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Thoracic aortic aneurysm (TAA) is a focal enlargement of the thoracic aorta, but the

etiology of this disease is not fully understood. Previous work suggests that various

genetic syndromes, congenital defects such as bicuspid aortic valve, hypertension, and

age are associated with TAA formation. Though occurrence of TAAs is rare, they can be

life-threatening when dissection or rupture occurs. Prevention of these adverse events

often requires surgical intervention through full aortic root replacement or implantation

of endovascular stent grafts. Currently, aneurysm diameters and expansion rates are

used to determine if intervention is warranted. Unfortunately, this approach oversimplifies

the complex aortopathy. Improving treatment of TAAs will likely require an increased

understanding of the biological and biomechanical factors contributing to the disease.

Past studies have substantially contributed to our knowledge of TAAs using various ex

vivo, in vivo, and computational methods to biomechanically characterize the thoracic

aorta. However, any singular approach typically focuses on only material properties of

the aortic wall, intra-aneurysmal hemodynamics, or in vivo vessel dynamics, neglecting

combinatorial factors that influence aneurysm development and progression. In this

review, we briefly summarize the current understanding of TAA causes, treatment, and

progression, before discussing recent advances in biomechanical studies of TAAs and

possible future directions. We identify the need for comprehensive approaches that

combine multiple characterization methods to study the mechanisms contributing to

focal weakening and rupture. We hope this summary and analysis will inspire future

studies leading to improved prediction of thoracic aneurysm progression and rupture,

improving patient diagnoses and outcomes.
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INTRODUCTION

Thoracic aortic aneurysms (TAAs) are pathological dilations, often associated with genetic
disorders or other factors leading to cellular changes, elastic fiber degradation, collagen deposition,
and inflammation (1, 2). TAA growth can lead to increased risk of dissection or complete rupture.
Accurately defining these incidence rates remains challenging because the disease is often clinically
silent until rupture or dissection occurs (3, 4) However, the number of TAA diagnoses are
increasing due to improvements in medical imaging and screening with roughly 1 per 100,000
people affected (5). Approximately 60% of TAAs develop in the ascending thoracic aorta, while
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40% occur in the descending portion (5, 6). Dissection frequently
develops in the ascending portion of the thoracic aorta, resulting
in a false lumen that can greatly increase rupture risk and has a
mortality rate of up to 97% (7).

Current clinical guidelines suggest surgical intervention for
TAAs once the vessel reaches 5–5.5 cm or a growth rate of
>0.5 cm/year (2, 8). These guidelines are based on assessment
of the risk of an intervention relative to that of dissection
or rupture, with studies finding that faster growth increases
the risk of rupture regardless of aortic diameter (3, 9).
Guidelines may also differ slightly in patients with known genetic
disorders (10). However, using diameter and expansion rates
oversimplify the complexity of TAAs by neglecting body size,
heterogenous wall composition, and hemodynamic loading of
the vessel (11–14). Up to 50% of ascending thoracic dissections
occur in vessels with diameters below the surgical intervention
threshold, further suggesting these criteria oversimplify TAA
pathologies (15–17).

Most TAA patients will be monitored with imaging and
receive no treatment. The current estimated perioperative
mortality rate of ascending aorta replacements is 3.4%, unless
emergency replacement is required due to rupture or dissection,
which has a much higher mortality of 15–24% (18, 19). To
improve treatment, the relationship between TAA development
and cellular composition, cellular responses, matrix remodeling,
hemodynamics, vessel wall mechanics, and their relation to each
other are currently being studied. Previous reviews have included
a clinical perspective of TAAs (18), covered multiple types of
aortic aneurysms (20), and focused on computational models (4),
mechanotransduction (21), or genetics (10, 22). It is important to
note that biomechanics of abdominal aortic aneurysms (AAA)
have been more extensively investigated compared to TAAs,
likely because AAAs have a higher incidence rate (4, 23,
24). In this review we present advances in the biomechanical
characterization of human and animal TAAs including ex vivo
and in vivo mechanical analyses, and modeling of blood flow
and the vessel wall. Understanding TAA biomechanics represents
a fundamental step in identifying underlying causes of growth
and development that has the potential to improve patient
outcomes (21).

