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Myocardial infarction (MI) is one of the leading causes of death worldwide, and knowing

the early warning signs of MI is lifesaving. To expand our knowledge of MI, we analyzed

plasma metabolites in MI and non-MI chest pain cases to identify markers for alerting

about MI occurrence based on metabolomics. A total of 230 volunteers were recruited,

consisting of 146 chest pain patients admitted with suspected MI (85 MIs and 61 non-MI

chest pain cases) and 84 control individuals. Non-MI cardiac chest pain cases include

unstable angina (UA), myocarditis, valvular heart diseases, etc. The blood samples of all

suspected MI cases were collected not longer than 6 h since the onset of chest pain. Gas

chromatography–mass spectrometry and liquid chromatography–mass spectrometry

were applied to identify and quantify the plasma metabolites. Multivariate statistical

analysis was utilized to analyze the data, and principal component analysis showed

MI could be clearly distinguished from non-MI chest pain cases (including UA and

other cases) in the scores plot of metabolomic data, better than that based on the

data constructed with medical history and clinical biochemical parameters. Pathway

analysis highlighted an upregulated methionine metabolism and downregulated arginine

biosynthesis in MI cases. Receiver operating characteristic curve (ROC) and adjusted

odds ratio (OR) were calculated to evaluate potential markers for the diagnosis and

prediction ability of MI (MI vs. non-MI cases). Finally, gene expression profiles from the

Gene Expression Omnibus (GEO) database were briefly discussed to study differential

metabolites’ connection with plasma transcriptomics. Deoxyuridine (dU), homoserine,

and methionine scored highly in ROC analysis (AUC > 0.91), sensitivity (>80%), and

specificity (>94%), and they were correlated to LDH and AST (p < 0.05). OR values

suggested, after adjusting for gender, age, lipid levels, smoking, type II diabetes, and

hypertension history, that high levels of dU of positive logOR= 3.01, methionine of logOR

= 3.48, and homoserine of logOR= 1.61 and low levels of isopentenyl diphosphate (IDP)

of negative logOR = −5.15, uracil of logOR = −2.38, and arginine of logOR = −0.82

were independent risk factors of MI. Our study highlighted that metabolites belonging

to pyrimidine, methionine, and arginine metabolism are deeply influenced in MI plasma
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samples. dU, homoserine, and methionine are potential markers to recognize MI cases

from other cardiac chest pain cases after the onset of chest pains. Individuals with high

plasma abundance of dU, homoserine, or methionine have increased risk of MI, too.

Keywords: myocardial infarction, risk factors, biomarker, metabolomics, arginine, deoxyuridine

INTRODUCTION

A strangling feeling in the chest is a typical manifestation of
coronary artery disease (CAD). In most cases, CAD develops
as plaque builds up on the artery walls. When it progresses to
myocardial infarction (MI), coronary heart disease will be life-
threatening and extremely dangerous in the ensuing days or
weeks due to its various fatal complications. Thus, its diagnosis
and treatment is urgent. However, chest pain can be caused
by other cardiovascular events or heart diseases (e.g., unstable
angina, myocarditis) (1). Although there are cardiac damage
biomarkers, such as creatine kinase-MB (CK-MB), aspartate
aminotransferase (AST), and cardiac troponins (cTnT, cTnI),
they are usually related to tissue damage only and not specific
to MI. For example, cTnT elevation can also be observed in
myocarditis, hypertrophic cardiomyopathy, sometimes unstable
angina, etc. Sometimes, unexpected elevation of the markers
can also be observed without obvious connection to cardiac
injury (2–4).

With the development of metabolomics, more and more small
molecule metabolic markers will be identified, analyzed, and
studied. The newly found differential metabolites between MI
cases and non-MI chest pain cases will expand our knowledge of
myocardial infarction development. Since ischemic heart diseases
are characterized by profound metabolic shifts at both the
circulatory and local levels (5), metabolomics has been applied
to study the metabolic pattern changes detected in the blood of
CAD patients. Early in 2002, a pioneering work was published
showing that NMR-based metabolomics had the potential to
rapidly and non-invasively diagnose the presence and severity
of coronary heart disease (6). In 2005, Marc Sabatine and
his colleagues identified metabolic biomarkers of myocardial
ischemia associated with physical exercise (7). Later studies
focused on identifying biomarkers and metabolic pathways
and exploring the underlying mechanisms associated with
cardiovascular diseases (8–14). A panel of potential markers has
been suggested for coronary heart diseases, such as arginine and
homocysteine, and the underlying mechanisms of their action
have been explored (15–17). However, candidate metabolites to
recognize MI cases from other cardiac chest pain cases remain to
be further studied and improved.

In this study, we mainly focus on detecting and assessing
metabolites’ ability to discriminate MI cases from non-MI chest
pain cases. A metabolomic platform with GC/MS and LC/MS

Abbreviations: MI, myocardial infarction; CAD, coronary artery disease; UA,

unstable angina; AUC, area under the ROC curve; QC, quality control; IS, internal

standard; VIP, variable importance; OR, odds ratio; dU, deoxyuridine; TAC,

transverse aortic constriction; GEO, Gene Expression Omnibus; IDP, isopentenyl

diphosphate; CDA, cytidine deaminase; UPP1, uridine phosphorylase 1.

instrumentation was employed to profile plasma metabolites of
hospitalized patients with chest pain (including MI and non-MI
chest pain cases) and their controls. We first applied multivariate
statistical analysis to address our question about how good these
identified metabolites detect MI cases. Then, medical history and
laboratory test variables (e.g., sex, age, smoking history, function
of the primary organs, and biochemical assays) were introduced
as variables in a new model and analyzed in the same way.
Their performance can be demonstrated in PCA and OPLS-DA
plots. Next, metabolic patterns were evaluated, and metabolic
markers were screened and described based on semiquantitative
data, ROC analysis, odds ratios (OR) (18), and their relations to
well-recognized cardiovascular disease risk factors. Considering
that plasma cells affect plasma metabolites most directly, the
connection between plasma cells and metabolites is briefly
explained in the discussion.

MATERIALS AND METHODS

Human Plasma Collection
A total of 84 individual controls (social recruitment) and
146 chest pain cases highly suspected of MI were recruited
from October 2017 to March 2018. (Exclusions include coma,
fever, NYHA IV heart failure, hepatic decompensation, renal
failure, cancers, and uncontrolled endocrine and hematological
diseases.) After routine diagnostic procedures, including ECGs,
infarction biomarkers, and coronary angiography (or coronary
CT angiography, CCTA), 85 were later confirmed to be non-
ST-elevation myocardial infarction (NSTEMI) or ST-elevation
myocardial infarction (STEMI) as the MI cases (MIs), and
the remaining 61 were confirmed to be non-MI chest pain
cases (non-MIs). All the non-MIs include 34 unstable angina
(UA) cases and 27 other non-MI cardiac cases (non-MICs),
including myocarditis, valvular heart diseases, atrial fibrillation,
etc (Figure 3A). The blood samples of the patients were collected
not longer than 6 h since the onset of chest pain symptoms, before
reperfusion therapy.

