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Derivation of tissue-engineered valve replacements is a strategy to overcome the

limitations of the current valve prostheses, mechanical, or biological. In an effort to set

living pericardial material for aortic valve reconstruction, we have previously assessed

the efficiency of a recellularization strategy based on a perfusion system enabling mass

transport and homogenous distribution of aortic valve-derived “interstitial” cells inside

decellularized pericardial material. In the present report, we show that alternate perfusion

promoted a rapid growth of valve cells inside the pericardial material and the activity of a

proliferation-supporting pathway, likely controlled by the YAP transcription factor, a crucial

component of the Hippo-dependent signaling cascade, especially between 3 and 14

days of culture. Quantitative mass spectrometry analysis of protein content in the tissue

constructs showed deposition of valve proteins in the decellularized pericardium with a

high variability at day 14 and a reproducible tissue maturation at 21 days. These results

represent a step forward in the definition of strategies to produce a fully engineered tissue

for replacing the calcified leaflets of failing aortic valves.

Keywords: biomaterials, valve implant, pericardium, valve interstitial cell, perfusion system

INTRODUCTION

Diseased and dysfunctional heart valves are routinely replaced by surgical intervention. About
300,000 heart valve procedures are performed annually worldwide; this number is expected to
triple by 2050 with the majority of the patients over the age of 65 (1, 2). Despite their non-
modifiable mechanical performance, commercially available mechanical prostheses are prone
to thromboembolic complications causing patients to require lifelong anti-coagulation therapy.
Biological valves, produced with animal-derived pericardium and valves, or deriving from tissue
homografts, undergo structural deterioration, and this is still the principal cause of their failure in
the mid/long term. This problem affects significant proportions of patients, especially the young,
which mandates re-intervention (3). Deterioration of the biological implants is caused primarily
by chronic inflammatory reaction due to the failure to detoxify the fixative remnants in the tissue
(4, 5), and/or the incomplete removal of major xeno-antigens (6–10) (α-Gal). A current solution
to circumvent these problems consists of the design of tissue engineered heart valves (TEHVs) by
combining biodegradable scaffolds and cells of various origins (11, 12). Despite several materials
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and cell types have been proposed, there are still a number of
unresolved problems in TEHVs due to insufficient structural
stability of the engineered leaflets and consequent leaflet
“retraction” and “thickening” effects (13), which result in TEHVs
failure at mid-/long-term (14).

In previous contributions (15, 16), we showed the suitability
of a decellularization procedure with ionic/non-ionic detergents
to maintain the mechanical properties and reduce the
immunogenicity of porcine pericardium. Besides drastically
reducing the content of xenoantigens, the treatment also
increased the permeability of the tissue, thus making possible the
employment of a perfusion bioreactor to enable mass transport
through the pericardial matrix and promote stable cellularization
(16). Compared to other recellularization techniques to seed
cells in valve-competent scaffolds based on static culture (17, 18),
the employment of this system enabled a higher penetration
of valve interstitial cells (VICs) inside the scaffold and reduced
the activation of these cells into myofibroblasts. The aim of the
present investigation was to assess the maturation of the “living”
pericardium material, particularly concerning the protein
deposition inside the matrix and the cellular phenotype at short
and long culture time points, in view of scaling up the procedure
for clinical transfer.

METHODS

Cell Culture
Primary aortic VICs were isolated from porcine aortic valve
as previously described (15). Cells were cultured up to four
passage in Dulbecco’s modified Ealge’s medium (DMEM, Lonza)
containing 1% L-Glutamine (Lonza), 1% penicillin-streptomycin
(Lonza), and 10% fetal bovine serum (FBS, Thermo Scientific).