RISK FACTORS FOR TAA DEVELOPMENT

TAAs are a multifactorial disease with risk factors including
genetics, congenital defects, hypertension, smoking, and aging.
Currently, there are 29 identified genes associated with
TAA development, and efforts are underway to identify
more (Supplementary Table 1) (10, 17, 25). Genetic disorders
with increased risk include Ehlers-Danlos Syndrome, Loeys-
Dietz Syndrome, Turner Syndrome, polycystic kidney disease,
Alagille Syndrome and, the most commonly associated, Marfan
Syndrome (MFS), where patients may even receive prophylactic
surgery to prevent TAA formation (22, 26, 27). Bicuspid aortic
valve (BAV), the most common congenital heart defect, occurs
when two of the three valve cusps fail to separate, often leading
to valve dysfunction. Approximately half of BAV patients develop

stiffening of the ascending aortas, aneurysms, or dissections (28–
30). Recent work shows that these aneurysms often develop as
a result of genetic mutations or abnormal hemodynamic forces
caused by BAV, highlighting the importance of investigating
multiple factors in TAA formation (31–33).

In some cases, hypertension may play a role in TAA
development and dissections due to high wall stresses (5, 31, 34–
37). While age also plays a role in TAA development, it is difficult
to isolate its influence because the human aorta naturally dilates
about 0.15mm/year, making it difficult to distinguish aneurysmal
from healthy aortas (38, 39). In an attempt to quantify the
role of age, an ex vivo study found that an increase in age
caused a significant reduction in vessel wall strength, but no
significant strength differences between age-matched aneurysmal
and healthy tissue were observed (40). These findings suggest that
age affects vessel strength regardless of disease severity.

PATHOPHYSIOLOGY OF TAAs

Considering the complex structure and function of the vessel
at the cellular level can help elucidate TAA biomechanics.
The intima, a single layer of endothelial cells, communicates
with the medial layer within the vessel. The media, composed
of elastin lamellae and smooth muscle cells (SMCs), provides
elasticity, while the primarily collagen-composed adventitia
provides tensile strength (41–43). Together, these layers create
a dynamic vessel capable of withstanding large hemodynamic
forces. Though not fully understood, recent work has been made
to develop novel theories of aneurysm development, predictive
metrics for wall failure, and possible strategies for inhibiting
growth and eventual rupture. SMCs play a significant role
as they contribute to the vessel wall structure by producing
ECM proteins including collagen, elastin, and laminin (44,
45). In the media of aneurysms, SMCs clonally expand and
change to more phagocytic-like phenotypes (44, 46). Many
studies have focused on the relationship between SMC death
and TAA formation, but the relationship between the two
remains unclear. One study found elevated apoptosis markers in
aneurysmal vs. non-aneurysmal tissue (45), while other studies
found no differences in SMC density or apoptosis in TAA
tissue (44, 47). A possible clue could be from work reporting
changes in SMCs from contractile to synthetic phenotypes,
a transition that influences aneurysm formation by altering
the balance between metalloproteinases (MMPs) and tissue
inhibitors ofMMPs (TIMPs) (44).MMPs are proteolytic enzymes
released within the wall by SMCs that break down structural
components including collagen, elastin, and SMCs, while TIMPs
help control breakdown. During aneurysm progression, MMP
activity increases while TIMPs decrease, causing an imbalance
and further aortic wall degradation and dilation (26, 44). While
these studies support the idea that change in SMC phenotype
contributes to this imbalance, the cause of this transition
remains unclear.

