 2D A2C, A4C

Smistad et al. (149) U-Net trained using labels generated by a Kalman filter based method LV and LA 2D A2C, A4C

Yu et al. (150) Dynamic CNN fine-tuning with mitral valve tracking to separate LV from LA Fetal LV 2D

Jafari et al. (151) U-net with TL-net (152) based shape constraint on unannotated frames LV 2D A4C

Utilizing data from multiple domains

Chen et al. (153) FCN trained using annotated data of multiple anatomical structures Fetal head and LV 2D head, A2-5C

Others

Smistad et al. (154) Real time CNN view-classification and segmentation LV 2D A2C, A4C

Leclerc et al. (155) U-net trained on a large heterogeneous dataset LV, Myo 2D A4C

Jafari et al. (156) Real-time mobile software, lightweight U-Net, multitask and adversarial

training

LV 2D A2C, A4C

3D LV

Dong et al. (157) CNN for 2D coarse segmentation refined by 3D snake model LV 3D (CETUS)

Oktay et al. (59) U-net with TL-net based shape constraint LV 3D (CETUS)

Dong et al. (158) Atlas-based segmentation using DL registration and adversarial training LV 3D

Others
Ghesu et al. (159) Marginal space learning and adaptive sparse neural network Aortic valves 3D

Degel et al. (160) V-net with TL-net based shape constraint and GAN-based domain

adaptation

LA 3D

Zhang et al. (42) CNN for view-classification, segmentation and disease detection Multi-chamber 2D PLAX, PSAX,

A2-4C

A[X]C is short for Apical [X]-chamber view. PLAX/PSAX, parasternal long-axis/short-axis; CETUS, using the dataset from Challenge on Endocardial Three-dimensional Ultrasound

Segmentation.

using a small set of labeled data and then applied to non-
labeled data to propose annotations. The proposed annotations
are then checked by external classifiers before being used to re-
train the network. Smistad et al. (149) trained a U-net using
images annotated by a Kalman filtering based method (214) and
illustrated the potential of using this strategy for pre-training.
Alternatively, some works proposed to exploit unlabeled data
without using additional segmentation algorithm. Yu et al. (150)
proposed to train a CNN on a partially labeled dataset of multiple
sequences, then fine-tuned the network for each individual
sequence using manual segmentation of the first frame as well as
CNN-produced label of other frames. Jafari et al. (151) proposed

a semi-supervised framework which enables training on both the
labeled and unlabeled images. The framework uses an additional
generative network, which is trained to generate ultrasound
images from segmentation masks, as additional supervision for
the unlabeled frames in the sequences. The generative network
forces the segmentation network to predict segmentation that can
be used to successfully generate the input ultrasound image.

3.3.1.4. Utilizing data from multiple domains
Apart from exploiting unlabeled data in the same domain,
leveraging manually annotated data from multiple domains
(e.g., different 2D ultrasound views with various anatomical
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structures) can also help to improve the segmentation in one
particular domain. Chen et al. (153) proposed a novel FCN-based
network to utilize multi-domain data to learn generic feature
representations. Combined with an iterative refinement scheme,
the method has shown superior performance in detection
and segmentation over traditional database-guided method
(215), FCN trained on single-domain and other multi-domain
training strategies.

3.3.1.5. Others
The potential of CNN in segmentation has motivated the
collection and labeling of large-scale datasets. Several methods
have since shown that deep learning methods, most notably
CNN-based methods, are capable of performing accurate
segmentation directly without complex modeling and post-
processing. Leclerc et al. (155) performed a study to investigate
the effect of the size of annotated data for the segmentation of the
LV in 2D ultrasound images using a simple U-net. The authors
demonstrated that the U-net approach significantly benefits from
larger amounts of training data. In addition to performance on
accuracy, some work investigated the computational efficiency
of DL-based methods. Smistad et al. (154) demonstrated the
efficiency of CNN-based methods by successfully performing
real-time view-classification and segmentation. Jafari et al. (156)
developed a software pipeline capable of real-time automated
LV segmentation, landmark detection and LV ejection fraction
calculation on a mobile device taking input from point-of-care
ultrasound (POCUS) devices. The software uses a lightweight U-
net trained using multi-task learning and adversarial training,
which achieves EF prediction error that is lower than inter- and
intra- observer variability.

