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The coronavirus pandemic has reportedly infected over 31.5 million individuals and

caused over 970,000 deaths worldwide (as of 22nd Sept 2020). This novel coronavirus,

officially named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2),

although primarily causes significant respiratory distress, can have significant deleterious

effects on the cardiovascular system. Severe cases of the virus frequently result in

respiratory distress requiring mechanical ventilation, often seen, but not confined to,

individuals with pre-existing hypertension and cardiovascular disease, potentially due

to the fact that the virus can enter the circulation via the lung alveoli. Here the

virus can directly infect vascular tissues, via TMPRSS2 spike glycoprotein priming,

thereby facilitating ACE-2-mediated viral entry. Clinical manifestations, such as vasculitis,

have been detected in a number of vascular beds (e.g., lungs, heart, and kidneys),

with thromboembolism being observed in patients suffering from severe coronavirus

disease (COVID-19), suggesting the virus perturbs the vasculature, leading to vascular

dysfunction. Activation of endothelial cells via the immune-mediated inflammatory

response and viral infection of either endothelial cells or cells involved in endothelial

homeostasis, are some of the multifaceted mechanisms potentially involved in the

pathogenesis of vascular dysfunction within COVID-19 patients. In this review, we

examine the evidence of vascular manifestations of SARS-CoV-2, the potential

mechanism(s) of entry into vascular tissue and the contribution of endothelial cell

dysfunction and cellular crosstalk in this vascular tropism of SARS-CoV-2. Moreover,

we discuss the current evidence on hypercoagulability and how it relates to increased

microvascular thromboembolic complications in COVID-19.
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INTRODUCTION

In January 2020, the Center for Disease Control recognized a new coronavirus, named severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is believed to have originated
from the Wuhan city in Hubei province, China. As of the 22nd September 2020, over 31.5 million
people worldwide have been infected, with currently over 970,000 deaths recorded (1). According
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to the World Health Organization (WHO) the total case fatality
rate (CFR) is 3.1%, but this varies significantly depending
on geographical location. For example, the USA have a CFR
of 2.9% (6,740,464 cases), whereas the United Kingdom and
Italy have significantly higher CFRs of 10.6% (394,261 cases)
and 12.0% (298,156 cases), respectively (1). The SARS-CoV-
2 infection gives rise to COVID-19 disease, which typically
results in fever, respiratory distress (shortness of breath and
cough) (2–4), and subsequent respiratory failure. Symptoms
often arise between 2 and 14 days after infection (5), and
the risk of mortality due to COVID-19 appears greater in
older individuals (6), and in individuals with comorbidities,
such as hypertension (7), coronary artery disease (CAD), and
diabetes mellitus.

Despite patients reporting with symptoms relating to fever
and respiratory distress, there is growing evidence for the
involvement of the cardiovascular system. Patients often exhibit
elevated cardiac biomarkers such as cardiac troponin I/T
(hs-cTnI/hs-cTnT) (3, 4, 6, 8–11) and N-terminal pro-B-
type natriuretic peptide (NT-proBNP) levels (8, 12), which
suggest myocardial damage and ventricular/atrial dysfunction.
However, the impact of COVID-19 on the vasculature is largely
unknown, but there are case reports of viral infection of the
endothelium (13), as well as elevated markers of coagulation,
such as D-dimer in COVID-19 patients (14), which itself may
indicate a significant risk of pulmonary thromboembolism (PTE)
in patients.

The focus of this review is to detail the effects of SARS-CoV-
2 and COVID-19 disease on the vasculature, whilst discussing
the potential direct and indirect mechanisms which lead to
endothelial damage and dysfunction. Moreover, we also discuss
the pathogenesis of COVID-19 associated thromboembolism and
its consequences upon the cardiovascular system and COVID-19
disease progression.

EPIDEMIOLOGY OF COVID-19 AND
CARDIOVASCULAR RISK

Patient cohort studies show that there is a large prevalence
of patients with COVID-19 who have comorbidities, such
as hypertension (17–57% of all patients) and cardiovascular
disease (CVD) (11–21% of all patients) (3, 15–17). Patients with
hypertension or CAD are not only at greater risk of infection,
and admission to hospital, but having one or more of these
comorbidities also appears to increase the risk of progression
of the disease (15). In a Chinese cohort, it was observed
that in COVID-19 patients, 30% of them had hypertension
(14). In the non-survivors, the incidence of hypertension
was greater than that of survivors (48 vs. 23% of patients),
and this was even more pronounced for incident coronary
heart disease (24 vs. 1% of patients) (14). Hypertension and
pre-existing CVD were also more common comorbidities
in patients requiring admission to the intensive care unit
(ICU) (18).