Various genetic disorders are associated with development
of TAAs (10, 27, 48), but further investigation is needed to
understand the role of genes in aortic wall behavior. The FBN1
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gene is commonly studied because of its role encoding the large
glycoprotein, fibrillin-1, and mutations of this gene are found in
MFS patients. It is well reported that TGFβ binds to proteins in
the ECM, including fibrillin-1 (49, 50). Alterations in FBN1 are
correlated with reduced binding in MFS patients, leading to the
release of TGFβ (49), ultimately affecting ECM structure and wall
behavior (51, 52). Many other genes associated with TAAs have
also been discovered, with ongoing research uncovering even
more in order to identify possible therapeutic agents (50, 53–60).

Still, many TAA patients have no known genetic disorders,
thus efforts should also be focused on biomechanics at both
micro- and macro-scales. Mechanical differences may also
contribute to wall composition changes as less elastin content
is found in the aortic wall of BAV patients compared to TAV
patients requiring valve replacements (61). Humphrey et al.
extensively reviewed growth and remodeling of aneurysms and
concluded that mechanosensing and ECM regulation are critical
for maintaining mechanical homeostasis and proper function
(41, 62). The ECM bears loads of up to 200 kPa, while still
allowing the cells to sense mechanical stresses enough to respond
with their proper functions (1, 21, 30, 41, 62–64). The theory
that mechanosensing defects may cause aneurysms is based
on the idea that if SMC function is impaired and the ECM
loses organization, the cells may no longer function properly,
causing wall expansion and failure. More comprehensive studies
considering all of these possible causes of TAA formation need
to be conducted to improve our knowledge of the biological,
chemical, and mechanical influences on aneurysms.

ANIMAL MODELS

To gain a more fundamental understanding of TAAs, animal
models are used because of the ability to track lesion progression
and collect tissue without being limited by sample size or
longitudinal image data. Further, animal studies allow greater
control of physiologic variables such as diet, age, and genetic
background. Given that in vivo cyclic strain is similar across
species, the use of animal models is helpful for a variety of
preclinical research (30, 65). Studies often use porcine models
to quantify tensile testing of the thoracic aorta (66–70), while a
wide range of TAA rodent models have been developed to study
aneurysm development and progression (1, 37, 71–74). Over the
past several decades, various TAA murine models have been
established. Because of evidence showing a strong association
between TAA development and genetic predisposition, murine
models with genetic deficiencies have been created (1, 74,
75). Hypertensive models were also developed, including the
commonly studied angiotensin-II model (31, 34, 36, 37).

Some animal studies focusing on the effects of TGFβ
antibodies found that their administration neutralizes TGFβ
activity (50), reducing dilation of the ascending aorta and risk
of rupture (76). In a recent study, Bellini et al. conducted ex
vivo biaxial testing to measure wall stresses, stiffness, and energy
storage of ten murine models (8 TAA, 1 elastase positive control,
1 healthy negative control) to identify differences betweenmodels
in a controlled setting. From their findings, the authors suggest

that even with normal or reduced wall stresses, the intramural
cells in the aneurysmal aortae could not maintain circumferential
material stiffness, similar to the elastase control aorta. However,
they found that structural stiffness may not be related to
aneurysm formation finding decreased structural stiffness in both
aneurysmal and non-aneurysmal vessels as revealed by their
distensibility measurements (Figure 1A) (1). Their findings also
demonstrate the importance of studying multiple models to
increase translational potential as there is no exact phenocopy of
human TAAs.

Using porcine models has some benefits including sharing
similar structure, thickness, and composition to human aortae
(Supplementary Table 1) (67). However, some studies have
identified the need for porcine models that better represent the
stiffness of aged (>60 years) or atherosclerotic human tissue
by using aged animals or developing methods of artificially
stiffening the aorta (77, 78). Further limitations of animal
models include differences in size between small animals and
humans, typical vessel curvature, and basal metabolic rate.
Despite limitations associated with TAA animal models, they
do provide an opportunity for consistent comparison between
groups and studies, larger sample sizes, earlier stage tissues, and
an ability to manipulate genomes.

