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Unintended cardiac fibroblast proliferation in many pathophysiological heart conditions,

known as cardiac fibrosis, results in pooling of extracellular matrix (ECM) proteins in

the heart muscle. Transforming growth factor β (TGF-β) as a pivotal cytokine/growth

factor stimulates fibroblasts and hastens ECM production in injured tissues. The TGF-β

receptor is a heterodimeric receptor complex on the plasma membrane, made up

from TGF-β type I, as well as type II receptors, giving rise to Smad2 and Smad3

transcription factors phosphorylation upon canonical signaling. Phosphorylated Smad2,

Smad3, and cytoplasmic Smad4 intercommunicate to transfer the signal to the nucleus,

culminating in provoked gene transcription. Additionally, TGF-β receptor complex

activation starts up non-canonical signaling that lead to the mitogen-stimulated protein

kinase cascade activation, inducing p38, JNK1/2 (c-Jun NH2-terminal kinase 1/2), and

ERK1/2 (extracellular signal–regulated kinase 1/2) signaling. TGF-β not only activates

fibroblasts and stimulates them to differentiate into myofibroblasts, which produce ECM

proteins, but also promotes fibroblast proliferation. Non-coding RNAs (ncRNAs) are

important regulators of numerous pathways along with cellular procedures. MicroRNAs

and circular long ncRNAs, combined with long ncRNAs, are capable of affecting

TGF-β/Smad signaling, leading to cardiac fibrosis. More comprehensive knowledge

based on these processes may bring about new diagnostic and therapeutic approaches

for different cardiac disorders.

Keywords: cardiac fibrosis, non-coding RNAs, Smad, TGF—transforming growth factor, microRNA

INTRODUCTION

Excessive aggregation of ECM, which is mainly produced by myofibroblasts, results in fibrosis
(1). In addition, α-smooth muscle actin (α-SMA), a highly contractile protein, is expressed by
myofibroblasts. ECM deposition is shown to be reversible, and improved cardiac function and
coronary flow result in a minor collagen volume fraction regression (20% relative change and 1%
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absolute change) (2), an important indicator of ECM content.
Additionally, patients with heart failure (HF) are commonly
treated with renin–angiotensin–aldosterone system modulators,
which lessen cardiac fibrosis (3, 4). Cardiac fibrosis induces
pathological processes, which lead to chamber dilatation,
muscular hypertrophy, and apoptosis, eventually developing into
congestive HF (5). Cardiac fibrosis pathogenesis is complex with
no efficient treatment options (6).

Transforming growth factor β1 (TGF-β1) is the principal
isoform of TGF-β in cardiac tissue, which can cause
Smad2/Smad3 (its downstream mediator) phosphorylation,
which in turn can stimulate cardiac fibrosis development.
It has been shown in mice that cardiac fibrosis related to
pressure overload can be diminished by specific deletion of
TGF-β1 or Smad3 gene in the triggered cardiac fibroblasts (CFs)
(7). Non-coding RNAs (ncRNAs) include small microRNAs
(miRNAs or miRs; > ∼22 nucleotides) and long non-coding
RNAs (lncRNAs; > ∼200 nucleotides), as well as circular
RNAs (circRNAs; > ∼200 circular nucleotides) (1), all of
which are involved in regulating several signaling pathways,
including TGF-β and Smad, for the control of cytokine release,
along with ECM production (8–10). Evidence corroborates the
existence of cross-regulation between the two ncRNAs mediated
fibrosis-stimulating pathways and its role in cardiac fibrosis
pathophysiology. Recognizing mechanisms associated with
such cross-regulation provides possibilities for the development
of new therapeutic approaches to reverse cardiac fibrosis
(10–12). The present review examines TGF-β, as well as Smad
signaling, followed by their contribution in the cardiac fibrosis
pathogenesis. In addition, evidence regarding TGF-β and Smad
signaling involvement in vascular and cardiac remodeling
across fibrotic events is detailed. Finally, ncRNAs (consisting
of miRNAs, lncRNAs, and circRNAs) roles in TGF-β and
Smad signaling in the heart are discussed. Specifically, the
review will focus on the role of TGF-β/Smad signaling in
ECM overproduction, cardiac fibrotic event, and myofibroblast
alterations, which is the aim of this study. We point out the
impacts of miRNAs and lncRNAs, as well as circular lncRNAs,
on cardiac fibrosis via interaction with the signaling pathways
of TGF-β/Smad.

PATHOGENESIS OF CARDIAC FIBROSIS

Cardiac fibrosis, namely, the accumulation of scar tissue in
the heart, is a product of mismatch between production and
degradation of ECM and is strongly associated with cardiac
and endocrine disorders (13). Upon stimulation, circulation
and myocardial fibrosis–promoting growth factors as well as
cytokines levels will increase and initiate a fibrotic response
(14). Attachment of the fibrotic-promoting growth factors
and cytokines takes place in the corresponding receptors in
fibroblasts, namely, cytokine receptors, integrins, syndecans, and
CD44 (15), after which signaling pathways and transcriptional
factors, such as Smad, mitogen-stimulated protein kinases
(MAPKs), nuclear factor κB, and protein kinase B (also
called AKT), are activated. These activations induce CFs

to transform into myofibroblasts, capable of expressing the
strongly contractile protein α-SMA and producing certain
tissue inhibitor of metalloproteinases (TIMPs), as well as
matrix metalloproteinases (MMPs) for the modulation of ECM
homeostasis (14). Additionally, synthesis and release of fibrotic-
promoting growth factors and cytokines in CFs are controlled
by these transcriptional factors (16). The growth factors and
cytokines secreted via CFs or other cells, such as cardiomyocytes,
and endothelial cells affect CFs or cardiomyocytes and create
a positive feedback with final enhancement of the fibrotic
responses (16).

In addition to various cell types (such as inflammatory,
epithelial, endothelial, and other cells) that contribute to
fibrogenesis, three cellular signaling transduction pathways
contribute significantly during fibrosis: MAPKs, TGF-β, and
integrins. The first pathway, which includes c-Jun NH2-terminal
kinase (JNK), p38 MAPK, and extracellular signal–modulated
kinase in mammals, has mediating effects on signaling, initiated
by extracellular stimulation, such as growth factors and cytokines,
or stimulation within the cells (17). The second pathway
contributes significantly to the regulation of cellular functions,
such as proliferation, differentiation, apoptosis, and survival.
Integrins include subunits of α and β, which surface receptors
on every cell type with the exception of red blood cells (18).
Alongside extracellular receptors, signals transducing pathways
engaged in fibrogenesis are triggered by integrins working
in coordination with integrin-associated kinases within the
cells (18–21).

TGF-β/SMAD SIGNALING IN CARDIAC
FIBROSIS

TGF-β can be described as a cytokine with multifunctionality,
whose expression takes place by various kinds of cells (22). The
superfamily of TGF-β included the TGF-β isoforms (TGF-β1,
TGF-β2, and TGF-β3) and activins, as well as inhibins, growth-
differentiating factors, bone morphogenetic proteins (BMPs),
together with anti-müllerian hormones (AMH) as suborders
(23, 24). TGF-β plays a role in different diseases such as cardiac
abnormality, cardiac fibrosis, failure of the heart, and remodeling
of chamber, as well as cardiac hypertrophy (22) (Figure 1). TGF-
β isoforms function with activins toward stimulating signals
within the cells through Smad2/3 transcribing factors (25). TGF-
β ligand complex has seven different type I receptors (which
are sometimes called activin-like kinase or ALK receptors) or
five type II receptors (ActRIIA, ActRIIB, TGFBRII, BMPRII, and
AMHRII) (26, 27).