3.3.2. 3D LV Segmentation
Segmenting cardiac structures in 3D ultrasound is even more
challenging than 2D. While having the potential to derive more
accurate volume-related clinical indices, 3D echocardiograms
suffer from lower temporal resolution and lower image quality
compared to 2D echocardiograms. Moreover, 3D images
dramatically increase the dimension of parameter space of
neural networks, which poses computational challenges for deep
learning methods.

One way to reduce the computational cost is to avoid direct
processing of 3D data in deep learning networks. Dong et al.
(157) proposed a two-stage method by first applying a 2D CNN
to produce coarse segmentation maps on 2D slices from a 3D
volume. The coarse 2D segmentation maps are used to initialize
a 3D shape model which is then refined by 3D deformable model
method (216). In addition, the authors used transfer learning
to side-step the limited training data problem by pre-training
network on a large natural image segmentation dataset and then
fine-tuning to the LV segmentation task.

Anatomical shape priors have been utilized to increase
the robustness of deep learning-based segmentation methods
to challenging 3D ultrasound images. Oktay et al. (59)
proposed an anatomically constrained network where a shape
constraint-based loss is introduced to train a 3D segmentation
network. The shape constraint is based on the shape prior

learned from segmentation maps using auto-encoders (152).
Dong et al. (158) utilized shape prior more explicitly by
combining a neural network with a conventional atlas-based
segmentation framework. Adversarial training was also applied
to encourage the method to produce more anatomically
plausible segmentation maps, which contributes to its superior
segmentation performance comparing to a standard voxel-wise
classification 3D segmentation network (52).

3.3.3. Left Atrium Segmentation
Degel et al. (160) adopted the aforementioned anatomical
constraints in 3D LA segmentation to tackle the domain shift
problem caused by variation of imaging device, protocol and
patient condition. In addition to the anatomically constraining
network, the authors applied an adversarial training scheme (217)
to improve the generalizability of the model to unseen domain.

3.3.4. Multi-Chamber Segmentation
Apart from LV segmentation, a few works (23, 42, 149) applied
deep learning methods to perform multi-chamber (including
LV and LA) segmentation. In particular, (42) demonstrated
the applicability of CNNs on three tasks: view classification,
multi-chamber segmentation and detection of cardiovascular
diseases. Comprehensive validation on a large (non-public)
clinical dataset showed that clinical metrics derived from
automatic segmentation are comparable or superior than manual
segmentation. To resemble real clinical situations and thus
encourages the development and evaluation of robust and
clinically effective segmentation methods, a large-scale dataset
for 2D cardiac ultrasound has been recently made public (23).
The dataset and evaluation platform were released following
the preliminary data requirement investigation of deep learning
methods (155). The dataset is composed of apical 4-chamber
view images annotated for LV and LA segmentation, with uneven
imaging quality from 500 patients with varying conditions.
Notably, the initial benchmarking (23) on this dataset has shown
that modern encoder-decoder CNNs resulted in lower error than
inter-observer error between human cardiologists.

3.3.5. Aortic Valve Segmentation
Ghesu et al. (159) proposed a framework based on marginal
space learning (MSL), Deep neural networks (DNNs) and active
shape model (ASM) to segment the aortic valve in 3D cardiac
ultrasound volumes. An adaptive sparsely-connected neural
network with reduced number of parameters is used to predict
a bounding box to locate the target structure, where the learning
of the bounding box parameters is marginalized into sub-spaces
to reduce computational complexity. This framework showed
significant improvement over the previous non-DL MSL (218)
method while achieving competitive run-time.

