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Atherosclerosis is a chronic progressive disease characterized by vascular inflammation

and growth of atherosclerotic plaque that eventually lead to compromise of blood

flow. The disease has proven to be remarkably resistant to multiple attempts

at meaningful reversal including recent strategies targeting selective inflammatory

mediators. Endothelial-to-mesenchymal transition (EndMT) has emerged as a key

driver of both vascular inflammation and plaque growth. A deeper understanding of

EndMT provides new insights into the underlying biology of atherosclerosis, suggests

likely molecular mechanism of atherosclerotic resistance, and identifies potential new

therapeutic targets.
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INFLAMMATION AND ATHEROSCLEROSIS

Atherosclerosis is a complex, slowly developing disease characterized by a gradual transformation
of intimal fatty streaks into full-blown plaques composed of activated endothelial and smooth
muscle cells, macrophages, lymphocytes, and large amounts of extracellular matrix. The process
is initiated by vascular injury–induced primarily by hyperlipidemia, albeit other factors, such as
tobacco, hypercysteinemia, diabetes, and hypertension, also play a role (1, 2). Atherosclerosis
occurs preferentially in areas where fluid shear stress is low and shows complex changes in direction
during the cardiac cycle; these flow patterns are often grouped together under the term “disturbed
shear stress” (DSS), which we use hereafter (3). The hallmark of an atherosclerotic vessel is chronic
vascular wall inflammation; indeed, the entire syndrome can be thought of as unresolved vascular
inflammatory response (4).

Despite seemingly clear understanding of its pathogenesis, the diseases proved remarkably
difficult to control and, especially, reverse. While aggressive lipid lowering slows down plaque
growth and stabilizes, to an extent, vulnerable lesions, no meaningful regression occurs, and
vascular inflammation is largely unaffected. This led to attempts to directly control vascular
inflammation by targeting specific actors, such as interleukin 1β (IL-1β), or using general
inflammation inhibitors, such as methotrexate, without clear success (5).

Recent evidence has pointed to endothelial-to-mesenchymal transition (EndMT) as a key
process in vascular inflammation in atherosclerosis (6, 7). Intriguingly, EndMT appears also to be
involved in other cardiovascular conditions including pulmonary hypertension, renal dysfunction,
and vascular malformations, suggesting a common pathological basis for multiple vascular diseases
(8, 9). EndMT has also been observed in the aging vasculature and may contribute to the
aging process itself (10). This review will focus on EndMT, its biological basis, and its role
in atherosclerosis.

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/journals/cardiovascular-medicine#editorial-board
https://www.frontiersin.org/journals/cardiovascular-medicine#editorial-board
https://www.frontiersin.org/journals/cardiovascular-medicine#editorial-board
https://www.frontiersin.org/journals/cardiovascular-medicine#editorial-board
https://doi.org/10.3389/fcvm.2020.00053
http://crossmark.crossref.org/dialog/?doi=10.3389/fcvm.2020.00053&domain=pdf&date_stamp=2020-05-05
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles
https://creativecommons.org/licenses/by/4.0/
mailto:michael.simons@yale.edu
https://doi.org/10.3389/fcvm.2020.00053
https://www.frontiersin.org/articles/10.3389/fcvm.2020.00053/full
http://loop.frontiersin.org/people/940520/overview
http://loop.frontiersin.org/people/872514/overview


Chen et al. EndMT, Inflammation, Atherosclerosis

INFLAMMATION, SHEAR STRESS, AND
EndMT

EndMT is a recently described biological process in which
endothelial cells lose their characteristic cobblestone appearance
and acquire the elongated shape typical of mesenchymal
cells, gaining increased migratory, and proliferative capacity
but diminishing barrier function (8, 9). Initially described
during development of cardiac atrioventricular valves, EndMT
has now been observed in various pathologic conditions
characterized by abnormal shear stress, vascular injury, and
chronic inflammation. At the molecular level, endothelial
marker genes, such as vascular endothelial growth factor
receptor 2 (VEGFR2), VE-cadherin (Cdh5), and endothelial
nitric oxide synthase (NOS3), are reduced, and “mesenchymal”
genes including fibroblast specific protein 1 (FSP1), fibronectin
(FN1), and N-cadherin (Cdh2) are increased (11). Whether
this constitutes a true transdifferentiation or molecular
mimicry is the subject of intense debates in the literature.
Importantly, thus transformed, “EndMT’d” endothelial cells
become intensely proinflammatory expressing high levels of
leukocyte adhesion molecules (intercellular adhesion molecule
1, vascular cell adhesion molecule 1) and various cytokines
and growth factors (12). While EndMT per se is clearly a
pathologic response, it is probably best viewed as the most
extreme phenomenon in the spectrum of endothelial activation.
Indeed, any endothelial cell activation includes some EndMT
features including expression of “mesenchymal” genes. If
this activation is persistent, it may progress, over time, to
endothelial dysfunction and eventually to a full-blown cell fate
change (EndMT) (12).