The initial evidence of the cardiovascular impact of COVID-
19 was provided in cross-sectional cohort studies which observed
significantly elevated hs-cTnI and hs-cTnT levels, suggestive of
myocardial injury in these patients (14, 18, 19). High levels
of these cardiac biomarkers are related to worse prognosis of
the disease (19, 20), with a number of studies demonstrating a
higher risk of admission to ICU (10), requirement for mechanical
ventilation (12), and incidence of arrhythmias and death from
COVID-19 (3, 4, 10, 12, 19) in those with elevated circulating hs-
cTnI or hs-cTnT levels. Moreover, the mortality risk associated
with elevated hs-TnI/T was greater than that observed for
advanced age, pre-existing diabetes, respiratory disorders, and
CAD (10, 12). The elevations in hs-TnI/T are also associated
with elevated levels of NT-ProBNP and C-reactive protein
(CRP), suggesting the myocardial injury observed in COVID-
19 patients may be linked with ventricular dysfunction and
inflammation (12). There are several potential reasons for the
elevated cardiac injury observed in COVID-19 patients with
worsening outcomes. These include direct viral infection of
the myocardium, the use of anti-viral medications (18), the
side-effects of the COVID-19 associated cytokine storm (21),
or likely a combination of the three. Viral entry is likely, as
SARS-CoV-2 is known to enter human cells via binding of
the transmembrane protein, the angiotensin-converting enzyme
2 (ACE2) receptor, which is highly expressed in both the
lungs and the heart (22). In fact, due to this mechanism
of entry, there has been debate on the use and potential
benefit of the use of ACE inhibitors in patients with cardiac
injury and/or hypertension (23), with the American Heart
Association, The Heart Failure Society of America, and the
American College of Cardiology publishing a joint consensus
statement for the treatment of COVID-19 patients with ACE
inhibitors (24).

Cardiovascular events, such as incidences of acute coronary
syndrome (ACS) or acute myocardial infarction (AMI) in
COVID-19 patients have been demonstrated (25), indicating
that the impact of COVID-19 on the cardiovascular system
leads to cardiovascular-related mortality. The root causes
of COVID-19 ACS/AMI remain unknown, but could be
due to the elevated myocardial demand as a result of the
infection, akin to type 2 MI, cytokine-induced atherosclerotic
plaque instability and rupture, or non-plaque thrombosis
(25–27). Although, as documented, there is a clear impact
of the virus on the myocardium, either directly or indirectly;
however, the potential role of the vasculature in COVID-19
associated cardiovascular complications has been relatively
overlooked, and may be prognostically important in
these patients. In fact, in a recent study by Chen et al.
(28) using a single cell atlas of the human myocardium
showed that ACE2 is expressed on pericytes in the heart
(28), suggesting that viral infection of pericytes, which
surround the endothelial lining of blood vessels, could
lead to microvascular inflammation in the heart tissue,
resulting in non-obstructive MI. Therefore, the following
sections will investigate the impact of COVID-19 on vascular
tissues, specifically endothelial cells and pericytes, and the
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subsequent involvement of these tissues on thrombotic risk
in COVID-19.

COVID-19 AND ENDOTHELIAL CELL
DYSFUNCTION

Initial SARS-CoV-2 infection occurs within the lung epithelia,
whereby serine proteases, most notably transmembrane protease
serine 2 (TMPRSS2), cathepsin B, and cathepsin L1, prime
the SARS-CoV-2 spike glycoprotein, which is followed by
ACE2-mediated viral entry (29). Infection of lung alveoli allows
SARS-CoV-2 to enter the systemic circulation, subsequently
predisposing multiple organs to potential infection. Co-
expression of both key serine proteases and ACE2 is required
for successful infection of cells by SARS-CoV-2 (29). Multiple
organs contain cells which co-express ACE2 and these serine
proteases, including the lungs, heart, kidneys, liver, and the
vasculature (30–32).

Microvascular dysfunction and the role of the vascular
endothelium is increasingly implicated in the acute respiratory
distress syndrome (ARDS) and systemic impact of SARS-CoV-
2 infection. Endothelial cells protect the cardiovascular system
and are crucial in regulating vascular homeostasis, preventing
coagulation, controlling blood flow, and regulating oxidative
stress and inflammatory reactions (33, 34). There is growing
evidence of a vascular involvement in the pathogenesis of
severe COVID-19, with imaging studies revealing perfusion
abnormalities within the brains of patients with COVID-19
presenting with neurological issues (35), in addition to perfusion
abnormalities within the lungs of COVID-19 pneumonia patients
(36). Moreover, cross-sectional studies have reported a high
incidence of coagulopathies, characterized by elevated D-
dimer and fibrinogen concentrations, which lead to thrombotic
events and are associated with poor outcomes (37, 38), thus
demonstrating the potential involvement of endothelial cells in
the pathophysiological consequences of COVID-19.

Endothelial Cell Involvement in COVID-19
Involvement of endothelial cells in the pathophysiology of
COVID-19 goes beyond coagulation derangements, with SARS-
CoV-2 being shown to directly infect engineered human blood
vessel organoids and human kidney organoids in vitro (39).
This has been confirmed, in vivo, by histological studies
demonstrating viral infiltration into endothelial cells, with
Varga et al. (13) reporting endothelial cell involvement across
multiple organs (e.g., lungs, heart, intestines, kidneys, and
liver) in three patients; two of whom died (multisystem organ
failure; myocardial infarction, and subsequent cardiac arrest,
respectively) and one survived. Viral infection of endothelial
cells was observed in a transplanted kidney of one patient with
evidence of endothelial cell inflammation (endothelialitis) within
cardiac, small bowel, lung, and liver tissue of two patients.
Furthermore, one other patient demonstrated endothelialitis of
the submucosal vessels within the small intestine, which was
accompanied by a reduced left ventricular ejection fraction.
These findings demonstrate direct viral infection of endothelial

cells and endothelialitis within multiple tissue beds in patients
with COVID-19.