It has been previously demonstrated that TGF-β-stimulated
clone 22 (TSC-22) could facilitate TGF-β signaling by
antagonizing Smad7 activity secondary to enhanced receptor
stability. TSC-22 increases TGF-β-induced transcriptional
responsiveness and phosphorylation of Smad2/3 (28).
Furthermore, the stimulatory effect of TSC-22 is Smad7-
dependent, and silencing the expression of Smad7 abolishes
TSC-22’s effect. TSC-22 can interact with TβRI (TGF-β type
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FIGURE 1 | TGF-β contribution to cardiac fibrotic events. (A) TGF-β affects phenotype along with operation in every cell somehow engaged in myocardial fibrotic

event. Straightforward effects on conversing fibroblast (F) to myofibroblast (MF) and activating myofibroblast can be probably of more importance, but fibrogenesis

caused by TGF-βs can further relate with its impacts on the phenotype of macrophage (Ma), differentiation and function of lymphocyte (L), and cardiomyocyte (CM)

viability, as well as gene expression. Apart from that, TGF-β can encourage pericyte (P) to fibroblast transformation and endothelial-to-mesenchymal

transdifferentiation, when induced by vascular cells to express fibrosis-associated genes. (B) TGF-βs regulate phenotypes of the cells through activation of

Smad-related together with non-Smad signaling pathways. (C) TGF-β/Smad3 signaling effect on CFs. Current researches taking advantage of loss-of-function

procedures associated with specific cells drew conclusion that activating Smad3 contributes significantly to the formation of organized myofibroblast arrays after

myocardial infarction. Lack of Smad3 in fibroblasts deranges infarcted heart reparations, resulting in higher risks of late cardiac rupture and undesirable chamber

dilation. The evidence points out the reparative operation of fibroblasts activated in the infarcted myocardium. Mediation of the Smad3 effects is being carried out by

the integrin–ROS axis arousal. This figure was adapted from Frangogiannis (15).

I receptor) and Smad7 and prevent the Smad7/Smurfs and
TβRI association and receptor degradation. TSC-22 also
promotes cardiac myofibroblast differentiation by increasing
fibrotic gene expression for α-SMA, fibronectin, plasminogen
activator inhibitor 1 (PAI-1), and collagen I, consistent with
TSC-22 upregulation and phospho-Smad2/3 in myocardial
fibrotic hearts. Therefore, it has been suggested that TSC-22
could regulate TGF-β signaling through a positive-feedback
mechanism and may lead to myocardial fibrosis (28).

Binding of type II receptor TGFBRII with TGF-β1 ligands
leads to phosphorylation of the type I receptor ALK-5. Various
ligands may bind to cell surface TGF-β receptors, which lead to
activation of signaling effectors and the Sma- and Mad-related
proteins (Smads), as well as interacting with deoxyribonucleic
acid (29). TGF-β, myostatin, or activin activates both Smad2

and Smad3, whereas activation of Smad1, Smad5, and Smad8
is performed with BMPs, leading to interactions with Smad4,
bringing forth modulating the target gene expression (24, 30,
31). It is noteworthy that TGF-β pathway activation will lead
to upregulation of Smad6 and Smad7 expression as well, in
turn deactivating the pathways (29). Several ncRNAs and their
substrates play a role in the TGF-β signal transduction pathway
regulation (21).

Smad2/3 activation affects various profibrotic gene expression,
consisting of collagens [COL1A1, COL3A1, COL5A2, COL6A1,
COL6A3, COL7A1, (32)], PAI-1 (33, 34), various proteoglycans
(35–37), integrins (38), connective tissue growth factor (CTGF)
(39), and MMPs (27, 40).

Considerable increase in the levels of TGF-β was observed
in individuals experiencing ischemic cardiomyopathy (ICM)
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and dilated cardiomyopathy (DCM), showing that TGF-β levels
correlate with phosphorylated Smad2, along with collagen types
I and III, triggering further myocardial fibrotic events in ICM
and DCM secondary to activation of TGF-β (41). Fibulin
2 is an essential ECM protein for TGF-β/Smad signaling.
Moreover, phosphorylation of Smad2 is achieved only in the
presence of fibulin-2 (42). Peroxisome proliferator–activated
receptor γ (PPARγ) activation was thought to moderate cardiac
fibrosis. A study showed that TGF-β1 directly suppresses PPARγ

expression by increasing binding of Smad2/3, Smad4, histone
deacetylase 1 (HDAC1), and decreasing binding of HDAC3 to
the PPARγ promoter in CFs (43). Another study has shown that
reactive oxygen species (ROS) derived from NADPH oxidase 4
(Nox4) enhanced myocardial fibroblasts reaction against TGF-
β1 through TGF-β Smad signaling pathways (44). Wnt/β-
catenin pathway in inflammatory DCM has been shown to be
activated by secretion of Wnt proteins in response to TGF-
β signaling, mediated by Smad-independent TGF-β-activated
kinase 1 (TAK1) (45, 46). Wnt inactivation or Wnt secretion
hindrance impeded TGF-β-mediated CF transformation into
pathogenic myofibroblasts, making Wnt protein secretion a
neoteric downstream process of TGF-β-modulated cardiac
fibrotic development (46). It has been demonstrated that CTGF,
also known as CCN2, may play roles in the hypertension-induced
myocardial fibrosis through regulation of TGF-β expression
(22, 47).

ncRNAs IN CARDIAC FIBROSIS

ncRNAs are short RNAs that act as epigenetic regulators (48).
The regulation of these molecules is related to modulation
of several physiological properties such as apoptosis, cell
proliferation, metabolism, and differentiation. Deregulation of
these molecules shows associations with the onset and progress
of various diseases, such as cardiovascular diseases, diabetes,
cancer, and inflammatory disorders (49). According to existing
evidence, ncRNAs can be categorized into two main groups: (i)
short ncRNAs possessing fewer than 200 small nucleotides in
their length (i.e., snoRNAs, siRNA, piwi-RNA, and miRNAs),
(ii) lncRNAs possessing more than 200 nucleotides in their
length including lncRNAs and circRNAs (16, 50). Cardiac
fibrosis is a common feature in many types of heart diseases.
ncRNA deregulation has been posited to be associated with
cardiac fibrosis development and occurrence (49). Table 1

summarizes the role of different ncRNAs contributing to cardiac
fibrosis pathogenesis.

miRNAs
As mentioned previously, miRNAs can be defined as short
ncRNAs with a length of 18 to 24 nucleotides (85, 86).
miRNAs are capable of regulating the function of proteins
by binding to target messenger RNA. This may result in the
induction of mRNA degradation and/or suppression of protein
translation. It has been shown that these molecules modulate
myocardial fibrosis pathogenesis (Table 1) (87). Cardiac fibrosis
is a complicated process involving the concerted interaction
of multiple miRNAs. In this respect, different miRNAs are

related to same pathologically fibrotic process. For instance,
miR-24, miR-21, miR-34a, miR-29, and miR-433 contribute to
fibrosis following infarction, and miR-26a, miR-21, and miR-
125b are associated with pressure-overload fibrosis, which is
caused by transverse aortic constriction (88–91). In addition,
various miRNAs could be classified into antifibrotic (e.g.,
miR-15 family, miR-101a, miR-145, miR-378, miR-122, miR-
142-3p) or profibrotic miRNAs (e.g., miR-29, miR-21, miR-
34, miR-208, miR-155, miR-223) (88–91). miRNAs exert their
regulatory effects on cardiac fibrosis, although affecting a
sequence of cellular and molecular pathways, such as TGF-
β/Smad system, MRTF/SRF axis RhoA/ROCK cascade, Wnt
signaling, AngII/MAPK signaling, and the cationic channels that
regulate calcium responses (92). Callis et al. evaluated miR-
208a role in cardiac fibrosis induction. They indicated that miR-
208a plays its role via targeting THRAP-1 and myostatin in
myocardial hypertrophy (93). Furthermore, they showed miR-
208a can induce cardiac fibrosis through increased endogen
expression (93). Other study demonstrated that the upregulation
of miR-208b is related to myocardial function enhancement and
could inhibit type I collagen and alias α-SMA. In agreement, miR-
208b exerts protection against post-infarctionmyocardial fibrosis
by targeting GATA4 (94).