BIOMECHANICAL EX VIVO ANALYSIS

Mechanically testing aortic tissue provides insight into tissue
deformation and failure. Common workflow for mechanical
testing of tissues includes: (1) harvesting tissue, (2) cutting
samples into desired shape, (3) preconditioning tissue in
the testing machine under physiologic conditions, and (4)
performing mechanical tests and analyses. With this approach,
stress-strain data can be obtained and fitted to a strain energy
function to help describe tissue behavior. The 2nd Piola-
Kirchoff stress tensor and Green-Lagrange strain tensor in
cylindrical coordinates are commonly used due to the large tissue
deformations, non-linear material properties, and cylindrical
vessel shape (66, 70, 79).

Tensile testing. Uniaxial and biaxial tensile tests can be
performed on thoracic aortic tissue to determine behavior in
circumferential and axial directions. Uniaxial testing measures
tissue behavior in one direction, while biaxial allows for
simultaneous tensile testing in two directions (30). Among biaxial
tests is pressure-inflation testing which better mimics in vivo
loading (Supplementary Table 1) (68). Of note, these tests have
enabled researchers to assess differences in mechanical behavior
between age, axial and circumferential location, orientation,
aortic layers, and pathologies. The most common finding
among these studies was increased stiffness and strength in the
circumferential direction compared to axial (69, 80, 81), although
two studies noted no significant differences between directions
(82, 83). Histological findings reveal that collagen fibers tend
to be aligned in the circumferential direction, suggesting that
collagen plays a significant role in tissue strength (84). One study
suggested that tissue failure may be correlated with collagen fiber,
noting that localized collagen fiber bundles break during tensile
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FIGURE 1 | (A) Bellini et al. conducted ex vivo mechanical testing on ten mouse models to elucidate the biomechanical differences between models (1). (B)

Witzenburg et al. used ex vivo testing to measure the effects of shear in the aortic wall and modeled the wall components (70).

testing (85). Recent studies have also considered the role of radial
and shear forces in tissue failure (70, 86). Witzenburg et al. found
that porcine thoracic aortas displayed failure at significantly
lower shear stresses during lap tests compared to uniaxial and
simulated their tests using a computational model with collagen
and elastin components (Figure 1B) (70). This combined ex vivo

testing and computational approach provided insight into the
role that intramural stresses play on the growth and formation
of TAAs.

Tissue energy storage. The aorta uses the energy it stores from
expansion during systole to help deliver blood to the rest of
the body, thereby making energy storage a critical parameter
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FIGURE 2 | (A) Pasta et al. used gated CT to investigate 3D strain in TAAs (102). (B) Rahman et al. compared peak blood flow velocities between enlarged ascending

thoracic aortas (TAV vs BAV) and a control (103). (C) Emerel et al. estimated wall stresses in dissected TAAs and compared results normal thoracic aortas (104).

(18). In tensile testing, the energy loss of the loading cycles
can be measured, where increasing loss indicates problems in
aortic function (13). A study focusing on the role of elastin in
energy storage of murine thoracic aortas found that only properly
crosslinked elastin fibers were effective at storing energy (87).
Yet, energy storage may not be a clear indicator of potential TAA
rupture risk, as shown by another study of multiple murine TAA
models that found comparable energy storage between diseased
and control mice (88). This finding supports the idea that TAA
characterization cannot rely on any one metric, but requires a
comprehensive analysis including the effects of heart movement
and surrounding structures on the thoracic aorta (89).

Though ex vivo data can provide extensive information about
mechanical behavior of the tissue and rupture properties, it
neglects respiratory, cardiac, and surrounding tissue motion
which contribute to aortic motion. In addition, material testing
can only be performed at one time point making it difficult to
study TAA progression. Nonetheless, ex vivo mechanical testing
provides important insight intomechanical properties, which can
be combined with in vivo testing, histological analysis, and used
in computational modeling.

IN VIVO IMAGING ANALYSIS

Non-invasive imaging of TAAs has many benefits, including
longitudinal studies and measuring aortic motion in vivo while
posing minimal risk to the subject. Medical imaging is used
clinically to measure diameters and expansion rates, while many

studies have extended the application to include mechanical
assessment of TAAs.