The study followed the principles outlined in the Declaration
of Helsinki, and informed written consent was given prior to the
inclusion of subjects in the study. The study was also under the
guidance and supervision of the Ethics Committee of the First
Affiliated Hospital of Nanjing Medical University (Lot number:
2018-SR-028). The venous blood samples were collected from
fasting state volunteers in EDTA-Na anticoagulated tubes in the
morning. Within 2 h, blood samples were centrifuged at 1,000 g
for 5min, and each of the supernatant plasma was transferred to
another tube, frozen at −80◦C in a refrigerator. Before using the
plasma samples, they were thawed by incubation at 37◦C bath for
15min, vortexed, and centrifuged at 650 g for 5 min.
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Equipment for Blood Examinations
The instrument blood count, SYSMEX model xn-10, is made
in Hyogo, Japan. Both NT-proBNP and serum infarction
markers (cTns) are analyzed in Roche Cobas 6000 (produced
in Mannheim, Germany). The blood biochemical instrument is
AU5800 from Beckman Coulter of the United States, produced
in Shizuoka, Japan.

Chemicals and Reagents
Stable isotope internal standard 5-13C-glutamine was purchased
from Cambridge Isotope Laboratories (Andover, MA, USA).
Myristic-1,2-13C2 acid, methoxamine hydrochloride (purity
98%), and pyridine (≥99.8% GC) were purchased from
Sigma-Aldrich (St. Louis, MO, USA). N-methyl-trimethylsilyl-
trifluoroacetamide (MSTFA) and 1% trimethylchlorosilane
(TMCS) were provided by Pierce Chemical (Rockford, IL, USA).
Methanol, acetonitrile, and n-heptane were of HPLC grade and
obtained from Merck (Darmstadt, Germany). Purified water
was produced by a Milli-Q system (Millipore, Bedford, MA,
USA). Ammonium acetate (purity 98.0%) and ammonia solution
(25%, w/w) were purchased from Aladdin (Shanghai, China) and
Nanjing Chemical Reagent (Nanjing, China), respectively.

Method S1 GC/MS Analysis, Instrumental
Setting, and Parameters
The plasma samples were pretreated, extracted, and derivatized
in a similar way to that reported previously (19). Briefly, an
aliquot of plasma (50 µl) was added to 200 µl methanol
(containing internal standard [13C2]-myristic acid, 2.5 µg,
12.5µg/ml) for GC/MS analysis and vigorously vortex-extracted
for 5min, and then placed in a fridge at 4◦C for 1 h. After
centrifuging at 20,000 g for 10min in the SORVALL Biofuge
Stratos centrifuge (Sollentum, Germany), a 200-µl aliquot of the
supernatant was transferred into a GC vial and evaporated to
dryness in a SpeedVac concentrator (Thermo Fisher Scientific,
SavantTM SC250EXP, Holbrook, USA).

For GC/MS analysis, the dried plasma samples were then
methoxymated, where 30 µl of 1% methoxyamine pyridine
solution was added to the residue and incubated for 16 h at room
temperature. Then, the analytes were trimethylsilylated using 30
µl of MSTFA containing 1% v/v trimethylchlorosilane (TMCS)
as a catalyst. After trimethylsilylation for 1 h, 30 µl of n-heptane
containing methyl myristate (30µg/ml) was added into each
GC vial as external standard to monitor the stability of GC/S
instruments. The final mixture (90 µl in total) was vortexed for
1min and was then ready for GC/MS analysis.

The derivatized samples were analyzed using gas
chromatography coupled to a mass spectrometer (Shimadzu
GCMS-QP2010 Ultra, Kyoto, Japan) equipped with an automatic
sampler (Shimadzu AOC-20i, Kyoto, Japan). A 0.5-µl sample
aliquot was injected into a liner connected with the Rtx-5MS
capillary column (0.25mm× 30m× 0.25µm, Restek, PA, USA)
in split mode (split ratio 8:1). The injector temperature was set
at 250◦C. The septum purge was turned on with a flow rate of
6.0 ml/min. Helium was used as the carrier gas at a flow rate of
1.5 ml/min. The column temperature was initially maintained at
80◦C for 5min, then raised to 300◦C at a rate of 20◦C/min, and

held for 5min. The mass spectrometer ion source temperature
was 220◦C, and ionization was achieved with a 70-eV electron
beam. Mass spectra were detected at −1,570V, obtained from
m/z 50 to 700 in a full scan mode, with each run of 19min
and a solvent cutting acquisition at 4.5min. The quality control
(QC) samples were prepared for the pool of plasma, with the
same preparation procedure as mentioned above. To minimize
systematic variations, all samples were analyzed at random order,
with QC samples inserted.

LC/MS Analysis, Instrumental Setting, and
Parameters
The plasma samples were pretreated and extracted in the same
way as in GC/MS analysis with a few modifications, which
used the other internal standard of 5-13C-glutamine dissolved
in methanol at 15µg/ml. After vortexing and centrifugation, the
final supernatant was transferred into an LC vial.

After evaporation, the residue was redissolved with 100 µl
distilled water and centrifuged at 18,000 g for 5min. Finally, 80µl
supernatant was transferred to an LC vial, and 10 µl was injected
for UPLC-QTOF/MS analysis. Similarly, the QC samples were
inserted and analyzed to check the stability of the system.

