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Potassium is the predominant intracellular cation, with its extracellular concentrations

maintained between 3. 5 and 5mM. Among the different potassium disorders,

hypokalaemia is a common clinical condition that increases the risk of life-threatening

ventricular arrhythmias. This review aims to consolidate pre-clinical findings on the

electrophysiological mechanisms underlying hypokalaemia-induced arrhythmogenicity.

Both triggers and substrates are required for the induction andmaintenance of ventricular

arrhythmias. Triggered activity can arise from either early afterdepolarizations (EADs)

or delayed afterdepolarizations (DADs). Action potential duration (APD) prolongation

can predispose to EADs, whereas intracellular Ca2+ overload can cause both

EADs and DADs. Substrates on the other hand can either be static or dynamic.

Static substrates include action potential triangulation, non-uniform APD prolongation,

abnormal transmural repolarization gradients, reduced conduction velocity (CV),

shortened effective refractory period (ERP), reduced excitation wavelength (CV ×

ERP) and increased critical intervals for re-excitation (APD–ERP). In contrast, dynamic

substrates comprise increased amplitude of APD alternans, steeper APD restitution

gradients, transient reversal of transmural repolarization gradients and impaired

depolarization-repolarization coupling. The following review article will summarize the

molecular mechanisms that generate these electrophysiological abnormalities and

subsequent arrhythmogenesis.
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INTRODUCTION

Hypokalaemia is the most common electrolyte abnormality
found in hospitalized patients (1) and therefore represents
an important cause of arrhythmias and associated mortality
observed in clinical practice (2). It is commonly observed in
patients with pre-existing heart conditions (3–5). Hypokalaemia
manifests, in order of decreasing likelihood, due to (i) increased
K+ loss, (ii) transcellular K+ shift into cells or (iii) reduced
dietary K+ intake. Increased loss of K+ mostly occurs secondary
to the use of diuretics or laxatives, or from diarrhea. Transcellular
shift of K+ into cells can be caused by medications, such as
β2 receptor agonists (6), hormonal abnormalities, or metabolic
alkalosis (7). Decreased intake can develop in conditions such as
anorexia, dementia or reduced appetite from malignancy.

The following features are observed on the electrocardiogram
(ECG) during hypokalaemia: ventricular premature complexes
(VPCs), prolonged QT interval, ST segment depression and
the appearance of a U wave (8). Extracellular potassium
concentration ([K+]o) is negatively correlated with the
development VPCs, with each unit decrease in [K+]o (mM)
corresponding to a 28% increased risk of VPCs (9, 10). A
potentially life-threatening form of ventricular tachycardia (VT)
termed torsade de pointes (TdP) also manifests in hypokalemia
(11), which in turn can degenerate into ventricular fibrillation
(VF) and sudden cardiac death (12). Other cardiac rhythm
abnormalities induced by hypokalaemia include atrial fibrillation
(13) and atrial flutter (14).

Animal models, particularly guinea pigs (15–21) and
mice (22–24), have provided much insight into the
detailed mechanisms underlying hypokalaemia-induced
arrhythmogenicity. In these models, arrhythmic activity
has been observed during regular pacing (Figure 1A),
programmed electrical stimulation that delivers S1S2 pacing
(increasing premature S2 stimuli delivered following trains
of regular S1 stimuli) (Figure 1B) and dynamic pacing
(trains of regular S1 stimuli of decreasing basic cycle length)
(Figure 1C). The review article aims to consolidate pre-clinical
findings on the electrophysiological mechanisms underlying
hypokalaemia-induced arrhythmogenicity.

BASIC ELECTROPHYSIOLOGY:
PRE-CLINICAL LESSONS FROM SMALL
ANIMAL MODELS (MICE, RABBIT, AND
GUINEA PIGS)

Whether serving as a disease model for pharmaceutical purposes
or toxicology, the use of animal models as fundamental building
blocks has enabled rapid advances in biomedical knowledge (27).
This is no different in cardiology, with mice, rabbit and guinea
pigs considered to be the most frequently used animal models
in experimental cardiac electrophysiology (28). However, despite
similarities in cardiac ion channel distribution, salient differences
in electrophysiological results are still observed between small
animal species, especially within the context of hypokalaemia.