TGF-β1 can be associated with collagen secretion and
activation in myocardial fibroblasts, which play a role in cardiac
fibrosis development with other risk factors (95). Furin can
modulate TGF-β activation by targeting AngII (96). Bearing that
in mind, furin can exert its functions by TGF-β activation (97).
Chen et al. showed thatmiR-24 downregulation is associated with
cardiac infarction. Their findings confirmed that miR-24 exerts
its effects by inhibiting TGF-β1 with having impact on furin.
TGF-β1 and furin levels were elevated, indicating a critical role
of miR-24 deregulation in myocardial fibrotic events following
myocardial infarction (98).

Long Non-coding
Intra-action of the cell death and inflammation to myocardial
fibrosis is crucial (99). Pyroptosis, namely, cell death triggered by
inflammatory reactions, is described by apoptosis and necrosis
(100). Nod-like receptor protein 3 (NLRP3) inflammasome
expression in cardiac fibrosis is activated by inflammation;
subsequently, it activates the cleaved caspase (101). Recent
studies have corroborated the contribution of pyroptosis
in myocardial fibrosis pathogenesis (102). Nonetheless, the
initiating mechanisms for cardiac fibrosis and fibroblast-derived
pyroptosis have yet to be determined. Thus, identification of
the pathological mechanisms along with efficient treatment
targets of myocardial fibrosis is essential. Growth arrest–specific
5 (GAS5), a lncRNA, whose encoding takes place by the
GAS5 gene, has been introduced as a tumor suppressor in
variety of cancer types (103). GAS5 contributes critically to
cell apoptosis and pyroptosis (104). She et al. (105) identified
lncRNA-GAS5 as the initiator of pyroptosis in CFs and cardiac
fibrotic events. Upon lipopolysaccharide (LPS) stimulation, they
detected ISO-induced CF pyroptosis and myocardial fibrosis.
Proteins associated with pyroptosis include caspase 1, NLRP3,
and DNMT1, higher in cardiac fibrotic tissues, with reduced
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TABLE 1 | ncRNAs contributing to cardiac fibrosis.

Non-coding

RNAs

Effect (s) Expression in

CF

Targets Signaling pathway Model References

miRNA

miR-21 Profibrosis Upregulated Spry1, PTEN

CADM1

↑TGF-β1 →↓PTEN→↑MMP-2

CADM1/STAT3 pathway

↑cardiac fibrosis

Rat CFs (51, 52)

miR-26a/b Profibrosis Upregulated TRPC3 ↑MiR-26a → ↓ TRPC3 → ↑CF Dog fibroblasts

model

(53)

Col1a2/CTGF miR-26b-5p→↓Col1a2/CTGF →

↑CF

Mouse CFs (54)

miR-34 Profibrosis Upregulated VEGF, neurogenic

locus notch

homolog protein 1,

vinculin, PPP1R10

Contributing to cardiomyocyte

aging; inhibiting miR-34 and limiting

cardiac fibrotic events

MI and TAC mice (19, 55)

miR-132 Antifibrosis Downregulated Ras/Rap/SynGAP;

methyl-CpG-binding

protein 2

Akt/eNOS/Bcl-2 signaling pathway

↓Ras/Rap GTPase-activating

protein

↓SynGAP;methyl-CpG-binding

domain protein 2→↓CF

MI -CD1 mice (56)

miR-133/miR-30 Antifibrosis Downregulated CTGF Contributing to the progress of

fibrosis via connective tissue

growth factor targeting

Renin-2 tg rat (57)

miR-133a Antifibrosis Downregulated Collagen α-1(I) chain Transgenic overexpression in

cardiomyocytes inhibits fibrotic

progress across overload of

pressure and diabetic

cardiomyopathy

TAC mice (58)

miR-155 Profibrosis Upregulated Son of seven less

gene (Sos1)

Macrophage-derived

mir-155–comprising exosomes

suppressing proliferation Of

Fibroblasts and enhancing

inflammation of fibroblasts across

cardiac injury

mir-155–deficient

mice

(59)

miR-199b Antifibrosis Downregulated Dyrk1a

calcineurin/NFAT

target gene

Nuclear kinase Dyrk1a is targeted

by miRNA-199b in an

auto-amplification loop enhancing

calcineurin/NFAT signaling

inhibition→↓CF

mouse and human

heart failure

(60)

miR-208 Profibrosis Upregulated Myosin-6, myosin-7 Inhibition results in decreased

progress of fibrosis subject to

cardiac stress

miR-208 mutant

animals

(61)

miR-214 Antifibrosis Downregulated Sodium/calcium

exchanger (1Ncx1)

Inhibition results in excessive

progress of cardiac fibrosis

following myocardial infarction

Ischemic cardiac

tissue

(62)

miR-455 Antifibrosis Downregulated collagen I and III

CTGF

miR-455 →↓ collagen I and III

/CTGF

↓CF

Male diabetic

mice

(63)

miRNA-155 Profibrosis Upregulated Ski

SnoN

↓Antifibrotic Sloan–Kettering

Institute proto-oncogene

(Ski)/Ski-associated new gene,

non–Alu-comprising (SnoN)

signaling (negative TGF-β

signaling regulating factors) →↑CF

Diabetic (db/db)

mice

(13)

miR−223 Profibrosis Upregulated RASA1(RAS p21

protein activator 1)

siRASA1 enhanced MEK1/2,

ERK1/2 and AKT phosphorylation

→↑ collagen I, collagen III, and

α-SMA→↑CF

CFs (64)

miR-9 Antifibrosis Downregulated TGFBR2 Suppressing TGF-β receptor

II→↓CF

High glucose/human

CFs

(65)

Let-7i Antifibrosis Downregulated IL-6

Mac-2

Let-7i →↓ interleukin-6/collagens

→↓CF

AngII/mouse;

NRCFs

(66)

(Continued)
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TABLE 1 | Continued

Non-coding

RNAs

Effect (s) Expression in

CF

Targets Signaling pathway Model References

Let-7c Antifibrosis Downregulated Activate Oct4 and

Sox2

Improvement in cardiac function

↓apoptosis, ↓fibrosis, ↓number of

discoidin domain receptor

2–positive fibroblasts

MI/mouse; NRCFs (67)

lncRNAs

lncRNA H19 Profibrosis Upregulated ERK1/2,

Dual-specificity

phosphatase 5

(DUSP5)

↑H19 →↓DUSP5 (negative

regulation of prohypertrophic

signaling by↓ ERK1/2)