Decellularization of Porcine Pericardium
Pericardium samples were obtained from four porcine hearts
explanted at an authorized slaughterhouse. Decellularization of
the tissue was performed according to the optimized protocol
described in a previous work (16). Briefly, the pericardium
was cut from corresponding left ventricular portion and the
adipose tissue was mechanically removed from the surface of
the heart. After washing with a sterile solution of phosphate
buffered saline (PBS) without Ca2+-Mg2+ containing Aprotinin
(2 µl/mL, Trasylol, Bayer) at 4◦C in agitation for 90min, the
tissue was incubated in a hypotonic buffer solution with 10mM
Tris-HCl (pH 8), ethylenediamine tetraacetic acid (0.1%, EDTA),
and Aprotinin (2 µl/mL) at 4◦C for 16 h under continuous
agitation. The tissue was then washed with Milli-Q for 90min
(under agitation at room temperature, RT), and incubated in 1%
of Triton X-100 (Sigma) solution at RT for 24 h, followed by
extensive rinsing in Milli-Q water for 90min (RT, in agitation),
and incubation in 0.1% sodium dodecyl sulfate (SDS) solution at
RT for 24 h. The tissue was finally treated with DNAse (50 U/mL)
into a PBS Ca2+- Mg2+ solution for 90min at 37◦C. Before the
culture tissue was sterilized by incubation in BASE.128 (a tissue
factory approved sterilization medium) at 4◦C for 72 h.

Dynamic Seeding and Tissue Maturation
Through Perfusion Bioreactor
Following the same procedure described by Amadeo et al. (16),
decellularized porcine pericardium patches (1 cm diameter) were
housed into bioreactor chambers and after that, the bioreactors
were assembled. VICs (6 × 10

5
cells/bioreactor) suspension

(10mL) were dynamically seeded for 3 days applying a high flow
at 3 mL/min. After this phase, the recellularized patches were
cultured up to 21 days under a low flow rate of 0.03 mL/min
(Figure 1A). During the whole process, the alternate flow was
applied to enhance nutrient supply and gas exchange. The culture
medium was partially (6mL) changed every 3 days.

Characterizations of Living Tissue
For the biological characterization of the tissue, three time
points were chosen, corresponding to 3, 14, and 21 days of
dynamic cell culture. To evaluate the vitality of the cells seeded
into the decellularized pericardium, recellularized samples were
incubated in 400 µL of 1.2mM 3-(4,5-dimethylthiazol-2-yl)-
2,5-diphenyltetrazolium bromide (MTT) solution at 37◦C for
3 h. After that time, images of both sides of the constructs
were acquired through Stemi 2000-C Stereo Microscope (Carl
Zeiss). For histological analyses, porcine aortic valves and
recellularized samples were fixed in 4% paraformaldehyde (4◦C
overnight) before including in paraffin. Histological sections
(5µm thickness) were cut, dewaxed and stained with Masson’s
trichrome staining (Bio Optica). Images were acquired using an
AxioScope optical microscope (Carl Zeiss). Immufluorescence
on recellularized pericardium was performed using antigen
retrieval solution (10mM sodium citrate buffer, 0.05% Tween-20,
pH 6) and permeabilization with Triton X-100 (1% v/v) bovine
serum albumin (BSA, 3% w/v, Sigma) solution in PBS. Mouse
and rabbit anti-Alpha-SmoothMuscle Actin (αSMA), rabbit anti-
vimentin, mouse anti-YES-Associated Protein (YAP), and mouse
anti-Proliferating Cell Nuclear Antigen (PCNA) were chosen
as primary antibodies to evaluate the phenotype of the VICs
into the pericardium constructs. The incubation with primary
antibodies (αSMA; rabbit, 2µg/mL, Abcam - αSMA; mouse,
0.7µg/mL, DAKO - PCNA, mouse, 2µg/mL, DAKO - YAP,
mouse, 2µg/mL, Santa Cruz Biotechnology, Vimentin, rabbit,
0.45µg/mL, Cell Signaling) was carried out in a PBS solution
containing BSA (3% w/v) overnight at 4◦C. After thorough
washing with abundant PBS, sections were incubated with
488-donkey anti-mouse (10µg/mL, Invitrogen) and 594-goat
anti-rabbit (10µg/mL, Invitrogen) secondary antibodies. Cell
distribution in the constructs and cells counting were assessed

by 4
′

, 6-diamidino−2-phenylindole (DAPI, 100µg/mL,Sigma)
nuclei staining. All the images were acquired with Apotome
fluorescence microscope (Carl Zeiss) or laser scanning confocal
microscope (Carl Zeiss).