Triggered Activity Can Arise From
Afterdepolarizations
At the cellular level, reduction in [K+]o is expected to
shorten the time course of repolarization by increasing
the K+ electrochemical gradient across the cell membrane.
Recent experiments conducted in rabbit hearts showed that
hypokalaemia activated the apamin-sensitive small-conductance
calcium-activated potassium current (IKAS) to shorten action
potential durations (APD), thereby preserving repolarization
reserve (29). However, prolonged APDs are observed because
of IKr, IK1, IKs, and Ito inhibition (30–34). These repolarization
abnormalities explain the electrocardiographic QT interval
prolongation observed in clinical practice (35). In a similar
hypokalaemic in vivo rabbit model, prolonged exposure to
reduced [K+]o was also found to be significantly correlated with
decreased HERG channel density due to its internalization and
subsequent degradation, which may play a major role in APD
prolongation (36). Recently, reduced Na+/K+-ATPase currents
have been identified as a contributory mechanism toward
prolonged repolarization (37, 38). Normally, Na+ and Ca2+

handling is closely coupled via the sodium-calcium exchanger
(NCX), which uses the electrochemical gradients of both ions to
exchange three Na+ for 1 Ca2+.

A change in the morphology of the action potential, such
as in triangulation reflected by an increase in the APD90-
APD50 difference, is thought to increase the likelihood of inward
current re-activation that in turn produces triggered activity over
the terminal phases of action potential repolarization (16, 39).
More severe reductions in [K+]o can induce Ca2+ overload
due to a combination of suppressed Na+-K+-ATPase activity,
reversal of transport by the NCX, and reduced intracellular ATP
concentrations (40, 41).

Afterdepolarizations refer to the oscillations in the membrane
potential before the next action potential. They can occur
early (early afterdepolarizations, EADs) or late (DADs, delayed
afterdepolarizations). EADs can be subdivided into those that
occur during phase 2 and phase 3. Hypokalaemia can generate
both EAD types by distinct mechanisms. APD prolongation
increases the susceptibility to phase 2 EADs because of a
wider window over which the L-type Ca2+ channels can be re-
activated (42, 43). Ca2+ overload can promote EADs during
phase 3 of the action potential (and during phase 2 in some
species), thereby activating the NCX to mediate Na+ entry
(44, 45). Recent experiments in rabbit hearts showed that when
combined with increased beta-adrenergic drive, IKATP can be
activated, leading to heterogeneous APD shortening and the
subsequent generation of late phase 3 EADs in the presence of
enhanced Ca2+. Intracellular Ca2+ accumulation can promote
DADs. Isolated, perfused ventricular muscle in guinea pig
(46) and rabbit (47) hearts have exhibited DADs in severe,
experimental hypokalaemia.

Both EADs and DADs can lead to triggered activity
(Figure 1A), thereby initiating arrhythmic activity and
producing a sustained tachycardia upon encountering favorable
reentrant substrates (48, 49). Such substrates can be revealed
by programmed electrical stimulation (PES) (Figure 1B) or
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FIGURE 1 | (A) Hypokalaemia prolongs APDs, which predisposes to triggered activity (left). This AP prolongation and reduced refractoriness together form a

re-entrant substrate. (B) The use of programmed electrical stimulation can reliably provoke ventricular arrhythmias (right). [Traces reproduced from (25) with

permission]. (C) Hypokalaemia exacerbates APD alternans at fast heart rates during dynamic pacing [Traces reproduced from (24) with permission]. (D) The onset of

alternans can be explained by steep APD restitution. (E) Development of early afterdepolarizations in one region (arrow) can exacerbate transmural differences in

repolarization time, predisposing to unidirectional conduction block and reentry [trace partly adapted from (26) with permission].

dynamic pacing (Figure 1C). Dynamic pacing can unmask
APD alternans at short basic cycle lengths (BCLs), which can
be explained by steep restitution in hypokalaemia compared
to control conditions (Figure 1D). EADs, DADs or triggered
activity can themselves increase the spatial heterogeneity
in repolarization as well as areas of slowed conduction. In
other words, triggers of arrhythmias may themselves create
the substrates for re-entry (50), as demonstrated recently in
modeling studies (51). Normally, endocardial APD is longer than
epicardial APD resulting in a normal repolarization gradient
(Figure 1E, left). When an EAD (arrow) develops, epicardial
APD will be longer than endocardial APD, causing a reversal in
the transmural repolarization gradient (Figure 1E, right) that is
potentially arrhythmogenic (16, 17, 20).