Although limited by a small sample size, the findings of
Varga et al. (13) are supported by Ackermann et al. (40),
who reported severe endothelial injury, viral infection, and
disrupted cell membranes in seven lungs obtained post-mortem
from individuals who died from COVID-19. When compared
to seven lungs from individuals who died from influenza,
microthrombi were nine times as prevalent in the lungs from the
COVID-19 individuals. Furthermore, widespread microthrombi
was accompanied by microangiopathy and occlusion of alveolar
capillaries (40), which is in line with other studies (41), and can
predispose organs to microinfarcts (42). An unexpected finding
was the observation of intussusceptive angiogenesis, in which the
degree was associated with the duration of hospitalization (40).
Intussusceptive angiogenesis is the formation of new vessels, via
non-sprouting angiogenesis, and is constructed of an endothelial-
lined “pillar” spanning the vessel lumen, which significantly alters
the microcirculation (43). Cytoplasmic vacuolisation and cell
detachment in pulmonary arteries (44), in addition to pulmonary
capillary injury featuring neutrophil infiltration and fibrin
deposition (41, 45) has also been reported, further demonstrating
local endothelial cell perturbations within lung tissue. Moreover,
renal post-mortem histopathological analysis by Su et al. (46)
found endothelial cell swelling with foamy degeneration in 19%
of patients, with 12% demonstrating a few areas of segmental
fibrin thrombus in glomerular capillary loops that is associated
with severe endothelial injury.

Considering endothelial dysfunction leads to impaired
systemic microvascular function, it seems likely that involvement
of the vascular system’s first line of defense (endothelial cells)
precipitates and propagates the systemic damage observed in
severe cases of COVID-19, through altered vascular integrity,
vascular inflammation, and via disruption of coagulation and
inflammatory pathways (13, 33). The mechanisms for this have
not yet been fully elucidated and are varied due to the heterogenic
nature in which the virus affects individuals. Cardiometabolic
comorbidities associated with poorer prognosis in COVID-19
patients have a strong association with pre-existing endothelial
dysfunction (i.e., hypertension and CAD) (47, 48). It is therefore
evident that understanding the role of endothelial cells in SARS-
CoV-2 infection is crucial to identifying potential therapeutic
strategies to combat the virus and improve patient outcomes. The
role of endothelial cells and potential mechanisms of endothelial
cell dysfunction in COVID-19 are depicted in Figure 1.

Potential Mechanisms of Endothelial
Dysfunction in COVID-19
Angiotensin-Converting Enzyme 2 (ACE2)
ACE2 is an endogenous negative regulator of the renin-
angiotensin system (RAS) and has been identified as the key
receptor facilitating viral entry of SARS-COV-2 (49, 50), along
with key serine proteases to prime the spike glycoprotein of
the virus, most notably TMPRSS2 (29), which is expressed
by endothelial cells (30). ACE2 is widely expressed in cells
throughout the body, from the respiratory tree to the vascular
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FIGURE 1 | The role of endothelial cells and mechanisms of endothelial cell dysfunction in COVID-19. (A) SARS-CoV-2 infects endothelial cells through

angiotensin-converting enzyme 2 (ACE2) mediated viral entry, facilitated by TMPRSS2 priming the SARS-CoV-2 spike glycoprotein. Infection of endothelial cells may

result in a downregulation of ACE2, promoting an imbalance between ACE2 and angiotensin II (AngII) levels, in favor of AngII. Moreover, infection of either endothelial

cells or pericytes will perturb the crosstalk between these two cells, thus contributing to endothelial cell dysfunction. (B) In severe cases of COVID-19, activated

macrophages release various cytokines (e.g., soluble interleukin 2-receptor [IL-2R], interleukin-6 [IL-6] and tumor necrosis factors [TNFs]), which are attributed to the

exaggerated immune-mediated cytokine storm and can result in vascular inflammation (endothelialitis) as a result of increased adhesion molecule expression on

endothelial cells and inter-endothelial gaps, thus promoting vascular hyperpermeability. Activated endothelial cells can contribute to the cytokine storm by releasing

various cytokines in response to damage and dysfunction, contributing to a vicious cycle of inflammation and oxidative stress that inhibits the release of vasoactive

factors (e.g., nitric oxide [NO]), thus favoring vasoconstriction and further contributing to vascular permeability. Abnormal activation of platelets and endothelial cells is

the key process leading to thrombosis, which represents the role of endothelial cell dysfunction in the pathogenesis of thromboembolism in COVID-19 patients.

Subsequently, the dislodgement of thrombotic clots creates a mobile embolus that disseminates intravenously, thereby leading to thromboembolic complications in

COVID-19.

system, heart, kidneys, liver, gut, central nervous system,
and retina, and is recognized as eliciting protective effects,
particularly against CVD (49). The expression of ACE2 in many
organs allows relatively easy transport of the virus throughout
the body (51). Consequently, interference of the physiological
processes associated with ACE2 by viral entry of SARS-CoV-
2 is likely to explain the multi-organ dysfunction pertaining to
endothelial cells that is seen in severe cases of COVID-19.