→↑α-SMA↑/cardiac fibroblast

proliferation

Isolated rat cardiac

fibroblasts

(68)

miR-455

CTGF, collagen I,

III, α-SMA

H19 and miR-455 modulated

myocardial extracellular matrix

accumulation

Male diabetic

mice

(63)

lncRNA MIAT Profibrosis Upregulated miRNAs-29, 21,

133, 30, and 24

MIAT↑ → miR-24↓ →

Furin/TGF-β1↑

→ cardiac fibrotic event↑

Anesthesia of

healthy male

C57BL/6 mice was

carried out with

Avertin (160 mg/kg,

i.p. Sigma–Aldrich)

(69)

Malat1 Profibrosis Upregulated miR-145 ↑MALAT1 →↓miRNA-145

(miR-145) →↑ TGF-β1→↑CF

MI mouse heart and

AngII-treated CFs

(70)

Mir-24 Mir-29

Mir-30 Mir-133

↑MALAT1 →↓ miR-24→↑ Furin

and ↑TGF-β1→↑CF

Mouse model of MI (69, 71)

Meg3 Profibrosis Upregulated p53 signaling

MMP-2

Blockage of inducing Mmp-2

expression through TGF r-βI took

place with Meg3 silencing by

inhibiting P53 binding

on the Mmp-2promoter

In vivo In vitro (72)

lncRNA SRA1 Profibrosis Upregulated miR-148b lncRNA SRA1 →↓ miR-148b→↑CF Rat model (73)

Wisper Antifibrosis Upregulated Splicing of Plod2

mRNA by enabling

nuclear localization

of TIAR

Regulates cardiac fibrosis after

injury

↓Pathological progress of cardiac

fibrosis in response to MI while

preventing unfavorable remodeling

Murine model of MI (74)

AK081284 Profibrosis Upregulated TGF-β1 IL-17/AK081284/TGF-β1 signaling

pathways mediate collagen

production→↑CF induced by high

glucose

Diabetic mouse

Myocardial

fibrosis model

(75)

lncRNA-

NR024118 and

Cdkn1c

Antifibrosis Proregulated ↓cell cycle

↓ Cdkn1c

↑ AngII→ blocking AT1 receptor

→↓NR024118 →↑CF

AngII/adult rat CFs (75, 76)

lncRNA PFL

(NONMMUT02255)

Profibrosis Upregulated let-7d

Ptafr

lncRNA PFL →↓ let-7d→

Ptafr→↑CF

MI mice

cardiac fibrosis in

mice

(77, 78)

lncRNA-

NONMMUT022554

Profibrosis Upregulated ECM–receptor

PI3K-Akt

May affect ECM-receptor

interactions and the

phosphoinositid-3 kinase/protein

kinase B (PI3K-Akt) signaling

pathway →↑CF

MI/mouse (79)

Mhrt Antifibrosis Downregulated Brg1—chromatin

remodeling

Binding of Mhrt to the helicase

domain of Brg1, a domain which

seems critical for tethering Brg1 to

chromatin zed DNA targets

Pressure-overloaded

hearts by trans

aortic constriction

(80)

Circular RNAs

CircActa2 Profibrosis Upregulated miR-548f-5p.

NRG-1

NRG-1/circACTA2/miR-548f-5p

Axis.

Animal model of

cardiac remodeling

and heart failure

(81, 82)

(Continued)
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TABLE 1 | Continued

Non-coding

RNAs

Effect (s) Expression in

CF

Targets Signaling pathway Model References

circAmotl1 Antifibrosis Downregulation AKT1/PDK1 ↓Dox/↑resistant fibrosis cardiac

repair

Cardiac fibroblasts (83)

circRNA_010567 Profibrosis Upregulation ↓ miR-141 TGF-β1 CircRNA_010567

→↓miR-141 →↑TGF-β1 →↑Col I,

Col III and α-SMA →↑CF

Mice myocardial

fibrosis models

(84)

GAS5 expression. Furthermore, lncRNA GAS5 overexpression
enhances and prevents CF pyroptosis and also decreases the
expression of caspase 1 and NLRP3 in CF. Other research showed
that treating with DNMT inhibitors, 5-aza-2-deoxycytidine, or
downregulating DNMT1 caused an increase in expression of
GAS5 by reversing promoter hypermethylation in CF. Notably,
it has been shown that DNMT1 methylation of lncRNA GAS5
results in CF pyroptosis when NLRP3 axis is affected, suggesting
a novel regulatory mechanism regarding CF pyroptosis subject to
LPS stress (105).

RNA component of mitochondrial RNA processing
endoribonuclease (RMRP) is known as a lncRNA (106). RMRP
forms a distinct ribonucleoprotein complex by interaction with
the telomerase reverse transcriptase catalytic subunit, which

exhibits the activity of RNA-dependent RNA polymerase and
makes double-stranded RNAs, which with getting processed
can turn into small interfering RNA (siRNA) (106). Prior work
has examined the contribution of RMRP to various cancers,
such as in lung cancer, gastric cancer, and glioma (107–109).
Additionally, Wang et al. (110) reported that the level of RMRP
expression in nucleus pulposus tissues correlates with grade of
disc degeneration. Another investigation gas demonstrated that
overexpression of RMRP could induce nucleus pulposus cell
growth and regulate the ECM expression with targeting miR-206.
In a recent study, Greco et al. profiled 83-lncRNA expression
in biopsies taken from left ventricle of patients suffering HF
and corroborated remarkable upregulation of RMRP in these
patients (111). Steinbusch et al. (112) found associations
of RMRP with chondrocyte hypertrophy and determined
chondrogenic differentiation, proposing the contribution of
RMRP to the modulation of the dynamic balance of ECM
degradation and synthesis. Zhang et al. (113) explored the
biological role and mechanisms behind CF induction by the
lncRNA, RNA component of RMRP. The findings showed
that RMRP expression in an abdominal aortic banding–treated
rat model was upregulated in the presence of myocardial
fibrosis. Treatment with AngII enhanced RMRP expression
in CFs, whereas RMRP knockdown by small-interfering RNA
prevented CF proliferation and differentiation as well as collagen
accumulation. Based on these findings, RMRP might regulate
miR-613 negatively in CFs. Moreover, it was showed that miR-
613 mediates the positive effect of RMRP on activation of CF.
Based on the present study, RMRP increased CF activation with
serving as a competing endogenous RNA for miR-613. Thus,
RMRP may represent as a novel target to prevent or treat cardiac
fibrosis (113).

circRNAs
miR-125b induces fibrotic process and upregulation in
CFs, indicating numerous binding sites of miR-125b for
circ_LAS1L, with inverse association of their expression in
those with acute myocardial infarction (AMI) and CFs. RNA
immunoprecipitation (RIP), pull-down, and dual-luciferase
reporter gene assay supported direct binding of miR-125b
bound to circ_LAS1L (114). Overexpressed Circ_LAS1L led
to promotion of the downstream target gene secreted frizzled-
associated protein 5 (SFRP5) expressions, while reducing α-SMA,
collagen I, and collagen III expression; hindering CF proliferation
and migration; and increasing apoptosis. Cotransfection with
miR-125b mimics and circ_LAS1L overexpression vector did
not show considerable changes. However, cotransfection of
SFRP5 siRNA and circ_LAS1L overexpression vector resulted
downregulation of SFRP5 expression and upregulation of
collagen I, collagen III, and α-SMA, as well as enhancement in
proliferation and migration of CFs. Accordingly, circ_LAS1L
reduces miR-125b activities through its adsorption, consequently
increasing SFRP5 and subsequent regulation of the CFs
biological properties. Such results can be regarded as a significant
experimental basis for regulating myocardial fibrosis following
myocardial infarction. CircRNAs contribute critically to the
cardiovascular diseases; however, little research has been done on
their effect on the myocardial fibrosis. Sun et al. investigated that
circ_LAS1L in those suffering AMI and CFs was downregulated
and was capable of direct binding to miR-125b, consequently
enhancing the downstream target gene secreted frizzled-related
protein 5 (SFRP5) expression, finally repressing CF activating,
proliferating, and migrating, along with inducing apoptosis.
Thus, it is has been posited that the circ_LAS1L/miR-125b/SFRP5
pathway is capable of modulating the biological characteristics
of CF and can contribute vitally to the process of cardiac fibrosis,
therefore offering a significant theoretical basis to regulate
cardiac fibrotic event following myocardial infarction (114).