Proteomic Assessment
Recellularized samples were snap frozen immediately after
unmounting from the culture bioreactors. For proteomic
analysis, three independent patches for each time/pericardia
samples were stored. Protein extraction was performed for all
samples in the same run as follows: homogenization in an
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FIGURE 1 | Dynamics of pericardium recellularization process. (A) The upper part of the figure describes the alternate motion of the culture medium flow in the

chamber of the perfusion bioreactor. The lower part indicates time-dependent representation of the flow during the cell seeding phase (left graph) occurring for the first

3 days and the maturation phase (right graph). (B) MTT staining of pericardial patches at different recellularization times shows effective growing of valve cells inside

the pericardial matrix up to 21 days of culture. (C) Imaging of transversally sectioned recellularized pericardial samples at different times of culture stained with

trichrome Masson’s (top) and hematoxylin/eosin (bottom). As a comparison, sectioned native aortic valve tissue is included, where a distinction between the three

layers, the Fibrosa (Fib), the Spongiosa (Sp), and the Ventricularis (Ve), is shown. Images in the bottom are magnifications of the insets highlighted by blue boxes in the

middle panels.

extraction buffer containing Tris 0.1M pH 7.6 and SDS 4% (400
µL of buffer for 50mg of tissue) performed with the Ultra-
Turrax at 24,000 rpm for 30 s on ice, sonication (10 s twice
power 6 on ice), and heating at 95◦C for 3min. For label-free
quantitative mass spectrometry (LC-MSE), protein extracts were
precipitated with the protein precipitation kit (Calbiochem),
according to the manufacturer’s instructions. Protein pellets
were then dissolved in 25 mmol NH4HCO3 containing 0.1%
RapiGest (Waters Corporation), and digested with trypsin as
previously described (19). LC-MSE analysis was performed
as previously described and analyzed with Progenesis QIP
v4.1 (Non-linear dynamics) including normalization of protein
abundance considering all the identified proteins and Principal
Component Analysis (20, 21). UniProt database (release 2017-6;
number of sequence entries for sus scrofa, 3,549) was used for
database searches.

Images and Statistical Analysis
All the data are represented as mean ± standard error.
Differences among experimental groups were assessed by
GraphPad statistical Software. The type of statistical tests and the
number of the replicates included in the analysis are specified in
the figure legends.

RESULTS

As previously shown by us (16), dynamic seeding with
an alternate perfusion bioreactor is a promising method
to recellularize aldehyde-free decellularized pericardium (see
characteristics of the seeding/culture protocol in Figure 1A). In
keeping with these findings, porcine VICs penetrated inside the
inner part of the decellularized pericardium with a constant
increment in MTT color staining on both sides of the patches
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FIGURE 2 | Proteomic analysis of native valves and recellularized pericardial samples. (A) Principal component (PC) analysis of protein content in the analyzed

samples. Three independent pericardia were recellularized with pig-derived VICs and analyzed at each time point (Samples #1- #3). Each of these samples is

represented by experimental triplets evidenced by time-specific color code, for a total of nine samples per time point. Three porcine aortic valves tissues were

analyzed in parallel (also in triplets) and are also indicated in the PC analysis. As shown, the alignment of the PC1 recellularized samples at day 21 with the PC1 of the

valve tissue reveals a partial restoring of the native protein content by VICs. (B) Clusterization analysis of proteins differentially expressed at day 3 and day 21 vs. the

native tissue (see Table S1 for description of the proteins and Figure S1 for the analysis including day 14 samples). Three protein clusters (each highlighted by a

different color) were identified. A first cluster (characterized by the blue color) contains proteins that were expressed at higher levels in the native valves vs. the

recellularized samples independently of time. A “red” cluster contained proteins whose expression was relatively higher at day 21 stage than in valve or day 3 samples.

Interestingly, a sub-cluster of these proteins (encircled in the heatmap by a red box) were contained at equal levels in day 21 and valve tissues. A “green” cluster

containing proteins overrepresented in day 3 recellularized samples was finally found, mainly constituted by structural matrix components. As discussed, this higher

abundance might be explained by a lower protein content due to the presence of few cells, which cannot compensate for the protein loss due to decellularization

procedure, given the short culture time.

(Figure 1B), and this preserved tissue structural integrity with
possible de novo synthesis of extracellular matrix components
(Figure 1C). We already showed that a mass spectrometry-based
approach is useful to assess the composition of the pericardial
matrix before and after decellularization (16). Therefore, here we
employed the same technique to get insights on the maturation
process of the extracellular matrix in consequence of cells
seeding. MS analysis of native porcine valves and recellularized

pericardium at different time points rendered a list of 105
proteins (Table S1) that were differentially expressed at different
culture times and vs. the native valve tissue. As shown in the table,
there were protein groups that were present at specific stages
during the maturation of the cellularized tissue in the bioreactor,
in addition to one group of proteins that were more abundant in
the native valves vs. all the recellularized samples, irrespective of
the maturation stage.
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FIGURE 3 | (A–C) Example of graphic representation of selected proteins belonging to the three clusters identified by the analysis of proteomic data. Statistical

analysis was performed by one way ANOVA with Newman-Keuls post-hoc on the normalized abundance of proteins identified by mass-spectrometry (see Table S1).