Reentry Is Due to Static and Dynamic
Abnormalities in Repolarization,
Refractoriness and Conduction
Numerous static and dynamic re-entrant substrates contribute to
increased arrhythmogenicity in hypokalaemia (52).

Repolarization: Steep Spatial Gradients
The most important experimental finding consistently observed
across the different species during hypokalaemia is non-uniform
prolongation of repolarization, be it when comparing the left
(LV) and right ventricle (RV), epicardium and endocardium,
or apex and cardiac base (16, 53). Spatial differences in

repolarization are thought to increase the risk of unidirectional
conduction block, a prerequisite for circus-type or spiral wave
reentry (54). Such spatial variations in repolarization may be
present during regular pacing and further exacerbated following
triggered activity, thereby enhancing arrhythmic risk. In guinea
pig hearts, greater APD90 prolongations were seen in the RV
epicardium relative to the LV epicardium (16, 53). These APD
differences were attributed to differing expression patterns and
levels of ion channels, in particular higher density of IK1
channels in the LV compared to in the RV (55, 56). The
consequence of RV APD90 prolongation during hypokalaemia is
an increased RV-LV transepicardial APD90 difference compared
to control during both regular and S1S2 pacing (16), which
partly underlies the capacity of VPCs to induce sustained VT
(57, 58).

In addition to transepicardial repolarization gradients,
transmural gradients may contribute to arrhythmogenesis in
hypokalaemia. Experimental data obtained from mouse hearts
have been conflicting, as pointed out previously (16). LV
epicardial and LV endocardial APD90 difference was found to
be either unaltered (59) or reduced (23, 43). In guinea pig
hearts, there was no demonstratable APD90 difference between
the epicardium endocardium under either normokalaemic
or hypokalaemic conditions. Moreover, transient alterations
in transmural repolarization gradients have been explored
in mouse hearts (60). It was shown that the S2 stimulus
proportionally decreased epicardial and endocardial APD90.
After the following S3 stimulus, endocardial APD90 decreased
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more sharply than did epicardial APD90, albeit the former
recovered after S4 stimulation.

Repolarization: Steep APD Restitution Gradients and

APD Alternans
The relationships between APD, the diastolic interval (DI) and
basic cycle length are detailed in Figure 2A. The relationship
BCL = APD + DI can be shown graphically as a straight line
with a gradient of−1. The original descriptions of alternans were
based on a graphical method that related them to restitution
of APD (61). APD restitution is the APD abbreviation that
occurs when heart rate is increased and reflects an adaptive
response to maintain a period of diastole, allowing blood to
refill in the cardiac chambers. In a normal APD restitution
curve (Figure 2B), APD is plotted against the previous DI. This
relationship can be represented by the equation APDn+1 = f
(DIn), where f is the function relating the newAPD to its previous
DI. When DI shortens, APD also shortens to accommodate. The
region for long DIs is almost flat, whereas the region at short DIs
is steep.

The restitution gradient reflects the recovery of the different
ion channels that are activated during action potential
generation. Na+ channels show the fastest inactivation kinetics
and recover quickly, and their effects on restitution are observed
mostly at the shortest DIs. The Ca2+ channels recover at a
slower rate compared to Na+ channels, and their effects are
observed at longer DIs. Because these channels mediate much
of the transmembrane currents during the action potential
plateau, they affect APD restitution greatly. K+ channels have
the slowest recovery rates compared to Na+ and Ca2+ channels
and their effects are therefore mostly observed at long DIs.
An important property of K+ channels is their reverse use
dependence, in which increasing use leads to a lower level of
channel blockade (62). As hypokalaemia inhibits K+ channels,
its effects are most prominent at long DIs, which may occur
during a compensatory pause following an ectopic beat, and
bradycardia. In hypokalaemia, due to the APD prolongation, the
DIs can engage the steeper portion of the restitution curve even
when heart rate is normal.

