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Since the approval of the first immune checkpoint inhibitor (ICI) 9 years ago, ICI-therapy

have revolutionized cancer treatment. Lately, antibodies blocking the interaction of

programmed cell death protein (PD-1) and ligand (PD-L1) are gaining momentum as

a cancer treatment, with multiple agents and cancer types being recently approved for

treatment by the US Food and Drug Administration (FDA). Unfortunately, immunotherapy

often leads to a wide range of immune related adverse events (IRAEs), including several

severe cardiac effects and most notably myocarditis. While increased attention has

been drawn to these side effects, including publication of multiple clinical observational

data, the underlying mechanisms are unknown. In the event of IRAEs, the most

widely utilized clinical solution is administration of high dose corticosteroids and in

severe cases, discontinuation of these ICIs. This is detrimental as these therapies are

often the last line of treatment options for many types of advanced cancer. In this

review, we have systematically described the pathophysiology of the PD-1/PD-L1 axis

(including a historical perspective) and cardiac effects in pre-clinical models, clinical

trials, autoimmune mechanisms, and immunotherapy in combination with other cancer

treatments. We have also reviewed the current challenges in the diagnosis of cardiac

events and future directions in the field. In conclusion, this review will delve into this

expanding field of cancer immunotherapy and the emerging adverse effects that should

be quickly detected and prevented.

Keywords: cardio-oncology, immunotherapy, PD-1—PDL-1 axis, immune check inhibitor (ICI), immune related

adverse effects

INTRODUCTION

Immunotherapy is an emerging avenue for targeting cancer, particularly for difficult to treat
cancers, like melanoma and non-small cell lung cancer (1). As a target for one type of ICI,
some tumor cells express PD-L1 on their surface to evade detection by T-cells, which have the
corresponding receptor PD-1 (Figure 1A). Monoclonal antibodies designed against PD-1 and
PD-L1 are used to block that interaction, allowing for T-cell activation, ultimately leading to
tumor cell death (Figure 1B). However, PD-L1 is also expressed by other, non-immune cells to
maintain self-tolerance (Figure 1A) (2). There have been a wide range of different IRAEs, which
are often reversible and associated with treatment response in most patients. More severe forms
of IRAEs have been recorded, mostly with combined ICI medications. These IRAEs have led to
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FIGURE 1 | Mechanisms of tumor evasion, immunotherapy, and cardiac autoimmunity in relation to immune checkpoints. (A) T-cells can receive inhibitory signals

from CTLA-4 and PD-1/PD-L1 that tumor cells can also take advantage of. However, the pathways are also used to maintain self-tolerance. (B) T-cell activation can

occur with co-stimulation from MHC/TCR and B7/CD28 interactions and immune checkpoint inhibitors. While these T-cells can be used to kill tumor cells, this therapy

may come at the expense of immune-related adverse events, such as against cardiac cells.

the discontinuation of therapy in nearly 40% patients (2). Skin
and gastrointestinal reactions are common but one of the most
severe side effects is myocarditis. While the rate of early onset
myocarditis in clinical trials was rare (<1% incidence at the time
of FDA approval), the frequency increased with combination
immunotherapy (2–4). There have also been reports of several
other cardiotoxic effects, including pericarditis and myocardial
infarction (4). Drobni et al. (5) reported a three-fold increased
risk of atherosclerotic cardiovascular events with ICI use. While
steroids are commonly used in the management of IRAEs,
immunosuppressive agents are indicated for severe or steroid-
refractory cases. Still, based on the severity of symptoms, IRAEs
can lead to delay or discontinuation of ICI therapy (6). As these
ICIs are being increasingly utilized in cancer patients, the rate of
myocarditis has also increased (7).

Despite the rise of ICI-induced myocardial diseases, there is a
gap in knowledge related to the pathological mechanisms. Several
pre-clinical studies have attempted to model the clinical findings
but produced discrepant results. Although PD-1 knockout mice
display different cardiomyopathies (8, 9), cardiac inflammation
has been difficult to model in animals with only PD-1/PD-L1
antibodies. In this review, we will cover the basic pathophysiology
of PD-1/PD-L1 blockade, pre-clinical models, early clinical
trials, recent combination therapy protocols, and proposed
autoimmune mechanisms for these pathologies. Finally,

we will conclude with current challenges diagnosing these
cardiac events.