Ultrasound.Widely used in both clinical and research settings,
ultrasound (US) offers minimal risk, portability, fast acquisition
times, and low costs. However, the location of the thoracic
aorta makes it difficult to acquire transcutaneous US without
sternum and rib artifacts. When this occurs, a more invasive
and time-intensive transesophageal US can be performed (20).
Studies have used US to obtain TAA diameter measurements
via motion-mode (M-mode) and time-resolved blood flow
velocities using pulse wave velocity (PWV) or color Doppler
modes. US is also used to quantify wall deformation and
vessel geometries. Recent studies have used two-dimensional
speckle tracking (2D-ST) techniques to measure in vivo strain
of TAAs (90–93). Automatic aortic wall tracings are created
from US data and manually optimized, providing estimates
of regional and global wall deformations (93). One study
used 2D-ST to calculate aortic stiffness and validated their
measurements with biaxial tensile testing,4 highlighting that
stiffness values can be estimated in a minimally invasive way.
Other studies have used 2D-ST to validate results for simulated
aortic biomechanics, finding good agreement (94, 95). While
2D approaches have been shown to be clinically relevant, they
neglect regional differences caused by surrounding structures
and heterogenous wall composition (96). 4DUS provides a way
to estimate 3D strain by collecting time-resolved 3D images.
Although this technique has not been directly applied to TAAs,
recent studies have used 4DUS to characterize strain in animal
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and human abdominal aortic aneurysms (97, 98). Since aortic
wall stress cannot be estimated with strain alone, it is important
to supplement strain data by considering material properties.
Therefore, combining 4DUS with ex vivo testing could help
improve study significance and lead to an important clinical
tool for improving patient stratification (18). In addition, data
collected from 4DUS may be used to improve computational
modeling as more hemodynamic models incorporate deformable
walls (72, 79).

Computed Tomography. Contrast-enhanced computed
tomography (CT) is another effective method of assessing TAAs
for surgical treatment based on high spatial resolution and
larger field of view compared to US (20, 99). Many studies
adopt a multi-modality approach using CT for defining patient-
specific geometries, while using other approaches to quantify
blood flow velocity, blood pressure, and wall deformation
(14, 25, 100). That said, ECG-gated CT imaging data have
recently been used to overcome the lack of wall deformation
information (77, 101, 102). Pasta et al. collected gated CT
data throughout the cardiac cycle (25 = TAA, 7 = non-TAA)
and demonstrated the speed of this technique while providing
full-field distribution of aortic wall strain (Figure 2A) (102),
suggesting potential to develop a quick and reliable method for
visualizing the full strain field of the thoracic aorta. Another
study using ECG-gated CT estimated strain within the aortic
wall but focused on the variations in aortic distensibility between
locations and patients. Not surprisingly, the authors found
that the ascending aorta had larger deformations than other
parts of the vasculature (77). Limitations of this approach
include additional exposure to ionizing radiation due to
increased acquisition time and challenges in identifying and
quantifying aortic wall thickness due to limited soft tissue
contrast (99).

Magnetic Resonance.Magnetic resonance (MR) imaging offers
a non-invasive method with great soft tissue contrast without
using ionizing radiation (20). MR is prevalent in TAA research
with growing interest on techniques for quantifying vessel
deformation and blood flow including time-resolved 3D phase-
contrast MR (4D flow MRI) (100, 105–107). 4D flow MR
is used to measure blood flow velocities in 3D through the
cardiac cycle. This approach is valuable in the thoracic aorta
where high velocities, tortuous geometry, and the aortic valve
all contribute to complex flow patterns (108). Schäfer et al.
used 4D flow MR to investigate local hemodynamics in patients
with chronic obstructive pulmonary disease. They found that
reduced wall shear stress (WSS) and associated aortic stiffness
in the mid-ascending aorta may contribute to the development
of aneurysms or dissections (109). Other studies have used
this technique to demonstrate that genetic disorders, including
BAV and MFS, significantly alter flow patterns and velocity
(11, 33, 110, 111). Figure 2B shows a comparison of peak
velocity from 4D flow measurements between TAV and BAV
patients with dilated ascending aortas and a control patient,
finding the highest velocities in BAV patients (103). Cine-MR
uses cardiac gating to collect dynamic information of vessel walls
throughout the cardiac cycle. Studies use cine-MR to investigate
wall deformation and displacement, with results demonstrating