Cobweb plots can be used to illustrate the stability of beat-
to-beat alternations in APD (Figures 2C,D). In the original
formulation, it is assumed that the DI depends on the preceding
APD. The line of the equation, DI = BCL–APD, represents the
feedback mechanism, where DI is inversely related to APD. If
APD is longer, then the next DI is shorter. The APD equilibrium
point at each BCL is located at the intersection between this
line and the restitution curve. A sudden increase in heart rate,
as reflected by a decrease in BCL, leads to shortening of APD.
Under normal conditions, the restitution gradient is <1. With
a perturbation leading to a small decrease in DI, the next APD
decreases. For the next beat, the DI increases, but to a value
smaller than the original DI. Each iteration leads to a smaller
beat-to-beat difference in APD and DI, until eventually a stable
point is reached (Figure 2C). In hypokalemia, the restitution
gradient is steeper at the same range of DIs (63). Each iteration
leads to a successive increase in the beat-to-beat variation in APD,
leading to 2:1 block (Figure 2D). A special case occurs if the

restitution gradient is exactly 1, in this case, alternans do not
converge or diverge, and become stable.

The appearance of APD alternans has been associated with
steeper APD restitution. However, it should be stressed that
restitution is not the only factor that determines the presence
or absence of alternans. Thus, other factors such as electronic
and memory effects can suppress APD alternans even when
the APD restitution gradient is >1 (64). Moreover, normally
APD is closely coupled to the effective refractory period (ERP).
Yet, APD is prolonged but ERP is shortened in hypokalaemia.
Thus, APD restitution may not accurately predict the onset
of alternans in this situation and VERP restitution may be a
better indicator (18). Conversely, APD alternans can occur when
the APD restitution gradient is <1 when restitution-dependent
mechanisms are present (65). However, these effects have not
been studied in detail for hypokalaemia. Finally, the relationships
between repolarization dynamics, membrane excitability and
cardiac memory are complex and warrants further study (66–71).

Electrical restitution can generally be assessed by two
stimulation protocols: dynamic pacing and S1S2 pacing measure
the steady-state response and the intermediate response,
respectively, of the myocardium to a change in the basic
cycle length (BCL). S1S2 pacing has the advantage of safety
because pacing at a high heart rate is not required (19, 72,
73), albeit this method cannot assess beat-to-beat variations,
that is, alternans, in action potential properties. In contrast,
dynamic pacing can induce myocardial ischaemia (74, 75), but
can be used experimentally to quantify alternans. In mice,
greater amplitudes of epicardial APD90 alternans associated
with increased maximum APD90 restitution gradients were
observed during dynamic pacing in hypokalaemia compared
to in normokalaemia (Figure 1D) (63). Endocardial APD90,
maximum APD90 restitution gradients and DIcrit were not
altered (23, 63). However, guinea pig hearts showed significant
differences, such as increased endocardial APD90 restitution
gradients (18) and APD90 alternans despite shallower APD90

restitution gradients (18). Recent experiments in mouse hearts
have further separated the roles of abnormal electrical restitution
from other electrophysiological substrates in hypokalaemia
(24). Moreover, these data provide the proof-of-concept that
restitution can be assessed by both dynamic and S1S2 pacing
procedures with largely agreeable restitution parameters.

Reduced Refractoriness and Steep ERP Restitution
The refractoriness of the myocardium, which can be measured
experimentally as the effective refractory period (ERP), is an
important determinant of the likelihood of reentry for the
following reasons. Firstly, a decrease in the excitation wavelength,
λ [conduction velocity (CV) × ERP] increases the number of
reentry circuits available within the myocardium (Figure 2E)
(76). Secondly, an increase in the critical interval given by
APD–ERP would prolong the time window during which re-
excitation can take place, potentially by reactivation of inward
Na+ and Ca2+ currents (59). Furthermore, reduced ERP can
decrease the core size around which a spiral wave can meander
(77). Shortening of ERP is observed during hypokalaemia
despite concomitant APD prolongation. Studies in mouse and
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FIGURE 2 | (A) Voltage trace showing the relationships between action potential duration (APD), diastolic interval (DI), and basic cycle length (BCL). (B) An APD

restitution curve describes the relationship between the APD and the previous diastolic interval (solid line). The gradients of the curve are represented by the broken