A downregulation in the expression of ACE2, as a result of
viral entry into cells, disrupts the regulation balance between
angiotensin II (Ang II) and ACE2, indirectly affecting the
vasculature. This imbalance facilitates an elevation in the
expression of Ang II, subsequently promoting an atherogenic
state across the cardiovascular system, especially inflammation
and oxidative stress, whilst also elevating blood pressure
by stimulating an increase in sympathetic nervous system
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activity (52). This is supported by studies reporting marked
elevations in plasma AngII concentrations in patients with
COVID-19 (53) and also being linked to disease severity
in patients infected with novel influenza A (54). This
pathophysiological increase in Ang II and without the modulator
and protective effects of Ang 1-7, results in downstream
elevation of plasminogen activator inhibitor-1 (PAI-1) from
endothelial cells, further accelerating vascular inflammation and
the facilitation of the coagulation cascade (42), thus resulting
in endothelial damage (55). Elevated PAI-1 is a hallmark of
endothelial dysfunction, promoting increases in circulating
endothelial microvesicles, resulting from endothelial shedding
via activated cells, which pose a risk of thromboembolic events
(56, 57).

Some have argued that following cell entry of SARS-
CoV-2, down-regulation of ACE2 receptors may result in
an indirect activation of the kallikrein-bradykinin pathway,
thereby promoting an increase in vascular permeability and
thus leading to oedema and microcirculatory dysfunction (33,
58, 59). It has been suggested that kinin inhibition may be a
potential therapeutic approach to reducing vascular leakage into
the lung, and therefore, oedema (60). Kinin inhibition may,
therefore, promote endothelial repair through reducing vascular
permeability, although whether this is an effective therapeutic
approach is yet to be confirmed within the literature. In contrast
to this, consistent reports of hypokalaemia in patients with
severe COVID-19 (61, 62) suggest an increase in aldosterone, via
elevations in Ang II, resulting in an increase in ACE, which acts
to metabolize bradykinin (63). Therefore, the role of bradykinin
in the pathogenesis of microvascular dysfunction in COVID-19
is questionable and more likely a result of the effects of Ang
II, stemming from a downregulation of ACE2 after viral entry
into cells. Moreover, given that hypokalaemia is associated with
ventricular arrhythmias that are commonly observed in COVID-
19 (18), it is plausible that this is a contributing mechanism to
both endothelial dysfunction and arrhythmogenesis.

The Cytokine Storm
The mechanisms involved in the pathogenesis of microvascular
dysfunction in COVID-19 patients, although not yet fully
understood, are likely not solely attributed to direct viral
infection of endothelial cells. Endocytosis or membrane fusion
of SARS-CoV-2 to cells either leads to cell damage or
apoptosis which activates the immune response and the release
of various cytokines promoting an exaggerated inflammatory
environment (42). Moreover, endothelial cells regulate local and
systemic inflammatory reactions and immune responses (33) and
activation of these cells via the exaggerated immune-mediated
inflammatory response of SARS-CoV-2 may present an indirect
mechanism of endothelial damage and dysfunction among the
COVID-19 patient population. Endothelial cells produce various
cytokines and chemokines and have been identified as central
regulators of an exaggerated systemic inflammatory response, or
“cytokine storm” (64), a common feature of severe SARS-CoV-2
infection (65).

More severe cases of COVID-19 are associated with
progressive lung damage which has, in part, been attributed to

this cytokine storm (65–67), leading to a loss of vascular barrier
integrity and likely promoting pulmonary oedema, thereby
causing endothelialitis, and activation of coagulation pathways.
Cross-sectional studies have consistently demonstrated marked
elevations in pro-inflammatory markers, such as soluble
interleukin-2 receptor (IL-2R), interleukin-6 (IL-6), CRP, and
tumor necrosis factors (TNF) (6, 12, 68). This marked
elevation in pro-inflammatory markers has been linked with
mortality and promotes inter-endothelial gaps and thus vascular
hyperpermeability (69, 70), along with exacerbating oxidative
stress. IL-6 in particular is associated with increased vascular
permeability, a hallmark of the inflammatory response (71, 72),
and IL-6 levels are directly correlated with the severity and
mortality of COVID-19 (14, 73, 74). Moreover, IL-6, along with
other cytokines released from activated macrophages, such as IL-
1β, activate endothelial cells via elevations in adhesion molecules
(42) leading to a myriad of vascular disturbances including
leukocyte tethering to the vascular bed, platelet aggregation and
coagulation derangements.

Oxidative Stress
An overproduction of reactive oxygen species (ROS) in infected
cells is a key factor in viral replication of respiratory viruses
and subsequent tissue damage (75). Following viral infection,
endothelial activation and regulation of adhesion molecules
leads to neutrophil activation, which results in the production
of a plethora of histotoxic mediators including ROS (59).
This has implications for the onset and progression of the
cytokine storm since, as described above, endothelial cells are
key orchestrators of cytokine overload. The ensuing oxidative
stress, defined as a systemic imbalance between ROS (or
free radicals) and antioxidants, causes an increased expression
of prothrombotic and cell-surface adhesion molecules (76).
Oxidative stress may therefore be linked to the pathogenesis
and severity of COVID-19 infections (77) and peri-endothelial
ROS production in COVID-19 may, therefore, contribute to
the multi-organ failure associated with severe disease, which
seems likely given that it has previously been demonstrated
in the pathogenesis of other viral infections, such as SARS-
CoV and influenza (78, 79), and ARDS (80). The elevation in
ROS accumulation promotes oxidative stress and nuclear factor
kappa B (NF-κB) signaling, with the potential for dysregulated
antioxidant mechanisms, such as Nrf2 and antioxidant response
element signaling, promoting the release of various endothelial
genes, such as endothelin and adhesion molecules, thus
favoring vasoconstriction and increased vascular permeability
(81, 82).