complex 3D movement of the vessel (105, 106). Because wall
deformation and displacement affect the size of the landing zone
for endovascular stents, cine-MR has potential use for surgical
planning to reduce risk of endoleaks. In addition to using 4DUS
or gated CT, cine-MR also can be used to estimate regional strain
in the thoracic aorta as Wilson et al. demonstrates (107).

While imaging modalities can reveal regional heterogeneity
in aortic wall strain, discerning the cause of regional variations
is often not possible due to limited spatiotemporal resolution
(Supplementary Table 2). Further, estimating wall thickness
remains a challenge for all imaging modalities (24), and
using in vivo imaging for characterizing vessel biomechanics
does not allow for simulating hypothetical changes to the
aortic wall or lumen. Comprehensive studies combining in
vivo imaging with histological or ex vivo findings and
computational simulations have potential to overcome these
limitations (108, 112).

SOLID MECHANICS

Numerical models incorporating tissue growth and remodeling
are important for simulating aneurysm progression. Previously,
models were frequently used to calculate stress within the
vessel neglecting growth and remodeling (4, 113, 114). These
static models oversimplify complex vessel geometry but can
provide an initial step toward patient-specific growth and
remodeling simulations. Pasta et al. combined tensile testing
data with microstructural data obtained from multi-photon
imaging to create a fiber-reinforced constitutive model for
ascending TAAs, building upon their static constitutive model.
They found that incorporating collagen fibers within their model
indicated which ascending TAAs were prone to rupture or
dissection based on wall stress values (115). Xuan et al. used
solid mechanical modeling to study the effects of BAV and
found that wall stress increases in both circumferential and
longitudinal directions compared to patients with TAV (116).
These findings confirm previous ex vivo studies (117, 118),
as well as a recent study that found greater degeneration
in TAV vs. BAV aneurysmal aortic tissue (119). The authors
also attempted to correlate ascending TAA diameter and
peak wall stress in order to predict dissection risk. While
higher wall stresses were found in BAV models, the higher
stresses did not correlate to larger diameters as were found in
TAV models, confirming that diameters alone are insufficient
to predict dissection and wall stresses should be examined
further. In another study, Emerel et al. found that wall stress
significantly increased only in the longitudinal direction for
patients with TAA dissections (Figure 2C) (104). It is important
to note limitations associated with solid mechanics analyses
of TAAs, such as the lack of residual stress or thickness
heterogeneity, no inclusion of elastin degradation, neglecting
effects of momentum and shear, and using isotropic vs.
anisotropic constitutive laws (4, 113, 115, 120). As a result,
future work could incorporate anisotropic constitutive laws and
vascular remodeling.
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COMPUTATIONAL FLUID DYNAMICS AND
FLUID-STRUCTURE INTERACTIONS

Computational fluid dynamics (CFD) simulates blood flow
in various cardiovascular environments in order to quantify
relevant hemodynamic metrics, e.g., velocity, pressure and wall
shear stress (WSS). A main advantage of CFD is the ability
to simulate blood flow in complex subject-specific geometries,
providing results with high spatial and temporal resolution
(108). Fluid-structure interaction (FSI) is a type of CFD
that provides a more advanced approach accounting for wall
deformation. In FSI simulations, the coupled fluid and solid
mechanics equations are solved using a two-way coupling
method between the domains or using an approach where
the fluid and solid equations are solved together by the same
solver known as the Monolithic approach (109, 121, 122)
We highlight studies using both rigid and deformable vessel
walls below.