Basic Pathophysiology of PD-1/PD-L1 Axis
The PD-1 receptor was discovered in a screen of genes associated
with apoptosis and found to be inducible on T- and B-cells (10,
11). In a knockout mouse, the animals developed autoimmune
effects that varied in organs and mouse strains (12). Nishimura
et al. predicted that PD-1 suppresses the immune system for
self-tolerance. The ligand PD-L1 was found by Dong et al.
(13) to negatively regulate T-cells. However, the ligand was not
elucidated to interact with the PD-1 receptor until later by
Freeman et al. (14) Along with the other ligand PD-L2 (15), these
groups found PD-L1 displayed on antigen presenting cells (APC)
and tumor cells (16, 17).

Functionally, tumor cells can evade immune detection by
displaying PD-L1 on the surface of their cells via “innate” and
“adaptive” responses (18). Ongoing studies are also investigating
PD-L1 expression as a predictor of ICI efficacy or future tumor
relapse. Innate, constitutive expression differs from adaptive,
downstream effects of inflammatory cytokines. While some
cancer cell lines, such as melanoma, often do not constitutively
produce PD-L1 in vivo, expression is stimulated significantly by
interferon-γ (IFN-γ) and with interleukin-1α (IL-1α) and IL-27
(19). These cytokines influence expression via distinct signaling
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pathways that may work synergistically and allow for tumor
resistance to immunotherapy treatments.

By blocking this PD-1/PD-L1 interaction through ICIs,
immune cells (such as cytotoxic T-cells) are allowed to attack
tumor cells. In that regard, immune cell infiltration in the tumor
microenvironment may affect the efficacy of immunotherapy
(20). Some tumors have little to no immune infiltration, which
may be due to lack of immune cell trafficking to the site (21). PD-
L1 is often upregulated in tumors in response to inflammation in
an attempt to neutralize the immune cell response. As a result,
the infiltrating immune cells exhibit a phenotype of decreased
function, including expression of negative regulators like PD-1,
where T-cells are present but have reduced cytotoxic function
(21). Overall, there are many interactions between the tumor and
immune cells that either enhance or hinder ICI therapy.

The PD-1/PD-L1 axis has progressed rapidly from its
discovery to cancer treatment. By employing the immune system
against tumor cells, this innovative therapy can be utilized for
a number of cancer types. However, IRAEs and autoimmune
events were observed even early on in pre-clinical experiments.

Early Pre-clinical and Clinical Studies
Subsequent work on the PD-1 receptor found that knockout
had varying effects based on the background of the mice.
Interestingly, PD-1 knockout in C57BL/6 mice displayed a
normal phenotype (22). However, in a BALB/c knockout,
Nishimura et al. (12) observed dilated cardiomyopathy, reduced
cardiac function, and antibody deposition on cardiomyocytes.
Further images from Okazaki et al. (8) showed mouse serum
cross-reactivity against rat tissue cardiac troponin I (cTnI).
Administration of cTnI antibodies to wild-type mice also led to
decreased ejection fraction (EF) and increased calcium current
in vitro.

In the more autoimmune susceptible MRL mouse strain,
PD-1 knockout led to fatal myocarditis and the formation of
autoantibodies against cardiac myosin (9). The MRL mouse
phenotype simulates disease in the same tissues as humans
with lupus, except the mice lack overt heart disease, increasing
the importance of this finding (23). This could explain
why ICI therapy is poorly tolerated by patients with pre-
existing autoimmune diseases (3). However, patients with these
conditions are excluded from clinical trials and the benefits
vs. risks should be considered with an individual’s disease
progression (24). With the MRL mice, Wang et al. (9) proposed
that mouse fatalities were due to congestive heart failure as a
result of heart dilation. They also found T-cells in the heart and
PD-L1 expressed on cardiomyocytes.

In contrast, Grabie et al. (25) found that endothelial PD-
L1 expression was upregulated in their induced model of
CD8+ T-cell-mediated myocarditis. Blockade of PD-L1 led to
increased cardiac inflammation and circulating cTnI. PD-L1 has
been found in non-immune cells and the expression in either
cardiomyocytes or endothelial cells supports self-tolerance and
the progression of cardiotoxic IRAEs.

Yet due to strain variability in mice, the low rate of
myocarditis, and lack of diagnostic modalities in both animals
and patients, it is difficult to induce and detect these adverse

cardiac effects in pre-clinical models. Additionally, humans and
mice are exposed to different antigens, limiting the ability to
model IRAEs. In response, an option is to lower immune self-
tolerance in mice through genetic modifications (26).