The elevation in free radical production, potentially as
a combined result of increased Ang II expression, pro-
inflammatory responses, and a reduced capacity for free
radical scavenging by impaired antioxidant signaling, impairs
endothelial function. Elevated superoxide concentrations,
promoted by the release of mitochondrial-derived ROS
is a hallmark of oxidative stress, which facilitates the
quenching of nitric oxide (NO) and the formation of the
secondary free radical, peroxynitrite, in turn reducing NO
bioavailability (83). Moreover, this process uncouples endothelial
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nitric oxide synthase, which further elevates superoxide
production, contributing to the pro-oxidant environment
of the vasculature. Such elevations in oxidative stress would
promote antioxidant signaling, however, numerous respiratory
viral infections, such as respiratory syncytial virus, human
metapneumovirus, and influenza, have perturbed antioxidant
defense mechanisms by inhibiting antioxidant enzyme induction
(84). Interestingly, it has been proposed that Nrf2 activators
could be a potential therapeutic strategy for inhibiting viral
entry of SARS-CoV-2 (85), and may also pose a benefit
to endothelial repair and functioning by the scavenging
of free radicals, reducing oxidative stress, and inhibiting
pro-inflammatory signaling.

Coagulation Cascade
Perturbations to the endothelium may result in vascular leakage
and promote inflammation, but also predispose the vasculature
to a pro-coagulant state. Indeed, a common manifestation
in patients with COVID-19 is the presence of coagulation
abnormalities and instances of thromboembolism, which has
been associated with disease severity and a higher incidence
of mortality (38), whilst also increasing the risk of MI
and stroke. The endothelium plays an important role in
the prevention of thromboembolic events by regulating the
coagulation cascade, achieved, in part, via inhibition of various
tissue factors by a Kunitz-type protease inhibitor, known as
the tissue factor pathway inhibitor (TFPI) that resides on the
endothelial cell surface (34). The transmembrane protein tissue
factor is required for in vivo coagulation by the binding and
activation of various tissue factors (i.e., activation of factor Xa)
promoting prothrombin conversion to thrombin, and thus the
conversion of fibrinogen to fibrin (34, 86), inhibiting TFPI and
promoting clot formation. TFPI is predominantly bound to
the microvasculature (87), however, it has been demonstrated
to play a role in the regulation of arterial thrombosis in
mice (86).

Marked coagulation derangements have been reported
in a single-center cross-sectional study by Goshua et al.
(88) who assessed markers of endothelial cell and platelet
activation, namely circulating von Willebrand factor (vWF),
soluble P-selectin and soluble thrombomodulin, in critically
and non-critically ill COVID-19 patients. They observed that
endotheliopathy is present in COVID-19 and is associated
with increased mortality, with a suggestion that soluble
thrombomodulin concentrations may predict mortality and
clinical outcomes in COVID-19 patients. It was suggested that
the coagulopathy observed in their data was distinctly separate
from disseminated intravascular coagulation (DIC) and should
be considered an endotheliopathy (88). The notion of a “COVID-
19 coagulopathy” is supported by a number of other studies. DIC
has been reported to be characteristic of COVID-19, however,
its presentation is different to that regularly observed in sepsis-
induced DIC. In sepsis-induced DIC, marked thrombocytopenia
is observed with a mild elevation in D-dimer concentrations
(89), which is in contrast to DIC observed in COVID-19
patients (90). This is supported by only 14.7% (22 of 150) of
patients scoring positive on the “sepsis-induced coagulopathy

score” (90). DIC has been linked with multi-organ system failure
within the COVID-19 population (38, 91, 92), demonstrating
a pro-coagulant state of the vasculature. Furthermore, mild
thrombocytopenia can be found in 70 to 95% of patients
with severe COVID-19, however, it has not been found to
be an important predictor of outcome (21, 93). Therefore,
the presence of coagulopathy within patients with COVID-
19 should be considered as an endotheliopathy, rather than
traditional DIC.

Cellular Cross-Talk: Endothelial Cells and Pericytes
Pericytes share a basement membrane with endothelial cells,
which is formed, maintained, and remodeled successfully
through cellular cross-talk between these two cells,
demonstrating that pericytes and endothelial cells have an
extensive linkage and are key for maintaining basement
membrane, and thus vascular barrier integrity. This has been
confirmed by cell-to-cell interaction analysis, demonstrating
that endothelial cells are the main cross-talking cell with
pericytes within cardiac tissue, with a predominant role
of angiopoietin ligands (ANGPT1/2) and Tie receptor 2
(TIE2) maintaining endothelial cell stability and function
in capillary vessels (28). A balance between ANGPTs and
TIE2 is key for the maintenance of endothelial stability and
vascular integrity (28, 94); therefore, it is possible that a
breakdown of the cross-talk between pericytes and endothelial
cells disrupts this balance and results in a compromised
vasculature that is prone to a pro-inflammatory, pro-coagulant
state. Whilst these findings were observed in normal heart
tissue, this is supported by a pericyte-specific infection by
SARS-CoV-2 in experimental (95) and human histological
studies (96).