The HPLC-QTOF/MS analysis was carried out as previously
reported (20). The chromatographic separation of the analyses
was achieved with an Amide XBridge HPLC column (3.5µm;
4.6mm × 100mm; Waters, USA). The column temperature was
set to 40◦C. The HPLC system consisting of a LC-30A binary
pump, a SIL-30AC autosampler, and a CTO-30AC column oven
(Shimadzu, Japan) was coupled with a hybrid quadrupole time-
of-flight tandem mass spectrometer (AB SCIEX TripleTOF R©

5600, Foster City, CA). The mobile phase was composed of
5mM ammonium acetate in ultrapure water (pH = 9.0 ± 0.1
with ammonia) plus 5% acetonitrile (solvent A) and acetonitrile
(solvent B). The mobile phase was delivered at 0.4 ml/min using
a solvent gradient as follows: 0–3min, 85% B; 3–6min, 85–
30% B; 6–15min, 30–2% B; 15–18min, 2% B; 18–19min, 2–85%
B; and 19–26min, 85% B. A Turbo V electrospray ionization
(ESI) was used in MS detection with negative ion modes. In
the ESI source, parameters were set as follows: gas 1 pressure
at 50 psi, gas 2 at 30 psi, and curtain gas at 30 psi; ion spray
voltage was set at −4,500V; turbo spray temperature was set
at 500◦C. Metabolic features were scanned in time-of-flight
mass spectrometry over m/z 50–1,000, and the product ions
were scanned over m/z 50–900, with declustering potential at
−100V and a collision energy at −35V. The detected ions
were all calibrated with the accurate masses of the reference
standards containing amino-dPEG R©4-acid (MW265.30, CAS:
663921-15-1), amino-dPEG R©6-acid (MW353.41, CAS: 905954-
28-1), amino-dPEG R©8-acid (MW441.51, CAS: 756526-04-
2), amino-dPEG R©12-acid (MW617.72, CAS: 756526-07-4),
and sulfinpyrazone (MW404.48, CAS: 57-96-5), for every
eight samples.

Multivariate Statistical Analysis
Missing data were excluded before the analysis. After
normalization against the IS, the data were evaluated using
SIMCA-P 14.1 software (Umetrics, Umeå, Sweden) (21).
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Principal component analysis (PCA), partial least square to
latent structure discriminant analysis (PLS-DA), and orthogonal
PLS-DA (OPLS-DA) models were built and plotted to show
the clustering or separation of samples from different groups.
For PLS-DA modeling, samples from the different groups were
classified such that all samples were divided into different
groups (e.g., MIs, non-MIs, controls, etc.) as the qualitative
“dummy” variables, Y. The goodness of fit for the models
was evaluated using three quantitative parameters: R2X and
R2Y are the explained variation in X and Y, respectively,
and Q2Y is the predicted variation in Y. Permutation test
was assessed for model validation, where a higher level of
R2Y and Q2Y and a lower value of the intercept of R2 (lower
than 0.2) and Q2 (lower than 0.0) suggested good model and
prediction ability.

Discriminant Metabolites and Statistical
Analysis
After normalization against the IS, all the semiquantitative data
from both GC/MS and UPLC-QTOF/MS were logarized so that
the state probabilities of the data queue tended to a normal
distribution. The discriminant metabolites between groups were
screened and chosen based on variable importance (VIP) using
SIMCA-P 14.1 and the independent sample t-test of the logarized
data using SPSS (version 23.0, SPSS Inc., Chicago, IL, USA). Fold
change is calculated using raw but normalized data.

Metabolic pathway enrichment and topology analysis was
performed online, using MetaboAnalyst 3.0 (https://www.
metaboanalyst.ca/). The KEGG ID of discriminatory compounds
was uploaded and embedded in human pathway library for
pathway analysis and hypergeometric tests, with the pathway
analysis algorithms of Fisher’s exact test, topology algorithms
of relative betweenness centrality, and KEGG pathway library
version of Homo sapiens.

For data inconformity with normal distribution from clinical
assaying, a non-parametric test (Mann–Whitney U-test, two-
sided) was employed to evaluate statistical significance. ROC
analysis and (adjusted) OR calculations were performed using
SPSS as well. Before computing the OR value, the logarized data
of a metabolite (i) for each subject of ORi were normalized by
subtracting the mean value of ORmean within this group, and
then divided by the standard deviation (SD) within the group,
shown as the normalized ORs= (ORi – ORmean)/SD.

Transcriptomics Database
We studied transcriptomics data from the GEO database.
The human myocardial infarction plasma data are from
GSE48060 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?
acc=GSE48060) and GSE103182 (https://www.ncbi.nlm.nih.
gov/geo/query/acc.cgi?acc=GSE103182). Mice myocardial
data are from GSE775 (https://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSE775). The data matrix was directly
extracted by GEOquery in R 4.0.3. Limma package was used
to produce false discovery rate (FDR), fold change (FC),
and p-value.

RESULTS

Clinical Descriptions of Control, MI, and
Non-MI Cases
Tables 1, 2 show the medical records and basic laboratory
tests of the volunteers. Generally, higher glucose, AST, lactate
dehydrogenase (LDH), hydroxybutyrate dehydrogenase
(HBDH), and CK levels and lower albumin (ALB) and Ca2+

concentrations were detected in patients with chest pain. Among
the 146 patients with cardiac chest pain,∼65% had taken aspirin
and statin treatments before blood collection. As a result, total
cholesterol (TC), triglycerides (TG), low-density lipoprotein
cholesterol (LDL-C), and high-density lipoprotein cholesterol
(HDL-C) levels were all lower in chest pain inpatients than
the controls.

Based on clinical parameters (listed in Table 1 “variables”),
including “biochemical items,” “demographics,” and “cardiac
risk factors,” an unsupervised PCA score plot was created. The
model indicated a few outliers when the samples were either
divided into three (controls, MIs, non-MIs) or four groups
(controls, UA, MIs, and other non-MICs), and each of the
groups generally overlapped with the others (Figures 1A1,A2).
However, a supervised PLS-DA revealed a visible separation of
the groups with only a little overlap when the samples were
divided into three groups, i.e., MIs, non-MIs, and controls.
When the samples were divided into four groups (MIs, UAs,
other non-MICs, and controls), the controls, UAs, and MIs were
fairly well-separated, but the other non-MICs primarily showed
overlaps with UAs and MIs (Figures 1A3,A4). These findings
suggest that the model was not powerful at differentiating non-
MICs from MIs and UAs based on basic laboratory tests and
history examinations.

Plasma Metabolomic Description of Chest
Pain Individuals by PCA and OPLS-DA
Plots
GC/MS and LC/MS analysis of the plasma samples
aligned the metabolites in typical chromatograms
(Supplementary Figures 1, 2). Deconvolution of the GC/MS
chromatograms produced 135 independent peaks from the
plasma samples, 83 of which were authentically identified as
metabolites; LC/MS produced 279 peaks, and 76 metabolites
were identified (Supplementary Tables 1, 2). Quantitative data
were acquired for each metabolite in the plasma samples of the
control, MI, UA, and other non-MI cardiac cases.