3.4. Discussion
So far, we have presented and discussed recent progress of deep
learning-based segmentation methods in the three modalities
(i.e., MR, CT, ultrasound) that are commonly used in the
assessment of cardiovascular disease. To summarize, current
state-of-the-art segmentation methods are mainly based on
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CNNs that employ the FCN or U-net architecture. In addition,
there are several commonalities in the FCN-based methods
for cardiac segmentation which can be categorized into four
groups: (1) enhancing network feature learning by employing
advanced building blocks in networks (e.g., inception module,
dilated convolutions), most of which have beenmentioned earlier
(section 2.1.6); (2) alleviating the problem of class imbalance
with advanced loss functions (e.g., weighted loss functions); (3)
improving the networks’ generalization ability and robustness
through a multi-stage pipeline, multi-task learning, or multi-
view feature fusion; (4) forcing the network to generate more
anatomically-plausible segmentation results by incorporating
shape priors, applying adversarial loss or anatomical constraints
to regularize the network during training. It is also worthwhile
to highlight that for cardiac image sequence segmentation (e.g.,
cine MR images, 2D ultrasound sequences), leveraging spatial
and temporal coherence from these sequences with advanced
neural networks [e.g., RNN (32, 146), multi-slice FCN (27)]
has been explored and shown to be beneficial for improving
the segmentation accuracy and temporal consistency of the
segmentation maps.

While the results reported in the literature show that neural
networks have become more sophisticated and powerful, it is
also clear that performance has improved with the increase
of publicly available training subjects. A number of DL-based
methods (especially in MRI) have been trained and tested on
public challenge datasets, which not only provide large amounts
of data to exploit the capabilities of deep learning in this domain,
but also a platform for transparent evaluation and comparison. In
addition, many of the participants in these challenges have shared
their code with other researchers via open-source community
websites (e.g., Github). Transparent and fair benchmarking and
sharing of code are both essential for continued progress in this
domain. We summarize the existing public datasets in Table 6

and public code repositories in Table 7 for reference.
An interesting conclusion supported by Table 7 is that the

target image type can affect the choice of network structures (i.e.,
2D networks, 3D networks). For 3D imaging acquisitions, such as
LGE-MRI and CT images, 3D networks are preferred whereas 2D
networks are more popular approaches for segmenting cardiac
cine short-axis or long-axis image stacks. One reason for using
2D networks for the segmentation of short-axis or long-axis
images is their typically large slice thickness (usually around 7–
8 mm) which can further exacerbated by inter-slice gaps. In
addition, breath-hold related motion artifacts between different
slices may negatively affect 3D networks. A study conducted by
Baumgartner et al. (25) has shown that a 3D U-net performs
worse than a 2D U-net when evaluated on the ACDC challenge
dataset. By contrast, in the LASC’18 challenge mentioned in
Table 6, which uses high-resolution 3D images, most participants
applied 3D networks and the best performance was achieved by a
cascaded network based on the 3D U-net (54).

It is well-known that training 3D networks is more difficult
than training 2D networks. In general, 3D networks have
significantly more parameters than 2D networks. Therefore, 3D
networks are more difficult and computationally expensive to
optimize as well as prone to over-fitting, especially if the training

data is limited. As a result, several researchers have tried to
carefully design the structure of network to reduce the number
of parameters for a particular application and have also applied
advanced techniques (e.g., deep supervision) to alleviate the over-
fitting problem (30, 54). For this reason, 2D-based networks (e.g.,
2DU-net) are still the most popular segmentation approaches for
all three modalities.

In addition to 2D and 3D networks, several authors have
proposed “2D+” networks that have been shown to be effective
in segmenting structures from cardiac volumetric data. These
“2D+” networks are mainly based on 2D networks, but are
adapted with increased capacity to utilize 3D context. These
networks include multi-view networks which leverage multi-
planar information (i.e., coronal, sagittal, axial views) (99, 117),
multi-slice networks, and 2D FCNs combined with RNNs which
incorporate context across multiple slices (33, 55, 92, 169). These
“2D+” networks inherit the advantages of 2D networks while
still being capable of leveraging through-plane spatial context for
more robust segmentation with strong 3D consistency.