CFD studies can quantify subject-specific distributions of
relevant flow metrics (11, 12, 123–128). For example, CFD
studies conducted for BAV patients revealed increased flow
asymmetry, residence time, and WSS in the aortic arch, thus
increasing the potential for TAA development (128). A recent
study focused on vessel size and morphology, found that
diameters enlarged more than 60% relative to baseline resulted
in significantly altered blood flow patterns, including impinged
flow near the expansion (123). A similar study investigated
the effects of distal branches on TAAs by simulating blood
flow in a bovine arch, quantifying the relationship between
WSS values and rupture; however, no correlation was observed
between increased WSS and decreased tissue strength (124).
Phillips et al. also investigated geometry-specific variations by
simulating flow through murine aortic dissections, concluding
that varying thickness and lesion compositions found in their
histological samples were due to variations in false lumen
flow and vortical structures (125). Acuña et al. extensively
reviews CFD in animal models in a broad range of vascular
diseases (129). Taken together, these CFD studies demonstrate
that small geometrical variations may cause large hemodynamic
changes, greatly influencing vessel wall stresses and progression
of TAAs.

FSI studies are often used to improve the assessment of
WSS in image-based geometries, by incorporating pulsatile
motion of deformable vessel walls and the aortic valve using
various mechanical models (95, 122, 130–132). Yeh et al. studied
WSS distributions in three patients by creating FSI models of
ascending TAAs with anisotropic hyperelastic material properties
(79). Although only a limited section of an idealized ascending
TAA was modeled, the authors suggest that changing blood
pressure levels caused varying maximum WSS between patients
despite minimal differences in velocity, suggesting that the
changes in WSS were geometry-dependent (79). Cao et al. used
simulations to investigate the effects of aortic valve geometries
on WSS in the aortic arch by comparing TAV to the various
forms of BAV (133). Results showed that WSS directionality
was significantly affected by BAV morphologies, indicating

this computational approach may help determine aortopathy
prognoses for BAV patients. Another study, focused on effects
of hypertension and wall stiffness, found that stiffer TAAs also
had the highest peak wall stresses (130), agreeing with results
from a similar CFD study (12). As the field advances, use of FSI
modeling of the thoracic aorta will likely increase because the
results demonstrate that large vessel deformations affect relevant
hemodynamic metrics.

While useful in many aspects, it is important to recognize
the limitations associated with computational modeling. Studies
using rigid walls neglect the effects of the deforming vessel wall
on hemodynamics and inherent uncertainty in the model inputs,
including inlet and outlet flow conditions (24). While FSI does
consider vessel wall deformation, it is challenging to accurately
model wall thickness, residual stress, and material properties;
since these metrics are hard to obtain in vivo, these values are
often based on previous literature (130, 131). Moreover, the
collection of reliable in vivo data used for prescribing boundary
conditions also remains a challenge for both rigid and deformable
wall simulations (20). Although simulations will always have
certain limitations, hemodynamic modeling has the potential
to advance our understanding of TAA disease progression and
rupture risk.

CONCLUSIONS AND FUTURE
DIRECTIONS

The biomechanical analyses briefly presented in this review
illustrate our current understanding of TAA development and
progression. Literature supports the view that diameter and
expansion rates are insufficient for determining rupture risk.
The diverse etiologies have varying vessel geometries, rates of
elastin degradation, collagen turnover, cellular changes, and
inflammation, all contributing to the heterogeneity of thoracic
aorta wall motion and integrity. To characterize these aspects,
studies use in vivo, ex vivo, and in silico methods to estimate
wall deformation, strain, wall shear stresses, and stiffness. Many
of the studies summarized in this review focused on just
one of these methods or properties in an attempt to find
a correlation to aneurysm development. However, inherent
limitations with each individual method suggests use of a
comprehensive approach that combines these modalities to yield
increasingly impactful results. Moreover, using characterization
methods that consider the heterogeneity of TAAs is critical
for understanding how the behavior relates to the structural
composition of the aneurysms. By conducting interdisciplinary
studies that consider the 3D heterogeneity, we can move toward
a more complete understanding of TAAs and how to properly
treat them, ultimately improving patient outcomes.
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