* represents P < 0.05 (n = 3). (D) Clusterization analysis of proteins with functions in ECM structure/remodeling. Treatment of this data in a separate analysis helped

to assess in better details the representation of matrix-related protein distribution during the course of the recellularization procedure. Although separate ECM protein

clusters were still identified for the three tissue types, the heatmap clearly shows a higher separation between the day 3 samples and the day 21/native valve tissues,

and the higher similarity of the day 21 samples to native valves. This last evidence suggests a trend of the day 21 samples to evolve toward a valve-like tissue.

Principal component analysis and clusterization of
normalized protein levels Figure 2A indicated a good
reproducibility of the recellularization process in the three
replicates analyzed for each independently recellularized
pericardium samples; in addition, a good data separation
was observed between day 3 and day 21 samples, while a
partial overlapping of the protein groups representing the
day 14 samples and those at the two other culture times was
evident. Unsupervised data analysis also showed clusterization
of proteins expressed in native valves, day 3 and day 21
samples, and a wider dispersion of data for the day 14 time
point (Figure S1).

To analyze better the evolution of the protein content of
pericardial samples between the beginning and the end of
the culturing period, we eliminated from the analysis the day
14 time-point and performed another data clusterization run,
taking into account only the day 3, day 21, and the native
valve data. Under these conditions (Figure 2B), proteomic data
clearly indicated protein clusters that discriminated each of
the three experimental conditions. Interestingly, the number

of proteins expressed at the final end point of the culture
(day 21) (Red cluster in Figure 2B; n = 59 proteins), was
higher than the number of proteins more abundant in native
valves (Blue cluster in Figure 2B, n = 20 proteins) or day
3 recellularization stage (Green cluster in Figure 2B, n = 22
proteins) together. In particular, it was noted the presence
of a protein sub-cluster in the red group (encircled in
Figure 2B) where the protein content was comparable in day 21
recellularized samples and native tissues. This cluster contained,
among others, important cellular proteins such as Ubiquitin and
Histone H1.3.

Analyzing data more in details, and directing our interest
on relevant cellular proteins for the valve cells and tissues,
we found higher expression of the mesenchymal stem cell
marker CD90 (Thy1) and of Fibulin, Aggrecan, and Fibronectin
III, three ECM components particularly abundant in the
native valve samples compared to the pericardial samples at
both culture times. On the other hand, a similar analysis
performed on representative proteins of the red cluster
(Figure 2B) indicated presence of proteins involved in ECM
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FIGURE 4 | Cellular phenotype and dynamics inside recellularized pericardia. (A–C) Immunofluorescence staining showing expression of αSMA, PCNA, and YAP (all

in green fluorescence) in conjunction with Vimentin (in red fluorescence) inside the recellularized pericardial tissue at day 3 and 21 of culturing. In each panel the lower

micrographs show the magnification of the boxed insets in the higher photographs. (D) Quantification of total number of cells by DAPI-stained nuclei counting (upper

bar graph), PCNA+ cells (middle bar graph) and cells with nuclear localized YAP (nYAP+ cells, low bar graph) at all the considered time points. Statistical analysis was

performed with one-way ANOVA with Newman Keuls post-hoc; * indicates P < 0.05 (n = 3).

biogenesis—e.g., Procollagen-Proline-4-Dioxygenase (22), valve
maturation—e.g., Biglycan (23), Glycan binding proteins -
e.g., Galectin (24) or cellular proteins indicative of the

valve-interstitial/smooth muscle cells phenotype (e.g., αSMA
and SM22α) at similar levels to the native valves (see also
Figure 3B). It was interesting to note that several extracellular
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structural components such as Collagens, Vitronectin, and
Fibronectin were higher represented in recellularized samples
at day 3 compared to the other conditions (Figure 3C). For
a representation of all the differentially expressed proteins
with a function in the extracellular matrix present in the
native and recellularized pericardial tissue see Figure 3D,
where they clustered into two groups, one evidently more
abundant at day 3 of recellularization and mostly composed
of ECM structural components (Collagens), and another more
represented in native valves and day 21, where matricellular
proteins involved in ECM deposition, maturation, remodeling
were mostly represented.