(Continued)
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FIGURE 2 | line. The values of DIs at which such gradients are >1 are represented by the gray box. (C) APD restitution curve plotting APD against the previous DI

(solid line) along with their gradients (broken line). The values of DIs with gradients >1 are represented by the gray box. The cobweb plot shows that when the APD

restitution gradient is <1, a stable equilibrium point is produced on successive beats. (D) APD restitution curve plotting APD against the previous DI (solid line) along

with their gradients (broken line). The values of DIs with gradients >1 are represented by the gray box. The cobweb plot shows that when the APD restitution gradient

is >1, an unstable equilibrium point is produced on successive beats, eventually leading to conduction block. Reproduced from (52) with permission. (E) Circus-type

reentry depends on the wavelength of excitation, given by the product of conduction velocity and effective refractory period [Figures adapted from (26) with

permission]. (F) Summary of different electrophysiological mechanisms that are responsible for triggered activity and reentry in hypokalaemia.

guinea pig hearts showed that LV epicardial and endocardial
ERPs were decreased by similar extents (16, 23). Though
debatable, this ERP shortening was found to be associated
with excessive hyperpolarization of the resting membrane
potential in ventricular cardiomyocytes. This subsequently
results in increased activation of fast Na+ channels, leading to a
more pronounced action potential amplitude and an increased
upstroke velocity during the depolarization phase (17). Under
normokalaemic conditions, the critical opening for LV re-
excitation is narrow, rendering the induction of re-excitation
highly unlikely. Therefore, it is no surprise that prolongation
of the critical interval from reduced [K+]o is associated with
an increased likelihood of sustained triggered activity over
terminal repolarization (16). Recent experiments in guinea pigs
demonstrate a contributory role of steep ERP restitution in
predisposing the tissues to the generation of alternans and
reentry (18).

Conduction Slowing
Conduction velocity (CV) is governed by Na+ channels and gap
junctions (78). Hypokalaemia is known to decrease CV in the
atria, atrioventricular node, Purkinje fibers and the ventricles (16,
79). The underlying mechanism is thought to involve depressed
membrane excitability frommembrane depolarization, increased
threshold potential for Na+ channel activation and increased
membrane resistance (80, 81). Enhanced stimulation threshold,
decreased LV to RV transepicardial and LV epicardial to
endocardial transmural CVs were all observed in guinea pigs
during both regular and S1S2 pacing (16). In contrast, local
epicardial and endocardial CV as well as transmural CV were not
altered in hypokalaemic mouse hearts (59).

Impaired Activation-Repolarization
Coupling and Other Arrhythmogenic
Factors
Activation-repolarization coupling is an intrinsic property of
the myocardium, allowing local APD values to be adjusted to
conduction slowing at different myocardial sites along the path
of the propagating action potential (21). This effect has been
attributed to modulation of APD in neighboring cardiomyocytes
by gap junction conduction, which would reduce regional
differences in APD (82). Normally, the APD difference between
the RV and LV is minimized by delayed LV activation, an effect
that is impaired by hypokalaemia (21).

It is worth noting that arrhythmogenicity is stimulation
site-dependent. Experiments in guinea pig hearts showed
that ventricular arrhythmias were readily inducible upon LV
stimulation, whereas RV stimulation failed to induce arrhythmic

events (15). This observation can be attributed to interventricular
differences in ion channel expression. Thus, larger IK1 is found
in the LV compared to in the RV, which would be expected
to shorten APDs and therefore ERPs to greater extents in the
LV. A steep repolarization gradient between the epicardium
and endocardium, and between the LV and RV, can lead to a
block of an action potential, favoring reentry. All of the above
electrophysiological mechanisms underlying arrhythmogenesis
in hypokalaemia are summarized in Figure 2F.