Gu et al. (115) explored circRNA expression profile and
identified circRNA contributions to myocardial fibrosis.
Utilization of TGF-β1 aimed at establishing an in vitro cardiac
fibrotic model in CFs. CircRNA sequencing unveiled that an
overall number of 283 circRNAs was expressed abnormally
in fibrotic CFs, of which 79 were experiencing upregulation
and 204 receiving downregulation. Alterations in randomly
selected circRNA expression could be verified with the use
of real-time polymerase chain reaction. Establishment of a
circRNA-based competing endogenous RNA network 1,755
nodes and 30,394 edges was followed by module analyses
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performed with implementation of the plug-in MCODE. Kyoto
Encyclopedia of Genes and Genomes pathway enrichment
analyses targeted mRNAs, engaging in the top three enriched
modules. It was found that these mRNAs were enriched in
myocardial fibrosis–associated signaling pathways, namely, the
AMPK signaling pathway, TGF-β signaling pathway, MAPK
signaling pathway, and PI3K-Akt signaling pathway. The
predicted ceRNAs and bioinformatics analysis unveiled the
possible contribution of circRNAs in myocardial fibrotic event,
providing novel knowledge on the mechanisms and searching for
efficient preventive, as well as therapeutic targets for myocardial
fibrosis (115).

Based on existing evidence, expression of abnormal circRNA
takes place in the cardiac fibrotic process. During promotion
of CF activated by TGF-β1 or AngII, marked suppression in
circRNA circ_BMP2K and miR-455-3p expression has been

observed, along with induction of SUMO1 expression (116).
RIP, pull-down assay, and dual-luciferase reporter gene assay,
demonstrating direct binding of miR-455-3p to circ_BMP2K
and their induction of each other’s expression. SUMO1 served
as a target gene for miR-455-3p, and circ_BMP2K boosted
the miR-455-3p inhibiting on the expression of the SUMO1.
According to several studies, both circ_BMP2K and miR-455-
3p suppressed expressing α-SMA and types I and III collagen,
but SUMO1 increased their expression, and the regulatory
impacts of circ_BMP2K and miR-455-3p were reversed by
miR-455-3p inhibitors or SUMO1 overexpression. Circ_BMP2K
and miR-455-3p reduced CF proliferation and migration,
concomitantly inducing their apoptosis; however, SUMO1 effect
was the opposite; circ_BMP2K and miR-455-3 upregulation on
biological characteristics was reversed by miR-455-3p inhibitors
or overexpression of SUMO1. Therefore, circ_BMP2K induces

FIGURE 2 | Over the proliferation phase of infarct remedial, fibrogenic growth, as well as neurohumoral mediating factors, stimulates myofibroblast proliferating and

migrating, along with activating. A broad scope of fibrogenic mediators, engaged in this phase of cardiac, has been considered in activation of myofibroblast.

Neurohumoral mediating factors, including angiotensin II (AngII), aldosterone, and norepinephrine (NE), and growth factors [transforming growth factor (TGF-β),

fibroblast growth factor, and platelet-derived growth factor (PDGFs)], together with special matrix proteins, including ED-A fibronectin and matricellular proteins, have

cooperation in activating intracellular signaling pathways, which enhance conversion, as well as proliferation of myofibroblast, while modulating ECM protein

expression, and of genes related to matrix metabolism. Design of the cartoon took place according to Servier Medical Art (https://smart.servier.com). AR1/4,

adrenergicreceptor; ET1/4, endothelin; MMP1/4, matrix metalloproteinase; NF1/4, nuclear factor; ROS1/4, reactive oxygen species 1/4; SMA1/4, smooth muscle

actin; TIMP1/4, tissue inhibitor of metalloproteinase. This figure was adapted from Humeres and Frangogiannis (119).
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expression of miR-455-3p with subsequent downregulation of
SUMO1 expression and ultimately prevents CF activation,
growth, and migration (116).

THE RELATIONSHIP BETWEEN ncRNAs
AND TGF-β/SMAD SIGNALING IN
CARDIAC FIBROSIS

miRNA and TGF-β/Smad Signaling in
Cardiac Fibrosis
Various ligands have the ability of binding to TGF-β receptors
on the surfaces of cells, permitting regulatory messages transfer
to the cells through activation of the signaling effectors, as well
as the Sma- and Mad-associated proteins (Smads) and finally,
showing interactions with deoxyribonucleic acid (29). Activation
of Smad2 and Smad3 are carried out with TGF-β, myostatin,
or activin, whereas Smad1, Smad5, and Smad8 are activated by
BMPs; activating such proteins leads to interactions with Smad4,
resulting in target gene expression modulation (117). Notably,
the TGF-β pathway activation additionally leads to upregulation
of Smad6 and Smad7 expression, which may end in the pathway
deactivation (24, 29). Smad2 and Smad7 lessen fibrosis, but
Smad3 results in the promotion of fibrosis (118) (Figure 2).
Several miRNAs and their substrates contribute to regulating
TGF-β signal transduction pathways (Table 2, Figure 3) (21).

miRNA-associated TGF-β pathways in cardiac fibrotic event
exert their effects when they target the common ECM protein
CTGF. Moreover, it was demonstrated that miR-101 inhibited
interstitial fibrosis and then, by inhibition of a c-Fos/TGF-β1
axis, may promote myocardial infarction (136). Downregulation
of miR-101 was evident in infarcted myocardium in mice and in
angiotensin-cultured CFs. Interestingly, miR-101 overexpression
inhibited proliferating and producing COL through suppression
of its target c-Fos and the downstream protein TGF-β1 (136).
Transfection of miR-101 mimic significantly suppressed the
expression of TGF-β RI and p-Smad3, CF differentiation,
and collagen content (137). According to He et al., miR-21
may reinforce the TGF-β1/Smad signaling pathway in atrial
fibrosis stimulated by AF, through Smad7 downregulation (126).
A reciprocal loop was ascertained between miR-21 and its
target TGF receptor III, causing ECM remodeling and fibrotic
process. Upregulation of cardiac miR-21 occurred in infarcted
myocardium as a result of TGF-β1/Smad2/3 signaling pathway
activation, whereas downregulation of its target gene (TGF
receptor III) was evident. Nevertheless, lower expression of the
TGF receptor III reinforced TGF-β1/Smad2/3 signaling pathway
(126, 156).