In a recent publication of our group (25), we have described
that stiffness-dependent pathological activation of human
valve interstitial cells is related to the activity of the main
transcriptional component of the Hippo pathway, the YAP
transcription factor (26). Since YAP nuclear translocation
in VICs causes increase in proliferation, we determined the
number of cells expressing the Ki-67 cell cycle marker and
we correlated this with expression of YAP protein in the
cells present in our recellularized pericardium samples. In
parallel, we determined the expression of αSMA, one of
the pathologic markers associated to VICs transformation
into myofibroblasts, and Vimentin, a pan-VIC marker
(15). Figure 4 shows the result of immunofluorescence
staining of the recellularized pericardium at day 3 and day
21 of culture and quantitation of results of cell counting
and determination of nuclear YAP (nYAP+) and PCNA+

cells. As shown in panel A, double immunofluorescence
with the pan-VIC marker Vimentin and αSMA antibodies
showed a majority of cells stained with Vimentin and a
relatively small number of cells expressing also αSMA,
especially confined at the surface of the tissue constructs.
The double staining including PCNA and YAP in combination
with Vimentin (panels B and C), indicated, respectively, a
relatively high level of cells with nuclear staining of PCNA (a
characteristic of cells in active cell cycle) and expressing YAP
at both time points. These observations were corroborated
by determination of PCNA+ and YAP+ cells percentages
showing a time-dependent increase between day 3 and day
21 (panel D). Interestingly, while the total number of cells
had a trend to increase (although not significantly) from
14 to 21 days, the percentages of PCNA+ and YAP+ cells
were comparable in pericardial samples at day 14 and day 21
of culture.

DISCUSSION

The quest for novel applications to replace the conventionally
used biological material (aldehyde-treated pericardium)
and manufacture cardiac valve replacements has prompted
a variety of approaches ranging from “off-the-shelf ”
solutions based on natural/bioartificial materials, to cell
seeding into artificially-designed scaffolds manufactured
with mechanical characteristics of the natural valves (27).
Importantly, despite these advances, the current biological

valve implants are still manufactured with animal-derived
pericardium treated with aldehydes, a 50-year dated technology
with minimal or null modifications introduced since
then (28).

Inspired by evidences showing the feasibility of re-engineering
entire organs depleted of their original cellular content
by recellularization protocols (29), we have endeavored a
tissue engineering program with the aim at generating a
valve-compliant tissue that may be employed as a living
material for aortic valve reconstruction. This solution might
be a viable alternative for patients under the age limits
for prosthetic valve implantation (30) or, potentially, for
correcting congenital valve defects in alternative to conventional
procedures (31). The key features that represent a novelty
in our procedure compared to others already employed to
resolve this problem (18) are that (i) it does not affect
mechanical resistance of the pericardial material (15, 32), (ii)
it strongly reduces its immunogenic potential by abolishing
foreign body reaction (32) and presence of αGAL xenoantigen
(15), and (iii) it increases the permeability of the tissue,
making it perfusable to achieve an unprecedented efficiency of
recellularization (16).

Despite this work is not the first to employ a bioreactor
system to assess cell viability inside a decellularized scaffold
for cardiac valve engineering (33, 34), it is the first to address
the problem of valve maturation of a fully recellularized tissue
using a systematic proteomic approach. In fact, our mass
spectrometry data clearly showed that compared to the native
pericardial membrane, a number of proteins were upregulated
in the material as a result of de-novo protein synthesis by the
introduced valve cells. This occurred with a reproducible time
dependence (Figure 2A) and gave rise to distinct proteomic
patterns at the beginning and at the end of the culture period
(Figure 2B). It was finally interesting to note that 14 days of
culture represents a critical time point in the maturation progress
of the tissues (Figure 2A, Figure S1), likely due to transitioning
of the cells from an active proliferation to a differentiation phase.
This clearly establishes a turning point that might be useful to
monitoring the quality of the valve tissue generation process
based on assessment of tissue construct protein content at this
time point.