Transforming growth factor receptor β (TGFβ) signaling is
central to EndMT, albeitWnt/β-catenin and Notch signaling may
also contribute in certain settings. The common theme seems to
be increased expression of transcription factors Snail, Slug, Twist,
LEF-1, ZEB1, and ZEB2 that repress expression of endothelial
and/or activate expression of mesenchymal genes (13). TGFβ
family consists of three closely related proteins (TGFβ1, TGFβ2,
and TGFβ3), with TGFβ1 being the most abundant isoform
in most tissues. TGFβ signaling is highly pleiotropic, playing
crucial roles in embryogenesis, cell differentiation, immune
system development, inflammation, and wound repair (14–16).
The signaling is tightly controlled at multiple levels including
ligand expression, activation, and receptor expression. TGFβs are
secreted in a biologically inactive (latent) form. Once free from its
latency-associated peptide dimer, TGFs can bind a low-affinity
cell surface receptor β-glycan (TGFβR3) followed by binding
to two high-affinity serine/threonine kinase receptors (TGFβR1
and TGFβR2) (17). TGFβ binding to the constitutively active
TGFβRII leads to formation of a tetrameric complex (TGFβRII
dimer and two TGFβR1s). This results in TGFβR1 activation
and initiation of downstream signaling. The canonical signaling
pathway is mediated by TGFβR1 phosphorylation of Smad2 and
Smad3 that induces their heterodimerization with Smad4 (17).
Thus activated, Smad complexes then translocate to the nucleus
and, in cooperation with other transcription factors, regulate
expression of a large number of target genes. Noncanonical

signaling involves activation of MAPK and Rho family GTPases
pathways (18).

Normal adult quiescent endothelial cells have a very low
expression of TGFβR1, rendering these cells nearly completely
resistant to TGFβ stimulation and thus EndMT (6). This
is controlled by continuous fibroblast growth factor (FGF)
signaling that maintains high expression of let-7 family of
microRNAs (miRs). A decline in FGF signaling leads to a
dramatic (50- to 100-fold) decrease in let-7 miRs levels and a
rapid increase in TGFβR1, thereby upregulating TGFβ signaling.
In contrast, continued FGF signaling input, high endothelial
let-7 levels, and suppression of TGFβRs expression maintain
endothelial normalcy (Figure 1). This reciprocal relationship
between TGFβ and FGF signaling outputs becomes important
in atherosclerosis because vascular inflammation effectively
suppresses FGF signaling by profoundly reducing expression of
FGF receptor 1 (FGFR1, the principal endothelial FGF receptor),
thereby increasing TGFβR1 expression and initiating EndMT (6).

FLUID SHEAR STRESS

Shear stress from blood flow is a major determinant of
vascular morphogenesis and remodeling, as well as initiation
and progression of atherosclerosis (19–21). Endothelial responses
to shear play important roles both in normalcy and disease.
Regions of arteries that branch or curve sharply exhibit irregular
flow patterns with lower magnitude of shear stress and complex
changes in direction during the cardiac cycle, termed DSS. DSS
induces modest but chronic activation of inflammatory pathways
in the endothelium and sensitizes it to other inflammatory
mediators, greatly amplifying responses. On the other hand,
endothelial cells under higher, and unidirectional (physiological)
shear stress suppress inflammatory pathways and downregulate
responses to inflammatory cytokines (21, 22). As expected from
the key role of inflammation in sensitizing the endothelium
to TGFβ, DSS is sufficient to induce EndMT in vitro (where
TGFβ is abundantly present) and in vivo. (6, 23, 24) The
latter is in part due to a decrease in FGFR1 expression in
DSS regions and results in a reduction in protective FGF and
activation of pathogenic TGFβ signaling (6, 19). Conversely,
physiological shear stress limits TGFβ signaling with a major role
for the atheroprotective, anti-inflammatory Erk5-KLF2 pathway
(25–27). Elevated TGFβ signaling in response to DSS is thus
poised to contribute to EndMT and selective atherogenesis in
these regions.