Based on the metabolomic data derived from GC/MS and
LC/MS analysis, the PCA score plot again showed a few outliers
when the samples were divided into three or four groups,
as indicated above (Figure 3A). Unlike with the clinical data,
unsupervised PCA analysis of metabolomic data showed that
the majority of MIs deviated from the others, regardless of
whether the three or four groups were defined, although the
control, non-MICs, and UAs overlapped with each other to some
extent (Figures 1B1,B2). This suggests that the identified plasma
substances can naturally detect the difference between MI and
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TABLE 1 | Sample characteristics: controls vs. all the chest pain cases.

Clinical concerns Variables Controls Chest pain cases Statistics

n = 84 n = 146 p-values

Demographics Male 56 99 0.26

Age (years) 50.25 ± 1.76 59.28 ± 1.83 0.00

Cardiac risk factors Hypertension 32 83 0.00

Diabetes 8 36 0.00

TC (mmol/L) 4.93 ± 0.15 4.08 ± 0.11 0.00

TG (mmol/L) 1.43 ± 0.12 1.51 ± 0.08 0.17

LDL-C (mmol/L) 3.15 ± 0.11 2.70 ± 0.08 0.00

HDL-C (mmol/L) 1.31 ± 0.04 0.95 ± 0.02 0.00

LPa (mg/L) 349.35 ± 51.45 339.39 ± 27.47 0.65

Tobacco use 8 43 0.00

Drinking history 0 16 0.00

Cardiovascular medications Aspirin 1 88 0.00

Statin therapy 6 94 0.00

β-Blockers 0 7 0.00

Prior cardiovascular disease 2 22 0.01

Biochemical items ALT (U/L) 27.15 ± 2.48 39.33 ± 2.90 0.00

AST (U/L) 26.31 ± 1.45 77.35 ± 9.78 0.00

ALP (U/L) 78.20 ± 2.19 86.16 ± 2.26 0.03

GGT (U/L) 30.69 ± 2.75 45.18 ± 3.80 0.02

LDH (U/L) 169.30 ± 3.85 398.72 ± 32.22 0.00

CK (U/L) 119.30 ± 11.27 480.97 ± 78.58 0.94

HBDH (U/L) 107.80 ± 3.87 297.38 ± 28.85 0.00

TBIL (µmol/L) 14.36 ± 0.56 13.74 ± 0.71 0.03

DBIL (µmol/L) 4.51 ± 0.28 4.96 ± 0.26 0.83

IBIL (µmol/L) 9.16 ± 0.42 8.77 ± 0.48 0.05

TP (g/L) 70.80 ± 0.47 61.12 ± 0.48 0.00

ALB (g/L) 44.68 ± 0.54 35.80 ± 0.36 0.00

GLB (g/L) 25.78 ± 0.48 25.33 ± 0.39 0.14

ALB/GLB 1.79 ± 0.05 1.45 ± 0.03 0.00

GLU (mmol/L) 5.77 ± 0.13 6.01 ± 0.22 0.23

Urea (mmol/L) 5.13 ± 0.18 7.37 ± 0.52 0.00

Cr (µmol/L) 71.14 ± 2.00 102.13 ± 11.16 0.00

UA (µmol/L) 325.57 ± 9.61 378.91 ± 13.24 0.04

Ca (mmol/L) 2.36 ± 0.02 2.17 ± 0.01 0.00

Values are presented as mean ± SE. The Mann–Whitney U-test was applied to produce p-value. Bold values are abnormal findings of the test results.

other samples (including healthy controls, UA) and there are MI
marker metabolites in the metabolite profile.

The supervised PLS-DA model revealed that samples from
each group clustered closely and anchored away from the
other groups when the samples were divided into three groups
(Figure 1B3). When the samples were divided into four groups,
the majority of MIs and controls clustered separately, while the
UAs and non-MICs primarily overlapped with each other, with
a minority overlapping with MIs and controls (Figure 1B4).
The distant separation of MIs from the other groups suggested
distinctly different metabolic patterns between MIs and the
groups of UA and non-MICs, while the overlapping of the
groups suggested similar plasma metabolic patterns between UA
and the other non-MICs. In general, metabolomic data better
characterizedMIs than history examinations and laboratory tests,

and the score plot of non-MI chest pain cases (including UA
and non-MI cardiac cases) indicated that they had moderate
metabolic perturbation relative to the MI cases because they
anchored between MI and the controls (Figure 1B3). The
above data suggest that subgroups of MI can be recognized
by multivariate analysis of identified plasma metabolites more
effectively than by routine clinical parameters.

Pathway Analysis of Differential
Metabolites
OPLS-DA analysis showed a different metabolomic pattern
of the non-MIs from the controls (Figure 2A1). Statistical
analysis suggested 50 discriminant metabolites (p < 0.05)
that differentiated non-MI chest pain inpatients from the
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TABLE 2 | Sample characteristics: MI vs. non-MI chest pain cases.

Clinical concerns Variables Controls Chest pain cases Statistics

(n = 84) Non-MI (n = 61) MI (n = 85) p-values

Demographics Male 56 32 67 0.00

Age (years) 50.25 ± 1.76 60.18 ± 2.42 65.08 ± 1.60 0.12

Cardiac risk factors Hypertension 32 32 51 0.28

Diabetes 8 8 28 0.01

Tobacco use 8 8 35 0.00

TC (mmol/L) 4.93 ± 0.15 3.69 ± 0.12 4.28 ± 0.15 0.01

TG (mmol/L) 1.43 ± 0.12 1.26 ± 0.09 1.65 ± 0.11 0.02

LDL-C (mmol/L) 3.15 ± 0.11 2.40 ± 0.09 2.86 ± 0.11 0.01

HDL-C (mmol/L) 1.31 ± 0.04 0.96 ± 0.03 0.94 ± 0.03 0.70

LPa (mg/L) 349.35 ± 51.45 334.55 ± 47.64 341.96 ± 33.82 0.56

Prior cardiovascular disease 2 12 10 0.24

Serum biomarkers cTnT (ng/ml) – 756.13 ± 242.59 1,559.30 ± 276.64 0.56

CK-MB (U/L) – 24.98 ± 6.08 32.10 ± 5.89 0.68

Mb (ng/ml) – 59.30 ± 23.79 66.99 ± 15.32 0.46

Biochemical items ALT (U/L) 27.15 ± 2.48 32.17 ± 4.59 43.14 ± 3.65 0.04

AST (U/L) 26.31 ± 1.45 29.12 ± 2.91 102.99 ± 14.10 0.00

LDH (U/L) 169.30 ± 3.85 213.05 ± 10.22 497.43 ± 45.36 0.00

CK (U/L) 119.30 ± 11.27 86.83 ± 12.99 690.51 ± 113.49 0.00

HBDH (U/L) 107.80 ± 3.87 132.79 ± 6.71 384.89 ± 40.81 0.00

TP (g/L) 70.80 ± 0.47 61.95 ± 0.71 60.68 ± 0.62 0.18

GLU (mmol/L) 5.77 ± 0.13 5.49 ± 0.22 6.28 ± 0.32 0.06

Ca (mmol/L) 2.36 ± 0.02 2.20 ± 0.02 2.16 ± 0.02 0.11

Values are presented as mean ± SE. The Mann–Whitney U-test was applied to produce p-value between MI and non-MI chest pain cases. Bold values are abnormal findings of the

test results.

controls (Table 3, S-plot: Figure 2A2). Similarly, MI cases
primarily showed different metabolomic patterns from non-MIs
(Figure 2B1). According to the statistical analysis and the VIP
values, 54 discriminant metabolites were identified between MIs
and non-MIs (Table 3, S-plot: Figure 2B2).