By analyzing more in details the proteomic data produced
by mass spectrometry, we found three protein clusters that
were characterized, respectively by, (i) proteins more abundant
in the initial culture stage (day 3) compared with the native
valve and the final (day 21) pericardium recellularization
stage (the “green” cluster in Figure 2B), (ii) proteins whose
representation was higher in the native valves, irrespective of
the recellularized pericardium culture time (the “blue” protein
cluster in Figure 2B) and (iii) proteins whose abundance was
higher in day 21 pericardium culture stage compared to day 3
and, at lower extent, to the native valve (the “red cluster” in
Figure 2B).

A higher abundance of matrix structural components in
decellularized vs. the native samples at short time after cell
seeding (the majority in the green protein cluster, Figures 2B,
3A,D) is in line with what already reported for the comparison
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between the decellularized vs. the native pericardium samples
in our previous investigation, where probably it resulted
from increase in the relative content of matrix proteins due
to removal of the cellular proteins and GAGs (16) and
a too low number of cells (Figure 4D). The same reason
may account for the higher presence of other components
of the ECM such as Tenascin (Figures 2B, 3C,D) at the
same time point. It was finally interesting to note that
while Tenascin was present in high amount in the native
pericardium and it was removed from decellularization process
(16), Thrombospondin was transiently expressed by valve cells
at the beginning of the recellularization period. Given the
general role of Thrombospondins in pro-fibrotic activation
of VICs (35), it is possible that this factor contributes
to active migration of these cells inside the decellularized
pericardial matrix.

The larger cluster of proteins differentially expressed
in the different conditions contained proteins with higher
or equal representation in the recellularized pericardium
at day 21 of culture compared to the native valves. It was
interesting to find in this group (named the “red” cluster),
the presence of enzymes involved in ECM maturation and
remodeling such as the Procollagen-Proline 2-Oxoglutarate-
4-Dioxygenase (P4HA1) (22) and the Peptidyl-Prolyl
cis-trans-Isomerase (PPIase) (36) or Cathepsin-D (37),
of enzymes necessary for cell-ECM interactions such as
Protein Disulfide Isomerase (PDI) (38), of proteoglycans
involved in valve matrix organization such as Biglycan
(23), and, finally of cellular proteins typically expressed in
valve interstitial cells such as Transgelin/SM22α and αSMA
(39). Taken together, these results show that the consistent
repopulation of the pericardium with valve cells promotes a
valve maturation of the tissue constructs, even if, as showed
by the absence other specific valve ECM components such
as Aggrecan, Osteoglicyn/Mimecan, Decorin (40) at both
stages of recellularized pericardium (the “blue” protein cluster
in Figures 2A,C, 3D), suggests that the process was still
not complete.

It was also interesting to observe that the number of cells
in the tissue constructs tended to reach a plateau in the
transition from the 14 to the 21 days of culture (Figure 4).
This finding is important for the possibility that cells lose
control of their proliferation process once they enter in the
pericardial matrix, thus causing risks of uncontrollable growth,
and disarrangement of the pericardial matrix. In this respect
it has to be noted that the number of cells with nuclear-
translocated YAP, a transcription factor connected to the pro-
pathologic phenotype in human VICs also reached a plateau
(Figure 4) and was lower than in portions of human pathologic
aortic valves (25), thereby suggesting an equilibrium between
control of proliferation vs. acquisition of valve degeneration
markers during valve maturation of the tissue constructs. How
this is established it is for now only a matter of speculation,
even if, in line with our results on human VICs (25), we
hypothesize that this may result from mechanical control of YAP

nuclear translocation due to relatively low compliance of the
decellularized matrix. Further studies will be done to characterize
the local stiffness of the pericardial matrix at different times after
recellularization.

In summary, we provide the first example of a partial
valve tissue maturation process achieved experimentally by
seeding valve cells into a decellularized pericardial matrix.
We are now planning new studies with human-derived bone
marrow/adipose-derived mesenchymal stem cells and scaled
up bioreactors able to efficiently repopulate decellularized
pericardial patches with surgical size. It will be also interesting to
assess whether mounting the recellularized pericardial material
onto stent posts and valve pulse duplicators will promote further
biological maturation of the living pericardium material due to
mechanical conditioning (41), and will maintain the viability
of the cells under tissue mechanical stress (33), as a step
forward in translation of the living pericardium material for
clinical employment.
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