Thum et al. (127) showed promotion of myocardial fibrosis
by miR-21 by targeting extracellular modulated kinase inhibitor
sprouty homolog 1 (Spry1) while activating MAPK signaling in
cardiac fibroblasts. In a myocardial ischemia–reperfusion model,
miR-21 was found to target Pten, subsequently leading to an
increase in matrix metalloprotease 2 (Mmp2). Consistently, miR-
21 antagonism leads to increased Pten in cardiac fibroblasts
(157). miR-24 overexpression reduced secretion of the TGF-
β and phosphorylation of the Smad2/3 in CFs (130). miR-24

showed protective features against myocardial fibrosis following
myocardial infarction, which was dependent on the inhibitive
effects on its target gene FURIN, suppressing the TGF-β signaling
pathways (98, 130). Wang et al. (130) demonstrated interference
of miR-24 with TGF signaling by targeting the pro-protein
convertase, furin, and then downregulation of TGF level in
cardiac fibroblasts with targeting CTGF. miR-18a and miR-
19b downregulated the expression of the collagen (COL) 1A1
as well as COL3A1, reducing cardiac fibrosis in age-related
cardiac failure triggered through activation of TGF-β (19, 124,
128). Functional examinations are consistent with prevention
of HCF autophagy by miR-19a-3p/19b-3p with targeting TGF-β
R II mRNA. Furthermore, autophagy development releases
suppressive effects of miR-19a3p/19b-3p on Smad2 and Akt
phosphorylation via TGF-βRII signaling (128).

In addition, many other miRNAs were also recognized
to target collagens and TGF signaling to contribute to the
fiwere also. For example, Let-7i and miR-26a reduce collagen
deposition and impose their effects by targeting Col12 and Col11,
correspondingly (66, 132, 158). miR-29b upregulation because of
TGF/Smad3 inactivation downregulated profibrotic genes, such
as ECM genes elastin (159), fibrillin 1 (Fbn1), collagen type I, 1
and 2 (Col11, Col12), and collagen type III, 1 (Col31) (160) and
enhanced cardioprotective impacts of carvedilol vs. myocardial
fibrosis triggered by AMI (79, 125). It was shown that insulin-like
growth factor 1 and leukemia inhibitory factor, which are targeted
by miR-29b, play roles in activating CF and proliferating ECM
(20, 124).

Tao et al. investigated that miR-433 was related to cardiac
fibrosis and is a potential target to mitigate cardiac fibrosis.
Their study has found that cardiac fibrosis induces miR-
433, subsequently decreasing the expression of AZIN1 and
JNK1. Downregulated AZIN1 induces TGF-β1 pathway, whereas
decreased JNK1 results in ERK and p38 kinase activation, causing
Smad3 activation and eventually leading to cardiac fibrosis (123).
In another study in that same year, Ooi et al. (161) suggested that
AZIN1 expression reduction induces TGF-β/Smad3 signaling
activation in CFs; (III) reduced JNK level would enhance ERK,
P38 kinase, and Smad3 phosphorylation, and that is in turn
associated with proliferation and differentiation of fibroblast
into myofibroblasts.

miR-133a contribution to cardiac fibrosis and electrical
repolarization in adult hearts with pressure overload can
potentially indicate its regulatory impacts on Col11 A1,
Serca2a, and calcineurin expression (58, 162). Based on existing
evidence, miR-133a overexpression has prevented myocardial
fibrotic event in both AngII-related hypertension and diabetes,
even though the effector proteins were different in diabetes
(fibronectin and COL4A1) and AngII-related hypertension
(COL1A1) (21, 121, 162). Moreover, overexpression of the
cardiac miR-133a inhibited ERK1/2 and Smad2 phosphorylation.
Accordingly, it is posited that miR-133a may show efficacy in
treating myocardial events triggered by diabetes (90, 121).

miR-15 family members are also regarded as having
antifibrotic characteristics, through functions against TGF-β-
mediated actions (163). miR-15 family members (miR-15a, miR-
15b, miR-16, miR-195, miR-497, miR-322) can be observed in
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TABLE 2 | ncRNAs and TGF-β/Smad signaling in cardiac fibrosis.

Non-coding

RNAs

Effect(s) Modulation Targets Smads Signaling pathway Model References

miRNA

miR-25 Antifibrosis Downregulated COL1/COL3

Smad3

miR-25→↓ TGF-β1

→↓collagen I/III

Transaortic

constricted mice

(120)

miR-133 Antifibrosis Downregulated EP300

COL4A1, FN1

Smad2

↑miR-133a→↓ phosphorylation of

p-ERK1/2 and p- Smad2 →EP300/

↓ TGF-

β1/CTGFL/↓fibronectin/COL4A1→↓

cardiac fi/ COL4.

Streptozotocin-

induced diabetic in

mice

(121)

Snai1

Gata4, Mef2c,

and Tbx5

Mesp1

GMT/miR-133/

Snai1-induced aMHC-GFP→ ↑

cardiac reprogramming→↓CF

Mouse embryonic

fibroblasts

(122)

miR-433 Profibrosis Upregulated TGF-β1, ERK, p38

kinase,

and Smad3

Suppress AZIN1 and JNK1/

/TGF-β1, ERK, p38 kinase,

and Smad3→↑ cardiac fibrosis.

MI/mice; NRCFs (123)

miR-29b-3p

miR-29c-3p

Antifibrosis Upregulated TGF-β2, Mmp2 miR-29b/miR29c →↑ MIF→

↓ COL1A1, COL3A1/α-SMA,/

Smad3→↓ cardiac fibrosis.

(AngII)-infused

mouse myocardium

Mif-knockout

(Mif-KO) mice

(124)

mRNA 3
′
-UTR Col

1a1, Col 5a3, and

Col 4a2

Smad3

↓TGF-β /Smad3→↓collagen I, III,

fibronectin→↓CF

AngII-triggered

cardiac fibrotic event

in mice Mouse CFs

(125)

Fibrillins and elastin Altered the secretion of growth

factors and cytokines, including

MMP, IGF-1, LIF, and PTX-3

↓ TGF-β→↓CFs

AngII (1.46 mg/kg/d,

14 d)-infused mouse

myocardium

(20)

miR-21 Profibrosis Upregulated ↓ Smad7 ↑miR21→↑TGF-β1→↑myocardial

fibrosis by inhibiting Smad7

Fibro TAC/mouse (126)

↓Smad2/3

↓ TGF-β

R III//p-Smad3

Activate sprouty homolog

↑1/ERK-MAP kinase

↑TGF-β1/Smad2/3 signaling

pathway→↑CF

MI/mouse (127)

↑PTEN

Spry1

Activate osteopontin/PTEN

and ↓Smad7→↑CF

AngII/mousesis (79)

miR-19a-

3p/19b-3p

Antifibrosis Upregulation TGF-β R II miR-19a-3p/19b-3p→↓ TGF-β→↓

phosphorylation of Smad2 and Akt

→↓CF

Human Cardiac

Fibroblasts (HCF)

(128)

miR-24 Antifibrosis Upregulated Furin–TGF-β

pathway.