Finally, it is worth to note that there is no universally
optimal segmentation method. Different applications have
different complexities and different requirements, meaning that
customized algorithms need to be optimized. For example,
while anatomical shape constraints can be applied to cardiac
anatomical structure segmentation (e.g., ventricle segmentation)
to boost the segmentation performance, those constraints may
not be suitable for the segmentation of pathologies or lesions
(e.g., scar segmentation) which can have arbitrary shapes. Also,
even if the target structure in two applications are the same,
the complexity of the segmentation task can vary significantly
from one to another, especially when their underlying imaging
modalities and patient populations are different. For example,
directly segmenting the left ventricle myocardium from contrast-
enhanced MR images (e.g., LGE images) is often more difficult
than from MR images without contrast agents, as the anatomical
structures are more attenuated by the contrast agent. For
cases with certain diseases (e.g., myocardial infarction), the
border between the infarcted region and blood pool appears
blurry and ambiguous to delineate. As a result, a segmentation
network designed for non-contrast enhanced images may not
be directly applied to contrast-enhanced images (100). A more
sophisticated algorithm is generally required to assist the
segmentation procedure. Potential solutions include applying
dedicated image pre-processing, enhancing network capacity,
adding shape constraints, and integrating specific knowledge
about the application.

4. CHALLENGES AND FUTURE WORK

It is evident from the literature that deep learning methods
have matched or surpassed the previous state of the art in
various cardiac segmentation applications, mainly benefiting
from the increased size of public datasets and the emergence
of advanced network architectures as well as powerful hardware
for computing. Given this rapid process, one may wonder if
deep learning methods can be directly deployed to real-world
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TABLE 6 | Summary of public datasets on cardiac segmentation for the three modalities.

Dataset Name/

References

Year Main modalities # of subjects Target(s) Main pathology

York (10) 2008 cine MRI 33 LV, Myo Cardiomyopathy, aortic regurgitation, enlarged ventricles and

ischemia

Sunnybrook (11) 2009 cine MRI 45 LV, Myo Hypertrophy, heart failure w./w.o infarction

LVSC (12) 2011 cine MRI 200 LV, Myo Coronary artery disease, myocardial infarction.

RVSC (1) 2012 cine MRI 48 RV Myocarditis, ischemic cardiomyopathy, suspicion of

arrhythmogenic, right ventricular dysplasia, dilated

cardiomyopathy, hypertrophic cardiomyopathy, aortic stenosis

cDEMRIS (13) 2012 LGE MRI 60 LA fibrosis and scar Atrial fibrillation

LVIC (14) 2012 LGE MRI 30 Myocardial scars Ischemic cardiomyopathy

LASC’13 (15) 2013 3D MRI 30 LA N/A

HVSMR (16) 2016 3D MRI 4 Blood pool, myocardium of

the heart

Congenital heart defects

ACDC (17) 2017 cine MRI 150 LV, Myo; RV Mycardial infarction, dilated/hypertrophic cardiomyopathy,

abnormal RV

LASC’18 (18) 2018 LGE MRI 154 LA Atrial fibrillation

MM-WHS (19) 2017 CT/MRI 60/60 WHS Myocardium infarction, atrial fibrillation, tricuspid regurgitation,

aortic valve stenosis, Alagille syndrome, Williams syndrome,

dilated cardiomyopathy, aortic coarctation, tetralogy of Fallot

CAT08 (20) 2008 CTA 32 Coronary artery centerline Patients with presence of calcium scored as absent, modest or

severe.

CLS12 (21) 2012 CTA 48 Coronary lumen and stenosis Patients with different levels of coronary artery stenoses.

CETUS (22) 2014 3D Ultrasound 45 LV Myocardial infarction, dilated cardiomyopathy

CAMUS (23) 2019 2D Ultrasound 500 LV, LA Patients with EF < 45%

Most of the datasets listed above are from the MICCAI society.

applications to reduce the workload of clinicians. The current
literature suggests that there is still a long way to go. In the
following paragraphs, we summarize several major challenges in
the field of cardiac segmentation and some recently proposed
approaches that attempt to address them. These challenges and
related works also provide potential research directions for future
work in this field.