In clinical trials, the occurrence of myocarditis in clinical
trials was rare but may be underestimated from lack of routine
diagnostic imaging and cardiac monitoring. In an early analysis
of ICI-induced myocarditis, 46% of patients also experienced a
major adverse cardiac event (MACE), including cardiac arrest
or death. Many cases had abnormal electrocardiogram, increased
levels of cardiac troponin, and reduced left ventricular EF below
50% (27). Clinical biopsies and autopsies have confirmed cases
of immunotherapy-related myocarditis and observed T-cells (27)
and macrophages infiltrated in the heart (3). Similarly, in a
mouse model, PD-1 blockade significantly increased cytotoxic
T-cells in the myocardium (28). In another mouse study, PD-
1 antibodies influenced macrophage infiltration and subsequent
M1 polarization (29). However, translational discrepancies
between mouse models and the clinical presentation of IRAEs
hinder mechanistic research and possible therapeutic options.
Finally, in this review, we will investigate the adverse effects of
multimodality treatment and autoimmune mechanisms.

Autoimmune Side Effects in Combination
With Radiation Therapy
Radiation and immunotherapy have been separately utilized
to treat cancer, but both have limiting side effects on several
organs, including the heart. As with other cancer treatments,
immunotherapy with radiotherapy is being investigated as a
more efficacious treatment option than monotherapy. Although
the combination of radiation and immunotherapy is not
currently common in practice, it may become more prevalent
as ICIs gain more use as front-line treatment options.
Some researchers have studied the cardiac side effects of
immunotherapy in subsets of patients who underwent prior
radiation exposure. While the disease response to ICI was found
to be better in irradiated patients, ICI-related pulmonary toxicity
was significantly higher in this cohort. The cardiotoxic potential
of such combination therapy warrants further studies (30).

Animal and clinical studies show synergistic efficacy of
combination therapy with radiation and ICIs (28, 30, 31).
Researchers have also observed an abscopal effect where the
treatment is potent against even non-irradiated tumor cells
(30, 31). Other data supported that ablative radiation has
anti-tumor effects dependent on cytotoxic T-cells (32). While
this combination therapy may enhance anti-tumor effects (31),
it comes at the risk of cumulative cardiotoxicity. Combined
with radiation, PD-1 blockade appears to exacerbate radiation-
initiated cardiac inflammation (28). Cumulative cardiotoxicity
and inflammation have been observed in mouse models with
thoracic irradiation and PD-1 blockade (33). However, radiation
targeted to the lungs and PD-1 antibody did not cause mortality,
suggesting cardiac inflammation as the primary mediator (28).
Radiation-induced heart disease has been characterized with
fibrosis and acute production of inflammatory cytokines (34) and
can be compounded with ICI-induced cardiac dysfunction.
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The presence of PD-L1 on non-immune cells is associated
with self-tolerance from immune cells (2). Previous work has
shown that PD-L1 can be induced in vitro on cardiomyocytes (35)
and endothelial cells (36) with the addition of IFN-γ, although
untreated cardiomyocytes did not have detectable levels of PD-L1
while endothelial cells had constitutive expression. In the study
investigating cardiomyocytes, Seko et al. proposed IFN-γ may
be produced by infiltrating immune cells in viral myocarditis.
Radiotherapy itself may cause cardiac inflammation, including
immune cell infiltration. In their model of viral myocarditis,
PD-1 blockade increased myocardial inflammation and IFN-γ
expression (35).

Autoimmune Side Effects With
Combination Immunotherapy
The FDA first approved Ipilimumab in 2011 (anti-cytotoxic T-
lymphocyte associated protein-4 or CTLA-4). Since accepting
Pembrolizumab and Nivolumab in 2014 (anti-PD-1) and
Atezolizumab in 2016 (anti-PD-L1), these ICIs have seen
expanded use in more cancer types (37–40). The agency also
approved a combination immunotherapy with Ipilimumab and
Nivolumab in 2015 (41). This specific combination of ICIs
has been shown to be more efficacious than monotherapy
in several clinical trials for melanoma, non-small cell lung
cancer, and colorectal cancer (42–45). While the use of multiple
immunotherapy agents has gained traction, it often comes at the
expense of additional toxicity. In an analysis on Vigibase of ICI
case reports from global WHO data, Wei et al. (46) reported that
combination blockade against CTLA-4 and PD-1/PD-L1 had an
increased rate of myocarditis than monotherapy alone (1.22%
vs. 0.54%).