↓ TGF-β-p→↓ Smad2/3

→↓ Furin→↓ col-1/α-SMA→↓CF

Mouse model of MI (129)

Smad2/3 ↓ TGF-β-p→↓ Smad2/3→↓CF Mouse model of MI (130)

↓JP2(junctophilin-2) miR-24 regulates

excitation-contraction (E-C)

coupling

by targeting JP2

Aortic stenosis rat

model

(131)

miR-26a Profibrosis Upregulated Col1α2, Col1a1 Regulation of nuclear factor nuclear

factor κB

and progress of fibrosis

AngII/NRCFs (129)

CTGF/Smad1 BMP/Smad1 signaling TAC/IkBa tg mouse (132)

miR-15 family six

miRs (miR-15a,

miR-15b,

miR-16,

miR-195,

miR-497,

miR-322)

Antifibrosis Upregulated ↓TGF-βR I ↓ TGF-β pathway

↓ Cardiac remodeling and fibrosis

↑cardiac function

Adult mice under

ischemia–

reperfusion

(I/R) injuries

(133)

p38, endoglin,

Smad3/7

↓ECM remodeling

in the overloaded heart

↓ TGF-β pathway

TAC/mouse (134)

miR-1 Antifibrosis Downregulated ↓Smad3 ↓ TGF-β pathway→ ↓ Smad3→ ↓

CF

Mouse models of

AngII-induced

hypertension

(125)

(Continued)
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TABLE 2 | Continued

Non-coding

RNAs

Effect(s) Modulation Targets Smads Signaling pathway Model References

miR-1 Antifibrosis Downregulated Fibullin Activate ↑fibullin-2/MAPK→ ↓CF AAB/rat (135)

miR-101a Antifibrosis Downregulated c-Fos Smad3 miR-101→↓c-Fos/TGF-β1 pathway

→ ↓p-Smad3 → ↓CF

Healthy male

Sprague–Dawley

rats (weight,

200–250 g)

and C57BL/6 Mice

(136)

TGF-βR1 ↓TGF-βR I ↓ MAPK→ ↓CF AngII, MI/rat MI,

hypoxia/rat NRCFs

and MI rat

(137)

miR-34a Profibrosis Upregulated Smad4 ↑TGF-β1/Smad4 MI, male C57BL/6

mice (12 weeks of

age and a weight of

25–30 g)

Suppress PNUTS Age-triggered expression of

miR-34a→ ↓PNUTS→ inducing

DNA damage responses along with

telomere attrition→↑CF

Aging, MI/mice,

human

(138)

miR-122 Antifibrosis Downregulated Smad4↓ ↓TGF-β1→↓CF AS (aortic stenosis

patients)/human

(139, 140)

miR-378 Antifibrosis Downregulated ↓Grb2/TGF /pSmad2/3,

IGF1 receptor↓

Activate RTK

Integrin β3↓

↓cFos,

↓c-Jun and Ras

miR-378→ ↓TGF-β1–dependent

paracrine mechanisms →

↓fibroblast migration and

differentiation

AngII, TAC/mouse;

NRCFs

(141)

miR-208a Profibrosis Upregulated ↑Smad3/4, ↑endoglin

↑β-MHC

↑miR-208a→ ↑TGF-β1 → ↑

endoglin/collagen I → ↑ CF

Aortacaval shunt/rat

TAC mouse

and RCFs

(142)

↓Thrap1, myostatin

↑ Endoglin

Induced cardiac fibrosis and cardiac

fiand card proliferation

TG mouse (143)

miR-145 Antifibrosis Upregulated TGF-βR II miR145 acts toward suppression of

TGF-β-dependent extracellular

matrix accumulation as well as

fibrosis

Smooth muscle cells (144)

Smad2 Smad2

Alters macrophage sensitivity to

TGF-β

AngII/mouse (145)

miR-125b Profibrosis Upregulated ↓Apelin, p53 miR-125b→ Inhibition of p53→

induces fibroblast proliferation

TAC, AngII/mouse (146)

miR-22 Profibrosis Upregulated Mimecan/osteoglycin

(OGN)

miR-22→↓ OGN in age-associated

cardiac alterations, including

cardiac fibrosis

Aging/mouse;

NRCFs

(147)

Smad4 TGF-βR I

in CFs

↑ TGF-β1→↑ complex (Smad2/3/4)

→↑ CF

MI mice (148, 149)

miR-142-3p Antifibrosis Downregulated HMGB1

Smad3

miR-142-3p/HMGB1→↓

TGF-β1/Smad3→ ↓apoptosis and

fibrosis

Mouse

cardiomyocyte

M6200 cells

received treatment

with H/R

miR-433 Profibrosis Upregulated AZIN1

JNK1

Smad3

↓ AZIN1 → ↑ TGF-β1→↑ CF

↓JNK1 → ↑ MAPK kinase

(ERK/P38) →↑ Smad3 →↑ CF

Neonatal rat CFs

(8-week-old male

C57BL/6 mice)

(123)

miR-499 Profibrosis Upregulated Acta1, Smads, Fos,

Egr1,

Egr2

↑ MAPK kinase (ERK/P38) /↑

TGF-β1 →↑CF

Neonatal rat cardiac

fibroblasts. (NRCFs)

(143)

miR-10a Profibrosis Upregulated ↑Collagen I,

collagen III,

α-SMA,

↓ Smad7

TGF-β1/Smads

↑ Hydroxyproline →↑cardiac

fibrosis and cardiac fibroblast

proliferation

Atrial fibrillation (AF)

rat

(8)

(Continued)
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TABLE 2 | Continued

Non-coding

RNAs

Effect(s) Modulation Targets Smads Signaling pathway Model References

lncRNAs

lncRNA, Crnde Antifibrosis Downregulated Acta2

α-SMA

Smad3

Smad3→↑ Crnde→ ↑rSBEs →

↓ Binding of Smad3 to the Acta2 /

α-SMA gene promoter→↓CF

↑ Cardiac function

Mouse neonatal

cardiac

(150)

GAS5 Antifibrosis Downregulated ↓ miR-

21/PTEN/MMP-2

GAS5→↓ miR-21

→↓TGF-β1/Smad2/3

→↓CF

ISO/rat;

TGF-β1/NRCFs

(151)

5

lncRNAs(n379599,

n379519,

n384648,

n380433, and

n410105)

Profibrosis Upregulated ↑P-Smad2/3

↑Elastin, periostin,

PAI-1, Snai1,

Snai2, FBN1

TGF-β pathway →↑cardiac fibrosis Ischemic

cardiomyopathy

Col8A1,Col3A1

fibronection

TGF-β pathway (PAI-1, Snai1,

Snai2,/p-Smad2/3) →↑cardiac

fibrosis

ICM/human; mouse

CFs

lncRNAs CHRF Profibrosis Upregulated miR-489 CHRF →regulate MyD88 and

Smad3 by targeting miR-489→↑CF

AngII-treated

myocytes

Mouse model

Human heart

failure samples

(81, 152, 153)

Circular RNAs

circ_000203 Profibrosis Upregulated MiR-26b-5p

BMP/Smad1

CircRNA_000203→ ↓

miR-26b-5p(anti-fibrotic) →↑

Col1a2 /Col3a1/α-SMA

CTGF→↑CF

BMP/SMAD1 signaling

AngII/mouse CFs

Diabetic

mouse myocardium

(54, 84, 129,

154)

CircRNA_010567 Profibrosis Upregulated ↓miR141

TGF-β/Smad

pathway

CircRNA_010567→↓miR-141

→↑ TGF-β1 →↑Col I/ Col

III/α-SMA. →↑CF

Diabetic mouse

Myocardial

fibrosis model

circRNA–

circNFIB

Antifibrosis Upregulated miR-433

TGF-β/Smad3

↑circNFIB →↓miR-433→↓CF Mice post-MI

cardiac fibroblasts

circHIPK3 Pro fibrosis Upregulated miR-29b-3p

Smad3

circHIPK3 → ↓miR-29b-3p →↑

TGF-β/Smad3→↑α-SMA, COL1A1,

COL3A1 →↑CF

AngII-induced

cardiac fibrosis

(155)

a variety of cardiac cell types, and with cardiac stress, they are
expressed at higher levels (134, 163, 164). miR-15, in fibroblasts,
targets some of TGF-β signaling cascade members, such as TGF-
β1, p38, endoglin, Smad3, and Smad7, and as a result, leads to
negative regulation of ECMproduction. Correspondingly, in vivo
miR-15 suppression with LNA-based anti-miRs in mice resulted
in higher levels of fibrosis following transverse aortic constriction
(163). However, the miR-15 family inhibition in a mouse model
of reperfusion injury led to smaller infarct sizes and lesser cardiac
remodeling (134). Table 2 lists various non-coding RNAs in the
CF via activation/inhibition of Smad/TGF signaling pathway.