4.1. Scarcity of Labels
One of the biggest challenges for deep learning approaches is
the scarcity of annotated data. In this review, we found that
the majority of studies uses a fully supervised approach to train
their networks, which requires a large number of annotated
images. In fact, annotating cardiac images is time consuming and
often requires significant amounts of expertise. These methods
can be divided into five classes: data augmentation, transfer
learning with fine-tuning, weakly and semi-supervised learning,
self-supervised learning, and unsupervised learning.

• Data augmentation. Data augmentation aims to increase the
size and the variety of training images by artificially generating
new samples from existing labeled data. Traditionally, this
can be achieved by applying a stack of geometric or
photometric transformations to existing image-label pairs.
These transformations can be affine transformations, adding
random noise to the original data, or adjusting image
contrast. However, designing an effective pipeline of data

augmentation often requires domain knowledge, which may
not be easily extendable to different applications. And the
diversity of augmented data may still be limited, failing
to reflect the spectrum of real-world data distributions.
Most recently, several researchers have began to investigate
the use of generative models [e.g., GANs, variational
AE (219)], reinforcement learning (220), and adversarial
example generation (221) to directly learn task-specific
augmentation strategies from existing data. In particular, the
generative model-based approach has been proven to be
effective for one-shot brain segmentation (222) and few-shot
cardiac MR image segmentation (223) and it is thus worth
exploring for more applications in the future.

• Transfer learning with fine-tuning. Transfer learning aims at
reusing a model pre-trained on one task as a starting point
to train for a second task. The key of transfer learning is to
learn features in the first task that are related to the second task
such that the network can quickly converge even with limited
data. Several researchers have successfully demonstrated the
use of transfer learning to improve the model generalization
performance for cardiac ventricle segmentation, where they
first trained a model on a large dataset and then fine-tuned it
on a small dataset (29, 31, 85, 91, 165).

• Weakly and semi-supervised learning. Weakly and semi-
supervised learning methods aim at improving the learning
accuracy by making use of both labeled and unlabeled or
weakly-labeled data (e.g., annotations in forms of scribbles
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TABLE 7 | Public code for DL-based cardiac image segmentation.

Modality Application(s) References Basic network Code repo (If not specified, the repository is

located under github.com)

MR (SAX) Bi-ventricular Segmentation Tran (24) 2D FCN vuptran/cardiac-segmentation

MR (SAX) Bi-ventricular Segmentation Baumgartner et al. (25) 2D/3D U-net baumgach/acdc_segmenter

MR (SAX) Bi-ventricular Segmentation;

1st rank in ACDC challenge

Isensee et al. (26) 2D + 3D U-net (ensemble) MIC-DKFZ/ACDC2017

MR (SAX) Bi-ventricular Segmentation Zheng et al. (27) Cascaded 2D U-net julien-zheng/

CardiacSegmentationPropagation

MR (SAX) Bi-ventricular segmentation

and Motion Estimation

Qin et al. (28) 2D FCN, RNN cq615

MR (SAX) Biventricular Segmentation Khened et al. (29) 2D U-net mahendrakhened

MR (3D scans) WHS Yu et al. (30) 3D CNN yulequan/HeartSeg

MR (Multi-view) Four-chamber

Segmentation and Aorta

Segmentation

Bai et al. (31, 32) 2D FCN, RNN baiwenjia/ukbb_cardiac

MR Cardiac segmentation and

motion tracking

Duan et al. (33) 2.5D FCN + Atlas-based j-duan/4Dsegment

LGE MRI Left Atrial Segmentation Chen et al. (34) 2D U-net cherise215/atria_segmentation_2018

LGE MRI Left Atrial Segmentation Yu et al. (35) 3D V-net yulequan/UA-MT

CT WHS Yang et al. (36) 3D U-net xy0806/miccai17-mmwhs-hybrid

CT WHS Xu et al. (37) Faster RCNN, 3D U-net Wuziyi616/CFUN

CT, MRI Coronary arteries Merkow et al. (38) 3D U-net jmerkow/I2I

CT, MRI WHS Dou et al. (39, 40) 2D CNN carrenD/Medical-Cross-Modality-Domain

-Adaptation

CT, MRI WHS Chen et al. (41) 2D CNN cchen-cc/SIFA

Ultrasound View classification and

four-chamber segmentation

Zhang et al. (42) 2D U-net bitbucket.org/rahuldeo/echocv

SAX, short-axis view; WHS, whole heart segmentation.