Whilst there is evidence of a direct viral infection of
endothelial cells, some have argued that endothelial cell
dysfunction is a result of pericyte infection. Cardot-Leccia
et al. (96) reported wall thickening of the venules and
alveolar capillaries in lung tissue of a deceased COVID-
19 patient, accompanied by a marked decrease in pericytes,
compared to normal lung parenchyma. Combined with the
findings of He et al. (95) and the highly infectious potential
of pericytes demonstrated by single cell RNA sequencing
studies (28), these data seem to support a potential “pericyte
hypothesis” as a mechanism for microvascular dysfunction
in the pathogenesis of COVID-19. Moreover, infection and
loss of pericytes would result in a dysregulation of the
cross-talk between pericytes and endothelial cells, promoting
capillary endothelial dysfunction, which would explain the wall
thickening of venules and capillaries observed in the data from
Cardot-Leccia et al. (96). Taken together, pericytes seem to
have the potential as a highly infectious cell population for
SARS-CoV-2 and may contribute to endothelial dysfunction
by promoting an imbalance between ANGPT1/2 and TIE2,
perturbing vascular barrier integrity and increasing vascular
permeability. However, the notion that it is solely pericytes
that are infected and induce endothelial dysfunction is unlikely
considering the compelling histological data presented within the
literature (13, 40).
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COVID-19 AND THE COAGULATION
CASCADE - RISK OF THROMBOEMBOLIC
EVENTS

There is evidence to suggest increased risk of thrombotic
complications and stroke (both are hereafter referred to as
thromboembolism for simplicity) in COVID-19 (97). At the
mechanistic level, both venous and arterial thrombosis have
been attributed to activation of inflammation and hypoxia,
platelet activation, endothelial dysfunction, and circulatory stasis.
However, the impact of thromboembolic complications on the
prognosis of COVID-19, clinical course of thromboembolic
disorders in these patients, and the impact of prophylactic
and therapeutic anticoagulation therapies in COVID-19 are
not well-known.

Epidemiological Burden of
Thromboembolism in COVID-19
The prevalence of neurologic manifestations, including
cerebrovascular diseases, was reported at 36.4% in an
earlier retrospective case series from Wuhan, China (98).
In patients presenting with confirmed or suspected COVID-19,
thromboembolism is prevalent at 20.4% (99). In the same
study, six of the patients with laboratory findings demonstrated
elevated D-dimer levels (>7,000 mg/L) and 40% of the patients
had pulmonary thromboembolism. Another series showed that
67% of thromboembolic complications are ischaemic in origin,
while 33% are haemorrhagic (100). In the pediatric population,
thromboembolic complications are not common. For instance,
elevation of D-dimer was not found in children with SARS-
CoV-2 compared to other inflammatory multisystem syndromes
(101), and no thromboembolic event was found in children and
adolescents in a large, multicentre European cohort (102).

In addition to a prior history of stroke, patients with
COVID-19 develop incident thromboembolism. The incidence
rates of acute thromboembolic complications are reported
between 5 and 32.5% in retrospective cohorts (103, 104).
Underlying cardiovascular risk factors, including diabetes,
hypertension, and a history of CVD, are implicated as univariate
correlates (103). D-dimer levels at hospital admission are also
significantly correlated with incident thromboembolism, with
a negative predictive value of more than 90% (104). In a
prospective cohort of 150 French COVID-19 patients vs. a
historic cohort of 233 non-COVID-19 controls, COVID-19
ARDS independently predicted thromboembolic complications
and pulmonary thromboembolism even after propensity score
matching (90).

The comorbid nature of thromboembolic lesions in patients
with COVID-19 underscores some underlying predisposition to
SARS-CoV-2 infection. Indeed, thromboembolic complications
have been associated with depressed immune function and
increased post-stroke infections. Infection rates ranging from
18.7 to 43.7% have been reported in patients with intracerebral
hemorrhage (105, 106), with respiratory infections predicting
almost six-fold higher risk of future thromboembolism (106). A
1-unit increment in National Institutes of Health Stroke Scale

(NIHSS) was associated with 23% increased risk of COVID-19
positivity. Interestingly, in a retrospective multicentre study of
stroke patients (107), 28% were later diagnosed with COVID-
19. However, the true burden of thromboembolism COVID-19
remains unknown and will, hopefully, be answered by larger
prospective studies.

Impact of Thromboembolic Complications
on COVID-19 Prognosis
The presence of underlying or incident thromboembolic
complications is associated with poor prognosis of COVID-19. A
history of thromboembolism is reported in 2.3 to 22% of severe
cases compared to 0 to 6% in non-severe cases (108). Patients
with prior neurologic thromboembolic complications are shown
to have a 2.5-fold increased risk of COVID-19 severity (108) and
D-dimer is often elevated above reference range in hospitalized
cases (17). These patients are usually older, have a higher number
of comorbidities, have a higher prevalence of ARDS, and are
more likely to be non-invasively ventilated (109). Data also
shows that patients with more severe COVID-19 have higher
incidence rates of thromboembolic complications. For instance,
31% of patients admitted to the ICU developed thromboembolic
complications during follow-up in one Dutch study (110).
Yearly increment in age and prior coagulopathy, defined as
prothrombin time >3 s or activated partial thromboplastin time
(aPPT) >5 s, are shown as independent predictors of incident
thromboembolic complications in severe COVID-19 (110).
Diagnosis of pulmonary thromboembolism in ICU patients with
COVID-19 is more common (at 21%) compared to 7% admitted
due to influenza or 6% for all ICU patients (111).