Of the 50 metabolites differentiating non-MIs from the
controls, the levels of gluconic acid and isoleucine were higher in
non-MIs, while succinate, inosine, and arginine were lower, and
all the above metabolites deviated further in MIs (Figures 3C,D).
These findings indicate that the above metabolites are involved
in the development of cardiac damage (from averagely very small
damage to severe infarction).

Although glycerol, salicylic acid, and deoxyadenosine showed
significant differences between the non-MI and control groups,
they had no significant difference between the MI and non-MI
cardiac groups. These are, thus, suggested as markers of non-
MI chest pain. In addition to endogenous metabolites, we found
that salicylic acid, an exogenousmetabolite, also characterized the
group of chest pain cases. Salicylic acid is the primary metabolite
of aspirin, and a review of inpatient information and clinical data
revealed that a large portion of chest pain patients had taken
aspirin for the management of CAD.

Moreover, deviated levels of dU, methionine, homoserine, etc.
were only observed in MI cases (vs. non-MI chest pains), and
no significant difference was observed between the controls and

non-MIs, indicating their associationwith the development ofMI
(Figure 3B).

The differential metabolites between acute coronary
syndrome (ACS, including UA and MI) and healthy individuals
(ACS vs. control) can play roles in lipid plaque rupture; thus, they
have the potential in alerting the occurrence of ACS. We found
127 identified differential metabolites. Supplementary Table 3

lists the top 20 metabolites (sort by p), and most of them are
amino acids. KEGG analysis highlighted ACS’s upregulated
cysteine and methionine metabolism, phenylalanine metabolism,
and synthesis and degradation of ketone bodies pathway and
downregulated arginine biosynthesis, purine metabolism,
and pyrimidine metabolism (FDR < 0.05). The metabolites
with large FCs are salicylic acid, dU, guanosine diphosphate,
gluconic acid, homocysteine, NADPH, methionine, tryptophan,
mannopyranose, and isoleucine (top 10, FC > 1, p < 0.05).
The metabolites with the smallest FCs (p < 0.05, FC < 1) are
succinate, isopentenyl diphosphate (IDP), glutamine, inosine,
uracil, citrate, lysine, N-acetylornithine, indole-3-propanate,
and alanine.

A Venn diagram was created to show the discriminant
metabolites between MI and non-MIs and those between non-
MIs and controls. The overlapping region (B) in the Venn
diagram (Figure 3E) lists the metabolites screened out in both
of the two comparison groups, suggesting that they were
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FIGURE 1 | Multivariate statistical analysis differentiates the groups of myocardial infarction (MI) cases, non-MI chest pain cases, and controls based on clinical

information (A) and metabolomic data (B), respectively. (1) Non-supervised PCA modeling displays the original similarity of the three groups: MI cases (n = 85), non-MI

chest pain cases (n = 61), and controls (n = 84), without arbitrary grouping. (2) Non-supervised PCA modeling displays the original similarity of the four groups: MI

(Continued)
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FIGURE 1 | cases, unstable angina (UA), other non-MI cardiac cases, and controls, without arbitrary grouping. (A1,A2) PC1: R2X (cum) = 0.0895, Q2(cum) = 0.0106;

PC2: R2X (cum) = 0.167, Q2 (cum) = 0.0356. (B1,B2) PC1: R2X (cum) = 0.205, Q2(cum) = 0.189; PC2: R2X (cum) = 0.310, Q2(cum) = 0.274; PC3: R2X (cum) =

0.386, Q2(cum) = 0.338. (3) Supervised PLS-DA modeling with the three groups: MI cases, non-MI chest pain cases, and controls. (A3) PC1: R2X (cum) = 0.073,

R2Y (cum) = 0.339, Q2(cum) = 0.270; PC2: R2X (cum) = 0.128, R2Y (cum) = 0.544, Q2(cum) = 0.362; PC3: R2X (cum) = 0.174, R2Y (cum) = 0.635, Q2 (cum) = 0.394.

Permutation tests with the intercepts of R2 < 0.23, Q2 < −0.20. (B3) PC1: R2X (cum) = 0.184, R2Y (cum) = 0.215, Q2(cum) = 0.207; PC2: R2X (cum) = 0.249,

R2Y (cum) = 0.400, Q2(cum) = 0.377; PC3: R2X (cum) = 0.315, R2Y (cum) = 0.547, Q2(cum) = 0.512. Permutation tests with the intercepts of R2 < 0.10, Q2 <

−0.05. (4) Supervised PLS-DA modeling with the four groups: MI cases (n = 85), UA (n = 34), other non-MI cardiac cases (n = 27), and controls (n = 84). (A4) PC1:

R2X (cum) = 0.073, R2Y (cum) = 0.259, Q2(cum) = 0.198; PC2: R2X (cum) = 0.132, R2Y (cum) = 0.397, Q2(cum) = 0.269; PC3: R2X (cum) = 0.173, R2Y (cum) =

0.492, Q2(cum) = 0.289. Permutation test with the intercepts of R2 < 0.180, Q2 < −0.15. (B4) PC1: R2X (cum) = 0.183, R2Y (cum) = 0.169, Q2(cum) = 0.163; PC2:

R2X (cum) = 0.254, R2Y (cum) = 0.300, Q2(cum) = 0.277; PC3: R2X (cum) = 0.317, R2Y (cum) = 0.422, Q2(cum) = 0.387. Permutation test with the intercept of R2 <

0.11, Q2 < −0.05.