or bounding boxes). In this context, several works have been
proposed for cardiac ventricle segmentation in MR images.
One approach is to estimate full labels on unlabeled or
weakly labeled images for further training. For example, Qin
et al. (28) and Bai et al. (32) utilized motion information to
propagate labels from labeled frames to unlabeled frames in
a cardiac cycle whereas (224, 225) applied the expectation
maximization (EM) algorithm to predict and refine the
estimated labels recursively. Others have explored different
approaches to regularize the network when training on
unlabeled images, applying multi-task learning (177, 178), or
global constraints (226).

• Self-supervised learning. Another approach is self-supervised
learning which aims at utilizing labels that are generated
automatically without human intervention. These labels,
designed to encode some properties or semantics of the
object, can provide strong supervisory signals to pre-train a
network before fine-tuning for a given task. A very recent
work from Bai et al. (227) has shown the effectiveness of
self-supervised learning for cardiac MR image segmentation
where the authors used auto-generated anatomical position
labels to pre-train a segmentation network. Compared to a
network trained from scratch, networks pre-trained on the
self-supervised task performed better, especially when the
training data was extremely limited.

• Unsupervised learning. Unsupervised learning aims at
learning without paired labeled data. Compared to the former
four classes, there is limited literature about unsupervised
learning methods for cardiac image segmentation, perhaps
because of the difficulty of the task. An early attempt has been
made which applied adversarial training to train a network
segmenting LV and RV from CT and MR images without
requiring a training set of paired images and labels (121).

In general, transfer learning and self-supervised learning allow
the network to be aware of general knowledge shared across
different tasks to accelerate learning procedure and to encourage
model generalization. On the other hand, data augmentation,
weakly and semi-supervised learning allows the network to get
more labeled training data in an efficient way. In practice, the two
types ofmethods can be integrated together to improve themodel
performance. For example, transfer learning can be applied at
the model initialization stage whereas data augmentation can be
applied at the model fine-tuning stage.

4.2. Model Generalization Across Various
Imaging Modalities, Scanners, and
Pathologies
Another common limitation in DL-based methods is that
they still lack generalization capabilities when presented with
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previously unseen samples (e.g., data from a new scanner,
abnormal, and pathological cases that have not been included
in the training set). In other words, deep learning models tend
to be biased by their respective training datasets. This limitation
prevents models to be deployed in the real world and therefore
diminishes their impact for improving clinical workflows.

To improve the model performance across MR images
acquired from multiple vendors and multiple scanners (53),
collected a large multi-vendor, multi-center, heterogeneous
labeled training set from patients with cardiovascular diseases.
However, this approach may not scale to the real world, as
it implies the collection and labeling of a vastly large dataset
covering all possible cases. Several researchers have recently
started to investigate the use of unsupervised domain adaptation
techniques that aim at optimizing the model performance on a
target dataset without additional labeling costs. Several works
have successfully applied adversarial training to cross-modality
segmentation tasks, adapting a cardiac segmentation model
learned from MR images to CT images and vice versa (39–
41, 228, 229). These type of approaches can also be adopted for
semi-supervised learning, where the target domain is a new set of
unlabeled data of the samemodality (230). Of note, these domain
adaptation methods often require the access to unlabeled images
in the target domain (e.g., a new scanner, a different hospital),
whichmay not be easy to obtain due to the data privacy and ethics
issues. How to collect and share data safely, fairly, and legally
across different sites is still an open challenge.