EndMT AND ATHEROSCLEROSIS

Several recent studies have shown the link between EndMT
and atherosclerosis. In atherosclerotic human coronary arteries,
a high proportion of luminal endothelial cells covering the
plaques expresses smooth muscle cell (SMC) and mesenchymal
markers (6). Critically, the extent of EndMT strongly correlates
with the extent of atherosclerosis and inversely correlates with
expression of FGFR1 (6). Similarly, ApoE null mice on high-
fat/high-cholesterol diet mice show a progressive increase in
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FIGURE 1 | Inflammation and endothelial-to-mesenchymal transition (EndMT). Inflammatory mediators including interferon γ (IFN-γ), tumor necrosis factor α (TNF-α),

and interleukin 1β (IL-1β) induce downregulation of endothelial fibroblast growth factor (FGF) receptors, reducing FGF signaling input. This leads to a large fall in let-7

miRNA levels and activation of transforming growth factor receptor β (TGFβ) signaling, initiating EndMT. Restoration of FGF signaling, endothelial let-7 miRNA levels, or

suppression of endothelial TGFβ receptor expression arrest EndMT development.

EndMT as the extent of atherosclerosis increases. Interestingly,
atherosclerosis-prone sites (areas of DSS) demonstrated
lower level of FGFR1 staining compared to atherosclerosis-
resistant regions of the arterial vasculature, suggesting that DSS
downregulates FGFR1 expression (6).

The link between FGFR1 expression and atherosclerosis was
further demonstrated in ApoE null mice with endothelial-specific
deletion of the FGF receptors signaling scaffold protein fibroblast
growth factor receptor substrate 2α (FRS2α), which fully disrupts
FGF signaling. On a high-fat/high-cholesterol diet, mice with
endothelial FRS2α deletion developed much more extensive
atherosclerotic plaques with larger necrotic cores. Furthermore,
there was a complete loss of high shear stress protection leading
to plaque formation in normally atherosclerosis-resistant areas,
thus further linking anti-atherosclerotic effects of high shear and
FGF signaling with EndMT and atherosclerosis (6).

Inflammatory cytokines also regulate FGFR1 expression:
exposure of primary ECs in vitro to IFN-γ, TNF-α, and IL-1β
leads to reduced FGFR1 expression. Importantly, while relatively
high doses were required for each individual cytokine to inhibit
FGFR1 expression, a combination of two or more profoundly
suppressed FGFR1 expression at much lower doses (6). These
findings suggest that inhibition of any one inflammatory cytokine
is unlikely to be effective in treatment of atherosclerosis.

Subsequent studies examining the contribution of EndMT-
derived fibroblast- and myofibroblast-like cells in atherosclerotic
lesions confirmed high frequency of EndMT in plaques with
up to 46% of fate-mapped ECs expressing fibroblast marker

after 30 weeks of high-fat/high-cholesterol diet. (7, 27) Of note,
analysis of gene expression data analysis revealed EndMT cell
gene expression pattern is different from authentic endothelial
cells and fibroblasts, suggesting that the observed phenotype
“switch” is not a true transformation.

Taken together, these data highlight the importance of EndMT
in atherosclerosis and trace its development to the loss of
protective FGF signaling due to abnormal low shear and vascular
wall inflammation (Figure 2). Yet while strongly suggesting a
pathogenic role for EndMT in atherosclerosis, these studies
did not establish a causal relationship. To test the effect of
silencing endothelial TGFβ signaling on atherosclerosis, Chen
et al. (28) created endothelial fate-mapped mice carrying floxed
TGFβR1 and TGFβR2 alleles under control of an inducible
Cdh5 promoter on an ApoE−/− background. Induced deletion
of TGFβR1 and TGFβR2 genes in adult mice at the time of
initiation of high-fat/high-cholesterol diet resulted in ∼60%
reduction in the size of atherosclerotic plaques. Importantly,
the frequency of EndMT was dramatically reduced, as was
expression of endothelial leukocyte adhesion molecules and
vessel wall inflammation (28). To test if inhibition of EndMT
would lead to regression of fully established lesions, endothelial
TGFβR1/R2 deletion was induced in mice with fully developed
plaques with the animals either continued on the high-fat/high-
cholesterol diet or switched to the normal chow diet. In
both cases, inhibition of endothelial TGFβ signaling induced a
profound (70% over 2 months) regression of the plaque and
resolution of vascular inflammation. Single-cell RNA-seq analysis
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FIGURE 2 | Endothelial-to-mesenchymal transition (EndMT) in atherosclerosis. Endothelial cells in atherosclerotic vessels can, as a result of chronic vessel wall

inflammation, undergo EndMT. This is a gradual process, with the majority of endothelial cells progressing to an intermediate phenotype characterized by a partial loss

of endothelial-specific gene expression and acquisition of “mesenchymal” features. However, a significant number can progress to a fully blown mesenchymal

phenotype characterized by a near-complete loss of endothelial fate gene expression and acquisition of mesenchymal fate gene expression. This results in breakdown

of endothelial cell junctions, increased vascular leakiness, and promotion of inflammation, thereby establishing a feed forward loop and driving atherosclerosis

progression.

of endothelium in the ApoE−/− mice demonstrated the presence
of a population of endothelial-derived cells characterized
by low expression of endothelial and high expression of
mesenchymal markers and a dramatic increase in expression
of genes associated with inflammation. Following endothelial
deletion of TGFβR1/R2, this population was markedly decreased,
in keeping with reduced atherosclerosis and small plaque
size (28).