FIGURE 2 | Orthogonal partial least square to latent structure discriminant analysis (OPLS-DA) modeling and S-plots delineate different metabolic phenotypes and

potential markers of MI and non-MI cardiac cases. (A1) OPLS-DA model differentiating non-MI cardiac cases (n = 61) from the controls (n = 84). (A2) S-plot highlights

the potential markers of the non-MI cardiac cases. (B1) OPLS-DA model differentiating MI cases (n = 85) from non-MI cardiac cases (n = 61). (B2) S-plot highlights

the potential markers of the MI cases.

most likely the risk factors or markers of the occurrence and
development of MI, reflecting homeostatic disturbance induced
by myocardia hypoxia. Figure 3F shows the pathway analysis
of the metabolites in the Venn A+B region (control vs. non-
MI), and Figure 3G shows the pathway analysis of discriminant
metabolites in the Venn B+C region (MI vs. non-MI). Generally,

arginine biosynthesis and pyrimidine metabolism were the most
significantly altered metabolic pathways in non-MI chest pain
patients’ plasma compared with that in healthy individuals.
Enrichment and pathway analysis for the metabolites of the Venn
C area by MetaboAnalyst showed that arginine biosynthesis (p
< 0.01, FDR < 1%) was the most altered metabolic pathway
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TABLE 3 | List of discriminant metabolites: non-MIs vs. controls and MIs vs. non-MIs.

Differential metabolites Controls (n = 84) MI cases (n = 85) Non-MI cases (n = 61) MI vs. non-MI Non-MI vs. Con

Mean SE Mean SE Mean SE FC t-test FC t-test

Deoxyuridine 26,212 9,533 1,025,278 150,576 16,840 555 60.885 *** 0.642 /

Adenosine phosphosulfate 51,723 4,141 99,104 8,542 42,213 3,793 2.348 *** 0.816 /

Deoxyadenosine monophosphate 310,296 7,783 102,462 13,401 311,056 7,624 0.329 *** 1.002 /

Guanosine diphosphate 7,379 469 27,614 4,153 6,648 530 4.154 *** 0.901 /

Inosine 2
′
-phosphate 14,875 683 37,785 4,687 14,988 809 2.521 *** 1.008 /

Adenosine monophosphate 20,124 1,044 25,648 1,689 19,902 1,016 1.289 *** 0.989 /

Hypoxanthine 705,034 24,192 373,454 29,693 734,901 52,065 0.508 *** 1.042 /

Glycolate 8,319 247 9,121 331 7,620 306 1.197 ** 0.916 /

Methionine 113,239 2,830 335,994 27,792 109,192 2,631 3.077 *** 0.964 /

Arginine 810,028 22,688 169,566 34,842 731,551 31,282 0.232 *** 0.903 /

Valine 2,334,562 53,682 3,710,196 209,295 2,425,637 63,465 1.530 *** 1.039 /

Citrulline 422,244 11,079 296,302 13,267 469,763 20,870 0.631 *** 1.113 /

Shikimate 14,871 796 8,837 491 15,072 782 0.586 *** 1.014 /

Ornithine 747,344 19,685 522,218 23,919 805,398 34,957 0.648 *** 1.078 /

Alanine 402,892 10,006 663,687 37,026 446,350 16,079 1.487 *** 1.108 /

Glycine 145,111 2,764 256,201 15,108 150,041 3,152 1.708 *** 1.034 /

Homocysteine 7,517 382 20,169 2,293 7,693 504 2.622 *** 1.023 /

Aspartate 155,030 10,889 194,713 12,674 123,523 10,287 1.576 *** 0.797 /

Ribose 223,498 12,602 340,299 15,678 254,617 23,072 1.337 ** 1.139 /

1-Monopalmitin 30,533 1,705 33,208 1,616 25,699 1,904 1.292 ** 0.842 /

Glycerate 125,449 4,077 54,424 3,823 127,894 10,153 0.426 *** 1.019 /

Citrate 6,687,162 203,004 1,395,841 280,056 6,186,805 304,233 0.226 *** 0.925 /

NAD+ 11,766 301 25,536 3,262 11,479 330 2.225 *** 0.976 /

NADPH 5,344 269 35,996 7,862 4,157 192 8.659 *** 0.778 ###

Uracil 146,594 7,319 60,619 9,826 319,956 18,480 0.189 *** 2.183 ###

Xanthine 161,018 5,234 99,621 11,423 234,923 11,566 0.424 *** 1.459 ###

Adenosine 33,452 2,133 31,326 3,112 18,676 1,948 1.677 *** 0.558 ###

IDP 3,112,579 73,422 1,512,965 153,666 3,597,655 92,953 0.421 *** 1.156 ###

Adenine 15,026 2,519 13,092 2,292 5,543 393 2.362 ** 0.369 ###

Succinate 88,550 1,816 36,686 3,233 79,439 2,388 0.462 *** 0.897 ##

Malate 61,898 2,263 35,918 4,299 78,778 4,163 0.456 *** 1.273 ###

2-Ketoglutarate 33,628 1,314 21,806 2,264 78,634 4,864 0.277 *** 2.338 ###

Acetoacetate 132,245 2,671 235,115 13,087 160,911 7,415 1.461 *** 1.217 ###

Carbamoylphosphate 29,690 1,819 23,063 2,179 36,316 1,532 0.635 *** 1.223 ##

Dihydroorotate 33,819 1,003 31,876 2,619 22,310 579 1.429 *** 0.660 ###

Pantothenate 54,720 3,022 38,266 4,405 83,814 4,827 0.457 *** 1.532 ###

Phenylpyruvate 51,177 955 63,363 2,279 56,537 1,514 1.121 * 1.105 ##

Cysteine 106,041 3,333 68,660 3,639 150,632 7,856 0.456 *** 1.421 ###

Isoleucine 1,694,252 47,827 4,794,207 400,231 2,264,556 105,757 2.117 *** 1.337 ###

Serine 187,997 4,449 345,414 14,192 211,966 5,374 1.630 *** 1.127 ###

Proline 805,696 27,760 1,281,948 56,175 912,165 3,390 1.405 *** 1.132 #

Threonine 661,526 23,707 1,415,808 70,560 574,241 19,440 2.466 *** 0.868 ##

Phenylalanine 1,051,097 31,497 1,757,945 133,629 2,349,797 58,409 0.748 *** 2.236 ###

Glutamine 6,299,813 30,803 6,265,669 37,518 6,115,270 38,706 1.025 ** 0.971 ###

Histidine 3,756,407 54,216 2,876,183 73,183 3,370,631 66,123 0.853 *** 0.897 ###

Taurine 851,621 35,791 1,382,464 89,177 727,822 36,862 1.899 *** 0.855 #

Lysine 1,733,874 38,073 505,537 102,029 2,002,743 55,294 0.252 *** 1.155 ###

N-acetylornithine 329,453 18,159 68,946 14,885 265,119 11,352 0.260 *** 0.805 ##

Cytosine 7,058 102 5,624 153 6,609 135 0.851 *** 0.936 ##

3-Phospho-serine 11,045 654 17,870 1,469 8,893 284 2.009 *** 0.805 ##

(Continued)
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TABLE 3 | Continued