BASIC ELECTROPHYSIOLOGY: LARGER
ANIMAL MODELS—CANINE, CAT AND
SHEEP

It is important to note the fundamental relationship and
differences between body weight and various cardiovascular
parameters across all types of laboratory animals. An equation
encapsulating this concept was coined in 1979 as heart weight
(HW (g) = 6.0 × BM0.98) and P-R interval (PR (ms) = 53 ×

BM0.24) where BM is body mass in kg (83). Such differences
are reinforced in electrophysiology, where small rodents are
found with significantly shorter APD than humans due to lack
of a prominent plateau phase found in cardiomyocytes (84–86).
Therefore, the rabbit myocardium presents a more representative
model of the human heart. Despite this similarity, important
inter-species variations remain especially when K+ handling
is examined. Cardiac K+ channel expression is significantly
different between rabbits, guinea pigs and humans, accounting
for the increased susceptibility to ventricular fibrillation in rabbit
hearts, as well as the reduced transient outward current and
large slow component of the delayed rectifier current in guinea
pigs (87).

Furthermore, it is imperative to consider the potential usage
of other relevant cardiovascular animal models. Similar to rabbit
models, canine heart models show similar cardiac ion channel
distribution with human hearts, making them suitable for the
study of ion-channel-related mechanisms (e.g., repolarization
and depolarization mechanics) and arrhythmic drug effects.
Moreover, canine heart models have a much more comparable
APD, sino-atrial node activity, Purkinje fiber distribution and
activation sequence to humans (88–90). In contrast, goat and
horse models have also shown to be suitable for the study of atrial
fibrillation given the ease of obtaining ECG recordings (28, 91,
92). Regardless, mainly canine, cat and sheep models have been
used to investigate electrophysiological changes in hypokalaemia.

Canine and sheep models were similar to smaller animal
models with regards to an observed reduction in conduction
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velocity during hypokalaemia across the cardiac conduction
system (atria, atrioventricular node, Purkinje fibers and the
ventricles) (93, 94). The underlying mechanism was thought
to involve depressed membrane excitability from membrane
depolarization, increased threshold potential for Na+ channel
activation and increased membrane resistance (80). However,
further experiments have shown differing effects of hypokalaemia
on epicardial vs. endocardial APD parameters (95) as well
as regional differences in repolarization in canine hearts, due
to greater IKs and Ito in RV compared to in the LV (96,
97). This shows that both the interlayer restitution gradient
and transepicardial APD difference constitute viable pathways
for arrhythmogenesis.

DIFFERENTIAL EFFECTS OF
HYPOKALAEMIA ON DISTINCT CELL
TYPES

Arrhythmogenic mechanisms in atrial and ventricular cell types
can differ. For example, EADs in ventricular cardiomyocytes
and tubulated atrial cardiomyocytes are attributed to Ca2+

overload (98). However, phase 3 EADs in untubulated atrial
cardiomyocytes are instead linked to the reactivation of
non-equilibrium Na+ current and are driven by membrane
hyperpolarization and short action potential configurations
(98). Furthermore, hypokalaemia induces Ca2+ overload in
ventricular cardiomyocytes by reduced pumping rate of the
Na+-K+-ATPase leading to subsequent Na+ accumulation
(37). Moreover, structurally and functionally different small
conductance Ca2+-activated K+-channel (KCa2) inhibitors, ICA,
AP14145, and AP30663, exerted anti-arrhythmic effects in
hypokalaemic guinea pig hearts (99). In contrast, KCa2 blockade
was found to be pro-arrhythmic in rabbit hearts (29), the reasons
for which may be attributed to species differences or variations in
the pharmacological agents used (ICA, AP14145, and AP30663
vs. apamin) (99). Both AP14145 and AP30663 can inhibit the late
Na+ current at higher concentrations (100). Indeed, the increase
in intracellular Ca2+ can activate Ca2+-calmodulin-dependent
kinase to increase the activity of the late Na+ channel (38).
Hypokalaemia can also cause conduction abnormalities in the
cardiac conduction system, although not to the same extent as
hyperkalaemia. Thus, it can cause slowed conduction of action
potentials through the atrioventricular node in canine (94, 101)
and rabbit hearts (81), an abnormality that has also been reported
in humans (102).