The suggestion arising from these data that endothelial
TGFβ signaling is proinflammatory seemingly contradicts the
consensus that this signaling pathway is anti-inflammatory (17,
29–31). This problem was directly addressed by an experiment
that examined the genetic signature of TGFβ in endothelial,
smooth muscle, macrophages, and T cells. There was a distinct
TGFβ-induced gene expression profile in every cell type.
Strikingly, endothelial TGFβ stimulation induced expression
of numerous cytokines and cytokine receptors, as well as
various leukocyte adhesion molecules, findings consistent with
proinflammatory effects of stimulation. When tested further
in vivo, endothelial deletion of TGFβ receptors resulted in a
profound reduction of inflammatory cell accumulation at the site
of TNF-α injection (28).

THERAPEUTIC APPROACH TO
ATHEROSCLEROSIS: A REAPPRAISAL

These data establish that EndMT is a key contributor to the
development and, importantly, progression of atherosclerosis.
Unlike transient inflammation, sustained inflammation due to
hyperlipidemia and DSS that does not resolve leads to EndMT
due to inflammation-driven suppression of protective endothelial
FGF signaling. Importantly, this establishes a positive feedback
loop: EndMT begets inflammation, which begets more EndMT
(12). Now even if the initiating insult (hypercholesterolemia)
is removed, the process will continue. This likely explains
why even a profound suppression of cholesterol levels only
slows down but does not reverse atherosclerosis in patients.
Suppression of a single cytokine is also predicted to have little
benefit, as recently demonstrated in the CANTOS trial that
tested the inhibitory anti-IL-1β antibody canakinumab. Despite
some positive trends, overall results were less than robust, and
side effects included a significantly higher incidence of fatal
infection and sepsis (5). If disease regression is the goal, then
addressing the root cause of this resistance becomes critical
to success.
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A broader approach to suppressing vascular inflammation
using low-dose methotrexate also failed to show any benefit in
the CIRT trial (32). Low-dose colchicine showed some survival
benefit in patients with recent myocardial infarction in COLCOT
trial, but whether this is due to antiplaque effects has not been
examined (33). Finally, it should be noted that while TGFβ
has been identified as a central driver of EndMT, systemic
targeting of TGFβ pathway, using either anti-TGFβ or TGFβR
antagonists, is not practical given a very complex nature of
TGF biology (15, 17, 30). Indeed, systemic as well as T-cells or
smooth muscle-specific inhibition of TGFβ signaling has been
associated with activation of T cells (29), loss of protection against
vascular inflammation (31), and accelerated progression of
atherosclerosis (34).

An alternative to systemic approach to inhibition of TGFβ
signaling is the development of endothelial-targeted therapies.
Recent advances in nanomedicine led to discovery of several
classes of nanoparticles capable of targeting different organs
(35). One such therapy specifically targeting the liver was
recently approved by the US Food and Drug Administration
(36). Another class of nanoparticles, designated as 7C1,
targets the endothelium of large- and medium-size vessels
(37, 38). Several recent studies showed biological efficacy
of 7C1-mediated gene suppression or gene delivery in
mice and nonhuman primates (39–43). Importantly, when
used to deliver TGFβR1/R2 RNAi to atherosclerotic vessels
in ApoE−/− mice, 7C1 nanoparticles were effective in
suppressing EndMT and reversing atherosclerotic plaque
(28). The advantages of this approach include enhanced
selectivity of TGFβ signaling suppression and the ability
to deliver higher doses than would be possible with
systemic therapy. Whether this approach is translatable to

larger animal models and ultimately to patients requires
further studies.

CONCLUSIONS

While the importance of vascular inflammation in atherosclerosis
has long been recognized, the factors responsible for its resistance
to therapies and continued progression remained unknown.
Further, treatments based on lipid lowering or single-cytokine
inhibition at best slow but do not arrest or reverse disease.
The emergence of EndMT as the central mechanism controlling
ongoing vessel wall inflammation now promises to open new
therapeutic. EndMT is driven by high TGFβ signaling that
is surprising and perhaps uniquely proinflammatory in the
endothelium. Effective endothelial-specific suppression of this
signaling cascade in an endothelial-specific manner appears not
to suppress vessel wall inflammation and arrest atherosclerotic
plaque growth but also to induce substantial regression of mature
atherosclerotic lesions in mouse models.
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