On the other hand, some researchers have started to develop
domain generalization algorithms, without requiring accessing
images from new sites. One stream of works aims to improve the
domain generalization ability by extracting domain-independent
and robust features or disentangling learned features into
domain-specific and domain-invariant components from various
seen domains (e.g., multi-center data, multi-modality datasets) to
improve the model performance on unseen domains (221, 228,
231). Other researchers have started to adopt data augmentation
techniques to simulate various possible data distributions across
different domains. For instance, Chen et al. (232) have proposed
a data normalization and augmentation pipeline which enables a
neural network for cardiac MR image segmentation trained from
a single-scanner dataset to generalize well across multi-scanner
and multi-site datasets. Zhang et al. (233) applied a similar data
augmentation approach to improve the model generalization
ability on unseen datasets. Their method has been verified on
three tasks including left atrial segmentation from 3D MRI and
left ventricle segmentation from 3D ultrasound images.

One bottleneck of augmenting training data for model
generalization across different sites is that it is often required
to increase the model capacity to compensate for the increased
dataset size and variation (232). As a result, training becomes
more expensive and challenging. To address this inefficiency
problem, active learning (234) has been proposed, which
selects the most representative images from a large-scale
dataset, reducing labeling workload as well as computational
costs. This technique is also related to incremental learning,
which aims to improve the model performance by adding
new classes incrementally while avoiding a dramatic decrease
in overall performance (235). Given the increasing size of

the available medical imaging datasets and the practical
challenges of collecting, labeling and storing large amounts
of images from various sources, it is of great interest to
combine domain generalization algorithms with active learning
algorithms together to distill a large dataset into a small one
but containing the most representative cases for effective and
robust learning.

4.3. Lack of Model Interpretability
Unlike symbolic artificial intelligence systems, deep learning
systems are difficult to interpret and not transparent. Once a
network has been trained, it behaves like a “black box,” providing
predictions which are not directly interpretable. This issue makes
the model unpredictable, intractable for model verification, and
ultimately untrustworthy. Recent studies have shown that deep
learning-based vision recognition systems can be attacked by
images modified with nearly imperceptible perturbations (236–
238). These attacks can also happen in medical scenarios, e.g.,
a DL-based system may make a wrong diagnosis given an
image with adversarial noise or even just small rotation, as
demonstrated in a very recent paper (239). Although there is
no denying that deep learning has become a very powerful
tool for image analysis, building resilient algorithms robust to
potential attacks remains an unsolved problem. One potential
solution, instead of building the resilience into the model,
is raising failure awareness of the deployed networks. This
can be achieved by providing users with segmentation quality
scores (240) or confidence maps, such as uncertainty maps (166)
and attention maps (241). These scores or maps can be used
as evidence to alert users when failure happens. For example,
Sander et al. (166) built a network that is able to simultaneously
predict the segmentation mask over cardiac structures and its
associated spatial uncertainty map, where the latter one could be
used to highlight potential incorrect regions. Such uncertainty
information could alert human experts for further justification
and refinement in a human-in-the-loop setting.

4.4. Future Work
4.4.1. Smart Imaging
We have shown that deep learning-based methods are able
to segment images in real-time with good accuracy. However,
these algorithms can still fail on those image acquisitions
with low image quality or significant artifacts. Although
there have been several algorithms developed to avoid this
problem by either checking the image quality before follow-
up studies (242, 243), or predicting the segmentation quality to
detect failures (240, 244, 245), the development of algorithms
that can give instant feedback to correct and optimize
the image acquisition process is also important despite less
explored. Improving the imaging quality can greatly improve
the effectiveness of medical imaging as well as the accuracy
of imaging-based diagnosis. For radiologists, however, finding
the optimal imaging and reconstruction parameters to scan
each patient can take a great amount of time. Therefore,
a DL-based system that has the potential of efficiently and
effectively improving the image quality with less noise is
of great need. Some researchers have utilized learning-based
methods (mostly are deep learning-based) for better image
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resolution (62), view planning (246), motion correction (247,
248), artifacts reduction (249), shadow detection (250), and noise
reduction (251) after image acquisition. However, combining
these algorithms with segmentation algorithms and seamlessly
integrating them into an efficient, patient-specific imaging
system for high-quality image analysis and diagnosis is still an
open challenge. An alternative approach is to directly predict
cardiac segmentation maps from undersampled k-space data
to accelerate the whole procedure, which bypasses the image
reconstruction stage (58).