Combination therapy appeared to induce IFN-γ and tumor
necrotic factor (TNF-α) production in mouse cardiac tissue
(28). Furthermore, older treatments with CTLA-4 blockade had
higher rates of IRAEs and the combination of PD-1 and CTLA-4
inhibition led to increased myocarditis cases (27). In contrast to
the PD-1/PD-L1 axis, CTLA-4 is expressed on activated T-cells
and leads to downstream deregulation of T-cell function. Du
et al. (47) proposed that anti-CTLA-4 therapy and IRAEs have
distinct mechanisms of action and showed that within the tumor
microenvironment, CTLA-4 blockade locally decreases Tregs and
allows other T-cells to elicit their effects. In contrast, IRAEs
may be caused by activation and expansion of autoreactive
T-cells in lymphoid organs. CTLA-4 knockout causes severe
myocarditis, inflammation of numerous organs, and early death
(48). Additionally, CTLA-4 and PD-1 utilize distinct mechanisms
of the Akt pathway, which can function for synergistic tumor
regulation and IRAEs (49).

Du et al. (47) were able to differentiate the mechanisms of
CTLA-4 immunotherapy and adverse effects by administering
Ipilimumab in a humanized CTLA4 knock-in mouse. When this
model included PD-1 antibody, severe IRAEs were observed,
including inflammation of many organs. The researchers
observed dilated cardiomyopathy, myocarditis, and elevated
serum cTnI. The combination treatment amplified the severity of
autoimmune reaction with more autoreactive T-cells and Tregs.

Recently, Wei et al. (46) created a mouse model with
heterozygous CTLA-4 loss and PD-1 knockout to model clinical
myocarditis, which displayed cardiac electrical abnormalities,
myocardial inflammation, and increased mortality. Interestingly,
they used Abatacept (a recombinant CTLA-4 and IgG fusion
protein) to rescue the inflammation and prevent mortality in
mice. However, the clinical utility of this approach will warrant
further studies, especially considering its unknown effects on
tumor growth.

Combination therapy against both PD-1 and PD-L1 can also
have negative consequences. Liu et al. (50) observed fulminant
cardiotoxicity from sequential PD-1 and PD-L1 blockade in a
patient with lung adenocarcinoma. A similar treatment protocol
in mice showed an increased anti-tumor effect but at the expense
of myocardial injury and lesions. Other studies have observed
increased expression of PD-L1 in injured cardiomyocytes in
attempts to attenuate T-cell infiltration following inflammation
(3, 51). In response, Liu et al. proposed that concurrent or
subsequent blockade of PD-L1 after injury may exacerbate
inflammation and lead to fulminant myocarditis.

Mechanisms of Autoimmunity and
Potential Autoantigens
Previously, patients with prior autoimmune diseases were not
included in immunotherapy clinical trials. Retrospective studies
have shown that there is a similar or slightly higher rate of IRAEs
with these patients, although the effects are often manageable
without the need to end ICI treatment (52–54). Current ongoing
clinical trials (NCT03816345) will aid in elucidating the safety
of immunotherapy (specifically Nivolumab) with a larger sample
size and patients with a spectrum of autoimmune diseases.

In a mouse model, experimental autoimmune myocarditis
(EAM) was induced by injecting a fragment of cardiac
myosin to induce inflammation (55). Tsuruoka et al. observed
more severe adverse effects with subsequent PD-1 blockade,
including increased immune cell infiltration and expression of
interleukins, collagen, and PD-L1. However, cardiac function
was not significantly changed. In contrast, concurrent PD-1
antibody administration appeared to decrease CD4+ cell counts
and there were no changes in the expression of previously
observed genes. As the authors concluded, this data may support
that prior autoimmune deficiencies can affect the presence of
subsequent IRAEs.

At present, there are also different proposed mechanisms
as to whether T-cell reactivity to antigens or autoantibody
formation play a role in IRAEs (24). While the presence of
immune cell infiltration, most often T-cells, is confirmation
of myocarditis, previous animal and clinical data also support
the role of autoantibodies. Another hypothesis is a “shared”
antigen between cardiomyocytes and tumor cells that stimulates
the T-cell infiltration of the myocardium (56). In addition,
autoreactive T-cells (some sensitive to cardiac antigens) may be
unintentionally released into the periphery from maturation in
the thymus (57).

Elevated cardiac troponin levels in serum are a common
biomarker for myocardial injury and cardiac troponin T (cTnT)
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was previously found to be elevated in a majority of ICI-induced
myocarditis cases (27). Interestingly, autoantibodies against
cTnT were observed in a patient with fatal Pembrolizumab-
mediated myocarditis (58). Two further patient samples of
ICI-mediated myocarditis displayed deposition of IgG in
foci and the presence of autoimmune-related Th17 cells
(59). In one of those patients, there was also an increased
expression of autoimmunity-associated genes and serum
presence of an immunogenic cTnI peptide and IgG against that
sequence. However, not all cases of ICI-mediated myocarditis
have observed similar IgG deposition. Bockstahler et al.
proposed a potential mechanism where self-tolerance is
abrogated by PD-1/PD-L1 blockade. Subsequent tissue
damage releases self-antigens, such as cardiac troponin or
myosin from cardiomyocytes. The authors hypothesized that
antigen presentation by dendritic cells and inflammatory
cytokines can lead to increased self-reactive CD4+ T-cells.
These cells can then differentiate to Th17 effector cells,
thereby decreasing Tregs and supporting the formation
of autoantibodies.