Additionally, the association between a history of
thromboembolic complications and mortality has been analyzed
in COVID-19 patients. The burden of underlying coagulopathy
was reported in 50% of non-survivors in the Wuhan cases (14),
with a D-dimer >1,000 ng/mL (reference range ≤250 ng/mL)
shown to be an independent predictor of 18-fold greater risk of
in-hospital mortality (14). A multicentre cohort from the US
showed that the coagulation component of the SOFA score is
associated with 64% greater odds of 28-day in-hospital death
in a multivariable adjusted model (112). These observations
are further supported by the results of a meta-analysis (113),
which show a 2.4-fold elevated risk of mortality in COVID-19
patients with cerebrovascular disease, defined as stroke and brain
infarction. Overall, these data highlight the risk, and subsequent
poor prognosis of thromboembolism in COVID-19.

Coagulation Cascades and the
Mechanisms of Thrombosis in COVID-19
While significant associations have been noted for
thromboembolism and SARS-CoV-2 infection and worsening of
COVID-19, a causal relationship is not well-defined. However,
there are data to suggest some mechanistic underpinnings
(Figure 2). Laboratory investigations have demonstrated
significant elevations of markers of coagulation cascades,
such as D-dimer, aPPT, fibrinogen, and factor VIII. D-
dimer ≥2,600 ng/mL and failure of clot lysis at 30min on
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thromboelastography predicted future thromboembolic events
in ICU patients with c-statistic of 0.78 and 0.74, respectively
(114). This highlights the fact that shutdown of fibrinolysis
occurs in COVID-19. In addition to coagulation markers,
endothelial dysfunction may underlie the increased risk of
thromboembolism in COVID-19 as both vWF activity and
vWF antigen are increased in COVID-19 ARDS compared to
non-COVID-19 ARDS (90).

Thromboembolic complications might also be precipitated
by underlying cardiovascular injury. For example, patients with
co-existing ST-elevation MI and COVID-19 have significantly
increased rates of thromboembolic complications, affecting
multiple vessels and stents, thrombus grade post-percutaneous
coronary intervention (115). Additionally, cardiac arrhythmias
play an important role in the development of thromboembolic
events, due in part to the shared underlying myocardial substrate
(116). Cardiomyopathy, consisting of mechanical dysfunction,
structural remodeling, and electrophysiological changes, is a
common cause of both intracardiac thrombus and cardiac
arrhythmogenic substrate formation (116). The presence of
right-heart echodensity on transoesophageal and transthoracic
echocardiography has been reported in COVID-19 patients
(117–119). Interestingly, intracardiac thrombus coexisted with
persistent tachycardia, global hypokinesis, left ventricular
dysfunction, and right ventricular dilatation and reduced
systolic function (117–119). Taken together, this indicates that
thromboembolism in COVID-19 might be mediated via cardiac-
specific pathologies.

At the mechanistic level, thromboembolic complications may
arise due to activation of inflammation and hypoxia, platelet
activation, endothelial dysfunction, and circulatory stasis in
COVID-19. Inflammatory overdrive and hypoxia may induce
abnormalities of coagulation, the third component of the
Virchow triad. On necropsy, areas of diffuse and extensive
inflammatory infiltrations have detectable thromboemboli and
microemboli (120). Direct infection of immune cells with SARS-
CoV led to activation of monocyte-macrophage differentiation,
coagulation pathway upregulation, and increased cytokine
production (121). SARS-CoV-2 might drive thromboembolic
mechanisms by its utilization of the ACE-2 receptor, which is
needed to clear Ang II from the circulation. Increased Ang II
could, in turn, drive the release of vWF from endothelial cells
and platelet activation via involvement of Na+/H+ exchanger
(122). Finally, the presence of auto-antibodies, such as lupus
anticoagulant, might drive activated coagulation pathways and
thromboembolic risk (123).

Direct activation of platelets by SARS-CoV-2 is a likely
pathway for the development of thromboembolism. Hottz
et al. (124) reported platelet activation and formation of
platelet-monocyte aggregates in patients with severe but not
in mild COVID-19. Similar findings were observed when
platelets from COVID-19 negative patients were treated with
plasma from COVID-19 positive patients (124). Platelets from
COVID-19 patients induces ex vivo expression of tissue factor
(TF) in monocytes (124), indicating a likely reprogramming
event during SARS-CoV-2 infection. Indeed, this hypothesis is
supported by pre-publication evidence reporting the presence

of SARS-CoV-2 RNA in platelets of COVID-19 patients, which
were shown to be hyperactivated and aggregated at a lower
threshold of in vitro thrombin stimulation (125). Platelets
from COVID-19 degranulate, which correlates with reduced
platelet factor 4 and serotonin levels, and release extracellular
vesicles to participate in coagulation (125). Consequently, platelet
reprogramming could facilitate the transmission of SARS-
CoV-2 and promote thrombo-inflammation. Indeed, thrombo-
inflammation mediated by distinct patterns of platelet and
neutrophil activations, neutrophil-platelet aggregate formation,
and neutrophil extracellular traps has been reported in COVID-
19 pneumonia (126).