Differential metabolites Controls (n = 84) MI cases (n = 85) Non-MI cases (n = 61) MI vs. non-MI Non-MI vs. Con

Mean SE Mean SE Mean SE FC t-test FC t-test

Homoserine 661,526 23,707 1,415,808 70,560 574,241 19,440 2.466 *** 0.868 ##

1-Monostearin 17,548 911 19,128 896 13,626 841 1.404 *** 0.777 ##

2-Dehydro-D-gluconate 47,777 2,930 21,494 3,999 90,849 4,764 0.237 *** 1.902 ###

Oxalate 44,511 2,459 48,639 3,025 27,020 2,378 1.800 *** 0.607 ###

Tryptophan 647,430 23,608 1,366,119 100,129 1,584,205 58,633 0.862 / 2.447 ###

Glutamate 253,094 9,911 384,958 35,729 384,612 16,588 1.001 / 1.520 ###

Hydroxyproline 26,782 1,974 17,148 1,951 17,583 2,030 0.975 / 0.657 ##

Salicylic acid 4,870 1,788 72,167 12,248 57,320 7,503 1.259 / 11.771 ###

Pyruvate 121,954 5,245 183,553 22,838 184,240 7,253 0.996 / 1.511 ###

Homocysterate 11,932 344 14,822 1,109 13,267 310 1.117 / 1.112 ##

Cystathionine 10,857 625 13,618 1,322 17,869 1,568 0.762 / 1.646 ###

2-Hydroxybutyrate 279,219 12,481 421,962 23,064 405,608 28,986 1.040 / 1.453 ###

3-Hydroxybutyrate 52,649 3,298 79,377 10,282 85,759 13,390 0.926 / 1.629 #

Gluconic acid 105,169 4,261 289,949 39,667 203,681 34,215 1.424 / 1.937 ##

Indole-3-propanate 55,659 16,898 8,531 1,748 5,464 801 1.561 / 0.098 ##

Glycerol 400,975 13,803 290,401 11,659 303,966 15,733 0.955 / 0.758 ###

Cholesterol 822,261 17,789 690,461 14,851 684,060 16,272 1.009 / 0.832 ###

Alpha-tocopherol 116,918 2,949 93,627 2,218 94,284 2,954 0.993 / 0.806 ###

Deoxyadenosine 23,123 1,541 17,568 2,255 13,041 1,288 1.347 / 0.564 ###

Thymine 544,496 17,903 518,803 20,345 457,002 25,215 1.135 / 0.839 ##

Inosine 65,657 2,868 28,268 3,939 35,665 2,829 0.793 / 0.543 ###

NADP+ 24,365 1,068 23,264 1,803 19,968 712 1.165 / 0.820 ###

The data were not logarized and expressed as mean ± SE. Fold change (FC) was calculated by the original, non-logarized data directly. Statistical significance was evaluated by using

two-tailed t-test with equal variance, after ANOVA assessment of the variance. ***, **, *: p < 0.001, 0.01, 0.05, respectively, between MI and non-MI chest pain cases; ###, ##, #: p <

0.001, 0.01, 0.05, respectively, between non-MI chest pain cases and controls. “/” represents the statistical significance of p-values more than 0.05.

(Figure 3H). Alanine, aspartate, and glutamate metabolism (p <

0.01, FDR < 1%) deserve attention in MI as well.
The pathway of pyrimidine metabolism was deranged in the

MI cases, as shown by the dramatic changes in dU and uracil.
Figure 4D shows metabolites and metabolic enzymes in the dU-
related pathway.

Methionine, dU (Deoxyuridine), and
Homoserine Are the Main Markers for MI
Occurrence
A combined biosignature of homoserine, IDP, and 2-
ketoglutarate discriminated MI from non-MI chest pain
inpatients with high accuracy [Supplementary Figure 3I, area
under the ROC curve (AUC) = 0.98, sensitivity = 94.1%,
specificity= 100%].

The potential capacity of each discriminant metabolite to
diagnose MI (MI vs. non-MI chest pain cases) was assessed
by ROC analysis. Notably, although pathway analysis did
not draw our attention to the methionine-related metabolic
module, methionine and homoserine showed their potential in
distinguishingMI from non-MI cardiac cases. Homoserine (AUC
= 0.94, specificity = 100%, sensitivity = 81%) was more specific
for MI diagnosis but less sensitive than methionine (AUC =

0.96, specificity = 94.6%, sensitivity = 89.4%) (Figures 3J,K).

dU also scored highly, with an AUC over 90% (Figure 3L). dU
level is also significantly higher in the proBNP-positive group
than in the proBNP-negative chest pain group (Figure 4H).
Some other metabolites that showed MI diagnostic potential
were 2-ketoglutarate, arginine, 2-dehydro-D-gluconate, uracil,
etc (Table 4).

cTnT, CK-MB, AST, LDH, and HBDH are well-recognized
indicators involved in myocardial damage and infarction. As
candidate markers of MI, methionine, dU, and homoserine
were significantly and positively correlated with LDH,
HBDH, and AST (Supplementary Figure 3B), but not
with cTnT or CK-MB. Six metabolites, 2-hydroxybutyrate,
3-hydroxybutyrate, homocysteine, palmitic acid, stearic
acid, and 1-monooleoylglycerol, were positively and
significantly correlated with both cTnT and CK-MB
(Supplementary Figure 3C).

Some other metabolites that showed good diagnostic potential
were cysteine, 2-ketoglutarate, IDP, and uracil (Table 4).

Traditional CAD Risk Factors and Cardiac
Function Influence the Metabolic Pattern
Correlation analysis showed that methionine, homoserine,
homocysteine, and dU were all affected by smoking
history, but none was obviously perturbed by hypertension
(Supplementary Table 4). Moreover, to assess the role of
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FIGURE 3 | Differential metabolites and pathways involved in the MI group. (A) Samples are divided into three groups: control (n = 84), MI (n = 85) cases, and non-MI

chest pain cases (n = 61); or four groups: control (n = 84), MI cases (n = 85), UA (n = 34), and the other non-MI cardiac cases (n = 27) when OPLS-DA analysis is

applied. (B) Plasma methionine, deoxyuridine, and homoserine levels spike in the MI group. (C) Succinate, inosine, and arginine levels drop as CAD progresses to MI.