Based on observations of IgG deposition against cTnI and
cardiomyocytes in previous mouse models, Bockstahler et al.
(59) injected mice with immunogenic cTnI peptide to create
a model of EAM. Similar to patient samples, there were
leukocyte infiltration and fibrosis in the myocardium. While
autoimmune mechanisms involving self-antigens and antibodies
are being investigated, modified mouse models are being
developed to resemble patient presentation. In addition, new
multimodality treatment protocols are utilized in clinical settings
and simulated in animals with often synergistic positive and
negative effects.

DISCUSSION

At present, ICI-related myocarditis is difficult to detect
in patients, even with serial testing of cardiac troponin
levels. cTnT was previously found to be elevated in a
majority of ICI-induced myocarditis cases (27). However,
in a study of ICI-treated non-small cell lung cancer cases,
most patients with detectable cTnI concentration could be
linked to a pre-existing heart disease. One patient had no
previously diagnosed heart disease and was hypothesized to
have benign, Nivolumab-induced myocarditis (60). In their
conclusion, Sarocchi et al. supported the use of cardiac
troponin testing with an emphasis on baseline conditions and
pre-existing disease.

In contrast, many cases do not display decreased LVEF but
a recent study observed decreased global longitudinal strain
(GLS), with or without preserved EF, that correlated with
MACE (61). While endomyocardial biopsies are definitive
(but invasive) confirmations of myocarditis, cardiac magnetic
resonance imaging (MRI) and strain analysis (calculated from
MRI) could also be used to detect abnormalities (62). As ICIs
are gaining more utility in a number of cancer types, there
will be a growth in the patient population being treated and

TABLE 1 | Diagnostic considerations for ICI-induced myocarditis and cardiotoxic

events.

1. Assessment of risk factors Prior cardiovascular events and risk factors for

atherosclerotic coronary artery disease

2. Biomarker analysis • Baseline and serial cardiac troponin I

• B-type natriuretic peptide

3. Diagnostic testing and imaging • Electrocardiogram for abnormal PR, QRS

and QTc intervals, and evidence of atrial and

ventricular arrhythmias

• Echocardiogram to assess cardiac function

and myocardial wall motion

• Cardiac MRI for increased T2-signal intensity,

and abnormal early and late gadolinium

signal intensity in contrast-enhanced MRI

• Tagged cine MRI for strain analysis

4. Endomyocardial biopsy • Tissue edema

• Lymphocyte and macrophage infiltration

therefore the cases of myocarditis. It will be necessary to increase
screening procedures and research into the pathophysiology
of such adverse side effects. Sensitive cardiac troponin tests
can detect initial, subtle changes in the heart but abnormalities
should be further investigated with diagnostic imaging, as
shown in Table 1 (63). Echocardiogram can detect regional wall
motion abnormalities or decreased systolic function; however,
these abnormalities are detected only in a subset of patients
(27). Cardiac MRI is superior to echocardiography, allowing
tissue characterization of myocardial edema, inflammation,
and fibrosis. Because ICI-related myocarditis could lead to
the discontinuation of immunotherapy, tissue diagnosis from
an endomyocardial biopsy is still recommended whenever
feasible (64).

Another obstacle to characterizing these adverse side effects
is the lack of robust animal models. PD-1 knockout mice have
shown variable phenotypes but some of the seminal work on the
PD-1/PD-L1 axis observed a range of autoimmune and cardiac
defects. Currently, multimodality treatment options have gained
traction for cancer therapy butmay also have synergistic, negative
side effects. While these side effects are being investigated
in clinical trials, radiation and combination immunotherapy
protocols could also be utilized in animal models. Based on
the clinical experience, a combination immunotherapy treatment
could better exhibit ICI-inducedmyocarditis in an animal model.
There is also the utility of genetic models, including recent
advancements by Wei et al. (46) to create a CTLA-4 and PD-
1 genetically altered mouse model which showed myocarditis
in a similar pattern as seen in patients. Overall, the diagnosis,
pathology, and treatment of IRAEs is complex and requires more
research as immunotherapymatures into a more common cancer
treatment option.
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