Prophylaxis and Management of
Thromboembolism in COVID-19
Given the high burden of comorbidities and mortality in patients
with thromboembolic complications, proper and adequate
anticoagulation is highly warranted. Current management of
patients with severe COVID-19 includes subcutaneous low
molecular weight heparin (LMWH), suspicion of venous
thromboembolism in those with high D-dimer levels and
rapid respiratory deterioration, and consideration of therapeutic
anticoagulation in those in whom diagnostic testing is not
possible and there is no apparent bleeding risk (127, 128). A
retrospective series showed no mortality benefit with LMWH
compared to non-users (129). However, in those with a high
sepsis-induced coagulopathy score and markedly elevated D-
dimer level, 28-day mortality was lower among users (129).
There is also consideration of experimental interventions, such as
plasma exchange or administration of anti-inflammatory drugs,
in clinical trial settings.

Nevertheless, there are several unknowns with the
management of thromboembolism and associated complications
in COVID-19. For instance, will prophylactic as compared to
therapeutic anticoagulation result in a better outcome in these
patients? A prospective cohort recently demonstrated significant
reduction in pro-coagulants 7 days after thromboprophylaxis
(130). However, the study was very limited by sample size.
In another study, patients on prophylactic anticoagulation
had higher venous thromboembolism than the therapeutic
anticoagulant arm, although the latter group had a higher overall
incidence of thromboembolic events, including pulmonary
embolism (131). It is envisaged that these issues will be
answered in ongoing clinical trials, such as the COVID-19 HD,
a randomized controlled trial comparing high-dose vs. low-dose
LMWH (132).

SUMMARY

In addition to the known impact on the respiratory system,
emerging evidence strongly implicates COVID-19 as a vascular
disease. Patients with pre-existing cardiovascular conditions
which are commonly characterized by endothelial dysfunction
are particularly at risk of downstream complications and
COVID-19-associated mortality. Endothelial cell dysfunction,
inflammation, and damage are implicated as a consequence
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FIGURE 2 | The development and consequences of thromboembolism in COVID-19. The thromboembolic implications of SARS-CoV-2 are best conceptualized in

three key stages. First, lung infection of SARS-CoV-2 can spill over, with a consequent cardiovascular tropism of the virus. Within the vascular beds, the increased

level of Ang II, which occurs due to SARS-CoV-2 mediated depletion of ACE2, could drive the dysfunction of endothelial cells. This, and other independent pathways

(i.e., direct infection of endothelial cells), could lead to the release of von Willebrand factors (vWF), which can activate circulating platelets via adhesive glycoprotein

receptors (i.e., gpIb). Activated platelets form aggregates with monocytes and neutrophils, leading to enhanced production of pro-coagulants, inflammatory cytokines,

and neutrophil-extracellular traps (NETosis). Within the heart, SARS-CoV-2 infection can directly and indirectly (via cytokine storm) lead to myocardial ischaemia,

myocardial infarction, endocardial dysfunction (via inflammation and subsequent fibrosis), and blood stasis in the left atrial atrium (LA) and left atrial appendage (LAA).

These can, in turn, lead to intracardiac thrombus. Moreover, thromboinflammation within the vascular beds can drive myocardial injury and vice versa. In the second

stage, the dislodgement of thrombus creates mobile embolus, which can be carried to the brain (causing stroke), pulmonary vasculature (causing pulmonary

thromboembolism [TE]), or systemically (causing venous thrombosis). Importantly, the presence of thromboembolic complications can lead to progressive COVID-19

disease (in the third conceptual stage). The presence of underlying cardiovascular disease (CVD; i.e., TE) could predispose individuals to SARS-CoV-2 infection via

inflammatory derangement. Coexistence of SARS-CoV-2 infection and TE can lead to dysregulated inflammation and coagulation disorders, manifesting with high

symptom burden and hospitalization, and increased de novo incidence of TE and other CVDs. Consequently, TE and CVDs predispose COVID-19 patients to worse

outcomes, including prolonged intensive care unit (ICU) stay and in-hospital mortality.

of the disease, which likely results in elevated ACS/AMI
and thromboembolic risk in COVID-19 patients. Direct viral
infection of the endothelium, as well as the surrounding

pericytes, via the ACE2 receptor, are likely to be causative factors,
as well as the deleterious effects of the supraphysiological increase
of pro-inflammatory factors, the so called “cytokine storm.”
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Clinicians and research scientists should consider
monitoring the vascular effects of the disease to help identify
and manage patients, which may highlight individuals at
risk of cardiovascular complications. Despite therapeutic
anticoagulation, COVID-19 patients remain at a high risk of
both systemic and pulmonary venous thromboembolism. This
highlights the need for, perhaps, a more aggressive anticoagulant
therapy, and monitoring. Studies should explore the benefits
of using D-dimer levels to guide treatment of thromboembolic

complications. Further work is needed to determine how best
to manage vascular inflammation in COVID-19 patients, which
has the potential to significantly improve clinical outcomes in
this pandemic.
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