lncRNA and TGF-β/Smad Signaling in
Cardiac Fibrosis
Several lncRNAs contribute to the TGF-β pathways affecting the
ECM gene expression along with myofibroblast differentiation
(165). According to Huang et al., regulation of lncRNAs
expression took place in ICM dynamically, in which several
lncRNAs further attend in the TGF-pathways provoking gene

expression associated with accumulating collagen along with
ECM protein encoding genes (e.g., COL14A1, COL16A1,
COL12A1, COL8A1) and myofibroblast differentiation.
Huang et al. reported altered lncRNA expression in ICM
and demonstrated that CF-enriched lncRNAs such as
n379599, n379519, n384648, n380433, and n410105 in
mouse modulate the fimouse-associated gene expression
by targeting TGF-β signaling (165). TGF-β expression
targets PAI-1, Snai1, and Snai2 in CF, and several lncRNA
overexpression indicated induction of these target gene
expression by lncRNAs. It was also demonstrated that lncRNAs
induced phosphorylated Smad2/3 and not Smad2/3 protein
(165, 166).

Tao et al. recently studied the lncRNA growth arrest–specific
5 (GAS5) role and function in cardiac fibrosis and concluded
that GAS5 via negative miR-21 regulation plays its suppressive
role in cardiac fibrosis. Moreover, they demonstrated that
the modulation of miR-21 regulated MMP-2 expression via a
phosphatase as well as tensin homolog (PTEN) pathway in CFs
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FIGURE 3 | ncRNAs engaged in the pathways of cardiac fibrosis; ncRNAs regulate processes related to cardiac fibrosis via targeting the main molecules mediating

ECM gene transcription and performing TGF-β signaling; CTGF, connective tissue growth factor; Rho-GTP, Rho-GTPase-stimulating protein; ROCK, Rho related

coiled-coil comprising protein kinase; SRF, serum response factor; MMP, matrix metalloproteinases; IL6, interleukin-6; Jak1, Janus kinase 1; Stat3, signal transducers

and activators of transcription 3; c-Fos, FBJ murine osteosarcoma viral oncogene homolog; Spry1, sprouty homolog 1; ERK extracellular signal–regulated kinases;

DUSP5, dual-specificity phosphatase 5. This figure was adapted from Chen et al. (49).

(151). miR-21 down regulation decreased secretion of TGF-β and
phosphorylation of Smad2/3 in CFs (126).

lncRNAs and cardiac fibrosis CHRF (cardiac hypertrophy–
related factor) upregulation was noted in myocytes treated with
AngII and in the heart of a mouse model with transverse aortic
constriction and human HF sample (152). CHRF knockdown
increased miR-489 level but decreased Myd88 level in myocytes.
CHRT overexpression reduced miR-489 level and upregulated
Myd88 level and resulted in hypertrophic responses. Cardiac
fibrosis was decreased inMyd88-knockout mice. CHRF regulates
MyD88 and Smad3 by targeting miR-489. This study proposed
CHRF as a role player in cardiac fibrosis by miR-489 and
Myd88 adjustment (81, 152). lncRNA Crnde, by means of
Smad3-Crnde negative feedback in diabetic cardiomyopathy,
alleviates cardiac fibrosis. Crnde overexpression markedly
prevents α-SMA promoter activity induced by TGF-β. Crnde
stops Smad3 transcriptional activity via rSBEs (RNA SBEs)
(49, 150, 165, 166).

circRNA and TGF-β/Smad Signaling in
Cardiac Fibrosis
Zhou et al. (84) showed that circRNA-010567 boosts myocardial
fibrosis through suppression of miR-141 suppression along
with targeting TGF-β1 in a mice model with diabetes. In
another recent article, it was shown that upregulation of
CircRNA_000203 took place in diabetic mice cardiac muscle
and in AngII-triggered fibroblasts in the animal’s heart (54).
CircRNA_000203 characterizes as a miR-26-5p sponge and
interacts with miR-26-5p and fibrosis-related genes Col1a2,
Col3a1, and α-SMA and CTGF in fibroblasts in mouse heart
(54, 167).

Zhu et al. suggested that the circNFIB–miR-433 axis can
potentially provide new therapeutic target to treat fibrotic
diseases. circNFIB overexpression decreased pro-proliferative
impacts stimulated by means of the miR-433 mimic, while
inhibiting circNFIB led to contrary results. circNFIB was
recognized as a miR-433 endogenous sponge. circNFIB
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upregulation also lessened the activation of p38, ERK kinases, and
the Smad3 signaling pathways were indicated through reduced
ratios of p-p38/p38, p-ERK/ERK, and p-Smad3/Smad3 (168).

CircHIPK3 expression led to a significant increase in CFs and
heart tissues following AngII treatments. CircHIPK3 silencing
decreased CFs proliferating as well as migrating and the α-
SMA expression level upregulation triggered by AngII in vitro.
circHIPK3 served as a miR-29b-3p sponge, and circHIPK3
overexpression reversed miR-29b-3p–triggered inhibition of CF
proliferation and migration, while altering miR-29b-3p targeting
genes (α-SMA, COL1A1, COL3A1) expression levels in vitro.
circHIPK3 silencing and miR-29b-3p overexpression conjointly
exerted more severe effects on suppression of cardiac fibrotic
event in vivo compared to either of them alone. In addition,
the expression of circHIPK3 was also markedly increased after
TGF-β1 treatment (155). Their data suggested that circHIPK3
functions as a miR-29b-3p sponge in the adjustment of CF
proliferating, migrating, and promoting cardiac fibrotic event,
introducing possible novel targets to be explored in preventing
cardiac fibrosis triggered by AngII (155).

CONCLUSION

The uncompromising progress of fibrosis represents a
pathological finding inherent to multiple cardiac diseases.
Gaining insight into these fibrotic processes in terms of
the functional characteristics and molecular profiling could
make it possible to prevent and treat fibrotic lesions in the

heart. An enlarging body of evidence addresses the cross-talk
between the TGF-β and Smad signaling pathways and its
contribution to cardiac fibrosis pathogenesis. Despite the fact
that the TGF-β and Smad pathways have been extensively
studied, their contributions to profibrotic pathways in cardiac
diseases are yet to be known. ncRNAs have been identified
as possible role players in strategies for mitigating CVDs, as
discussed before. Current research on ncRNAs described herein
focuses on the role of ncRNAs in regulating cell signaling
pathways, particularly TGF-β and Smad signaling. The identified
signaling pathways discussed herein, which have roles in the
involvement of ncRNAs in cardiac fibrosis, may offer novel
putative targets for therapeutic approaches for cardiac fibrosis.
More studies are required to better understand the mechanisms
by which the ncRNA network induces cardiac fibrotic events
via TGF-β/Smad signaling. In addition, the potential clinical
significance of the TGF-β/Smad-associated ncRNAs, including
miRNAs implemented as therapeutic instruments and circRNAs
employed as diagnostic/prognostic biomarkers for cardiac
fibrotic cases, needs testing in additional animal models as well
as clinical conditions.
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