4.4.2. Data Harmonization
A number of works have reported the existence of missing
labels and inconsistent labeling protocols among different
cardiac image datasets (27, 232). Variations have been found
in defining the end of basal slices as well as the endocardial
wall of myocardium (some include papillary muscles as part
of the endocardial contours whereas others do not). These
inconsistencies can be a major obstacle for transferring,
evaluating and deploying deep learning models trained from
one domain (e.g., hospital) to another. Therefore, building a
standard benchmark dataset like CheXpert (252) that (1) is
large enough to have substantial data diversity that reflects the
spectrum of real-world diversity; (2) has a standard labeling
protocol approved by experts, is indeed a need. However, directly
building such a dataset from scratch is time-consuming and
expensive. A more promising way might be developing an
automated tool to combine existing public datasets frommultiple
sources and then to harmonize them to a unified, high-quality
dataset. This tool can not only open the door for crowd-
sourcing but also enable the rapid deployment of those DL-based
segmentation models.

4.4.3. Data Privacy
As deep learning is a data-driven approach, an unavoidable
and rife concern is about the data privacy. Regulations, such
as The General Data Protection Regulation (GDPR) now play
an important role to protect users’ privacy and have forced
organizations to treat data ownership seriously. On the other
hand, from a technical point of view, how to store, query,
and process data such that there is no privacy concerns for
building deep learning systems has now become an even more
difficult but interesting challenge. Building a privacy-preserving
algorithm requires to combine cryptography and deep learning
together and to mix techniques from a wide range of subjects,
such as data analysis, distributed computing, federated learning,
differential privacy, in order to achieve models with strong
security, fast run time, and great generalizability (253–256). In
this respect, Papernot (257) published a report for guidance,
which summarized a set of best practices for improving the
privacy and security of machine learning systems. Yet, this field
is still in its infancy.

5. CONCLUSION

In this review paper, we provided a comprehensive overview of
these deep learning techniques used in three common imaging

modalities (MRI, CT, ultrasound), covering a wide range of
existing deep learning approaches (mostly are CNN-based)
that are designed for segmenting different cardiac anatomical
structures (e.g., cardiac ventricle, atria, vessel). In particular,
we presented and discussed recent progress of deep learning-
based segmentation methods in the three modalities, outlined
future potential and the remaining limitations of these deep
learning-based cardiac segmentation methods that may hinder
widespread clinical deployment. We hope that this review can
provide an intuitive understanding of those deep learning-based
techniques that have made a significant contribution to cardiac
image segmentation and also increase the awareness of common
challenges in this field that call for future contribution.

6. DATA AVAILABILITY STATEMENT

The datasets summarized in Table 6 can be found in their
corresponding websites listed below:

- York: http://www.cse.yorku.ca/~mridataset/
- Sunnybrook: http://www.cardiacatlas.org/studies/

sunnybrook-cardiac-data/
- LVSC: http://www.cardiacatlas.org/challenges/lv-

segmentation-challenge/
- RVSC: http://www.litislab.fr/?projet=1rvsc
- cDEMRIS: https://www.doc.ic.ac.uk/~rkarim/la_lv_

framework/fibrosis
- LVIC: https://www.doc.ic.ac.uk/~rkarim/la_lv_framework/

lv_infarct
- LASC’13: www.cardiacatlas.org/challenges/left-atrium-

segmentation-challenge/
- HVSMR: http://segchd.csail.mit.edu/
- ACDC: https://acdc.creatis.insa-lyon.fr/
- LASC’18: http://atriaseg2018.cardiacatlas.org/data/
- MM-WHS: http://www.sdspeople.fudan.edu.cn/

zhuangxiahai/0/mmwhs17/
- CAT08: http://coronary.bigr.nl/centerlines/
- CLS12: http://coronary.bigr.nl/stenoses
- CETUS: https://www.creatis.insa-lyon.fr/Challenge/CETUS
- CAMUS: https://www.creatis.insa-lyon.fr/Challenge/camus.
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