BRIDGING OVER FROM BASIC TO
CLINICAL ELECTROPHYSIOLOGY

Human cardiac models tend to have differences in repolarization
reserve when compared to animal models, depending on cardiac
miRNA levels for ion channel subunit production (103). Utilizing
human induced pluripotent stem cell-derived engineered heart
tissue can overcome this human-to-animal model gap to better
simulate physiological outcomes in humans (104). While there
is a limited understanding specifically on the implications of

steep AP restitution gradients within the context of human
hypokalaemia, the heterogeneity of APD restitution slopes have
been proposed as a substrate for arrhythmogenesis in a whole-
heart modeling study (105). This phenomenon was subsequently
confirmed by the introduction of the Regional Restitution
Instability Index (R2I2) by Nicholson and colleagues (106, 107).

HYPOKALAEMIA IN THE CLINICAL
CONTEXT

The importance of understanding the underlying mechanisms
during hypokalaemia resides in its relationship with the
development cardiac arrhythmias in various clinical conditions.
Hypokalaemia is associated with increased risks of atrial
fibrillation amongst hospitalized patients (108). Moreover,
hypokalaemia is common in patients presenting with VT/VF,
and those with severe hypokalaemia have found to be
associated with preceding gastrointestinal illness, higher doses
of diuretics (109), use of drugs such as anti-depressants (110),
as well as post-operative settings (111). In patients with
implantable cardioverter-defibrillators (ICDs), hypokalaemia but
not hyperkalaemia has been linked with increasing risk of
recurrent ventricular tachyarrhythmias and appropriate ICD
therapies (112). However, it should be stressed that the
relationship between hypokalaemia and adverse outcomes is
complex, in that it may or may not be an independent predictor
of mortality (113) and that its correction may not lead to
better outcomes in hospitalized patients (114). Moreover, altered
repolarization correlates with prolonged QTc and Tpeak-Tend

intervals in pre-clinical experimental studies (99). Both ECG
indices have been reported to provide predictive value for
arrhythmic risk stratification in the clinical context of acquired
long QT syndrome for humans (115). Indeed, in a Chinese
cohort of patients with acquired long QT syndrome, random
survival forest analysis identified hypokalaemia as the second
most important variable after cancer for predicting all-cause
mortality (116).

In heart failure, the use of diuretics and activation of the renin-
angiotensin system are the predominant causes of hypokalaemia
(117). Ventricular arrhythmias, particularly non-sustained VT,
are common (118, 119), involving both triggered and re-entrant
arrhythmias have been described (120–122). A recent meta-
analysis suggested a strong inverse association between serumK+

channel concentration and ventricular arrhythmias in patients
with myocardial infarction (123). In a large animal model
of chronic post-myocardial infarction fibrosis, hypokalaemia
revealed vulnerable electrophysiological substrates, which
highlighted the importance of conduction slowing over
repolarization instability in its arrhythmogenesis (124). Thus,
clinical decision-making should take into consideration
hypokalaemia as a common side effect of diuretics in patients
with prior myocardial infarction (125, 126). In emergency
settings, serum K+ concentrations on admission alone or
together with the co-existing Thrombolysis in Myocardial
Infarction (TIMI) risk score was shown to predict more
accurately short- and long-term risk of malignant ventricular
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arrhythmias respectively (127, 128). Moreover, hypokalaemia
is not only a risk factor for VT/VF in the acute phase of
ST-segment-elevation myocardial infarction (STEMI), but is
also associated with VF before primary percutaneous coronary
intervention (129). Finally, hypokalaemia exerts pro-arrhythmic
effects in congenital long QT syndrome, such as in the context of
salt-wasting nephropathy (130). In otherwise silent mutational
carriers, it can reveal a long QT phenotype (131, 132). In such
patients, K+ supplement can protect congenital LQTS patients
or silent carriers against the development of VT/VF (133, 134).

CONCLUSION

This article reviewed the electrophysiological mechanisms of
triggered and re-entrant arrhythmogenesis in hypokalaemia, in
which the data were largely derived from pre-clinical animal
models. Prolonged repolarization can cause EADs, and Ca2+

handling can lead to the development of both EADS and
DADs, leading to triggered activity. Reduced conduction velocity,

prolonged repolarization, increased dispersion of repolarization,
reduced refractoriness, steep APD restitution gradients, transient
reversal of transmural repolarization gradients and impaired
depolarization-repolarization coupling, all collectively contribute
to reentrant arrhythmogenesis.
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