(D) Gluconic acid and isoleucine levels increase as CAD progresses to MI (relative abundance is shown in logarized form: mean with SD, ***p < 0.05). (E) Venn

diagram shows discriminant metabolites can be classified into regions A, B, and C. (F) Pathway analysis of differential metabolites in Venn A and B regions (control vs.

non-MI chest pain cases). (G) Pathway analysis of differential metabolites in Venn C and B (MI vs. non-MI cases). There is a remarkable change of arginine

biosynthesis and alanine, aspartate, and glutamate metabolism. (H) Pathway analysis of differential metabolites in Venn C. There is a remarkable change of arginine

biosynthesis and alanine, aspartate, and glutamate metabolism. (I) Unadjusted and adjusted (adjusted for age, gender, LDL-C, HDL-C, smoking/diabetic/hypertensive

history) odds ratio of methionine, deoxyuridine, and homoserine. (J) Receiver operating characteristic curve (ROC) analysis of methionine [area under the ROC curve

(AUC) 96.43%, sensitivity 89.4%, specificity 94.59%]. (K) ROC analysis of homoserine (AUC 94.31%, sensitivity 80.9%, specificity 100%). (L) ROC analysis of

deoxyuridine (AUC 91.66%, sensitivity 80.9%, specificity 100%) (***p < 0.001).

these metabolites as risk factors for the prediction of MI
occurrence, OR values were calculated between the MI
and non-MI groups. Homoserine, dU, and methionine had
high scores (Table 4). After adjusting for age, sex, LDL-
C, HDL-C, smoking/diabetes/hypertension history, and
logOR(MI/non−MI) of methionine, homoserine, and dU, all
had ORs > 1 (MIs vs. non-MIs) (Figure 3I). In the subgroup
analyses of smoking/non-smoking, hypertensive/normotensive,
diabetic/non-diabetic, aged 45–54/55–65, and male/female, the
means of homoserine, methionine, and dU were all higher in the
MI cases (Table 5). It shows that higher methionine, homoserine,
or dU plasma level increases the risk of chest pains being
diagnosed as MI.

As a clinical indicator of cardiac function in MI, positive
NT-proBNP represents cardiac dysfunction. Methionine,
homoserine, and deoxyuridine were further elevated
in NT-proBNP-positive cases. Pathway analysis of the
discriminant metabolites (Supplementary Table 5) between
the NT-proBNP-positive and NT-proBNP-negative groups
suggested that only arginine biosynthesis was severely
impaired (p < 0.001, FDR < 1%), indicating that arginine

biosynthesis is closely associated with cardiac function
(Supplementary Figure 3A).

DISCUSSION

Potential Markers of MI
This study identified a panel of discriminant metabolites that
were also suggested as potential markers of MI in previous
reports, such as taurine, methionine, leucine, isoleucine, valine,
ornithine, tryptophan, citrate, and 2-ketoglutarate. Arginine
biosynthesis and purine and pyrimidine metabolism pathways
were also found to be seriously influenced in MI plasma samples.
Among the differential metabolites between MI cases and non-
MI cases, 10 of them in the MI group had more than twice the
abundance as in the non-MI group (MIs/non-MIs, FC > 2); 17
metabolites had less than half the abundance as in the non-MI
cases (MIs/non-MIs, FC < 0.5).

Elevated Markers in MI Cases
The pyrimidine metabolism pathway was also reprogrammed
in MI cases. However, as an intermediate metabolite in

Frontiers in Cardiovascular Medicine | www.frontiersin.org 11 April 2021 | Volume 8 | Article 652746

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Aa et al. Risk Markers of Myocardial Infarction

FIGURE 4 | Methionine and deoxyuridine (dU)-related pathways in plasma. (A) Methionine (Met) abundance-related pathway in plasma. (B) The Met-related enzyme

MTR is significantly* decreased and CBS is significantly higher in MI cases (n = 31) compared with healthy individuals (n = 21). (C) The Met-related enzyme

MetRS(MARS2) abundance in the myocardium of murine MI models (n = 36) is downregulated* compared with control (n = 23), while human plasma MetRS remains

unchanged. (D) dU-centered metabolism in plasma cells. (E) dU-related enzymes CDA, UPB1, and UPP1 are significantly* higher in the MI group (n = 31) plasma

compared with those in healthy individuals (n = 21). (F) dU-related intermediates uracil, uridine, and dCMP significantly* dropped in MI cases (n = 85) compared with

those in healthy individuals (n = 84). (G) Neutrophils, monocytes, lymphocytes, and white cell counts of non-MI cases (n = 34) and MI cases (n = 74). (H) dU is

significantly* higher in the NT-proBNP(+) group (n = 104) than in the NT-proBNP(–) group (n = 29). (A,D): red indicates upregulated metabolites or enzymes, blue

indicates the downregulated, black indicates the unchanged, and gray indicates undetected metabolites. *Student’s t-test, p < 0.05.

pyrimidine metabolism, dU has never been suggested to play
a role in cardiovascular diseases before. Previously, reports
demonstrated how exogenous dU largely abolished the uptake
of thymidine in bone marrow cells and how dU can also slow
down the incorporation of deoxyguanidine and deoxyadenosine
into DNA (22, 23). Moreover, elevation of dU has been
identified as a potential adverse factor for nucleotide pool
balance and mitochondrial function in the case of mitochondrial
neurogastrointestinal encephalomyopathy (24, 25). Some studies
reported the relations between dU accumulation and cancer
progression (26). It is speculated that a high dU level may be a
risk for MI patients because it may lead to problems about DNA
incorporation. Consistent with a previous report suggesting the
relationship of dU with insulin resistance (27), our correlation

analysis also suggested that dU is partially affected by diabetes
(correlation analysis vs. diabetes, p < 0.05, Pearson’s r = 0.23), in
addition to tobacco use and HDL-C level.

Accumulated metabolites in the MI plasma sample
demonstrate abnormal methionine and cysteine metabolism.
In this metabolic module, methionine is a precursor of
homocysteine and homoserine is utilized in the biosynthesis
of methionine. Homoserine was reported as a serum marker
for cardiac disease in atherosclerosis patients with stent
restenosis (28). A high level of methionine has been identified
as atherogenic (29) and metabo-toxic (30). As a precursor of
homocysteine, methionine elevation is supposed to be a negative
signal for the development of CAD. A previous study showed
that methionine in CAD cases is significantly higher than in
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TABLE 4 | Differential metabolites and the diagnostic potential between MI and non-MI chest pain cases.

Differential metabolites AUROC 95% CI Sensitivity (%) Specificity (%) LogOR 95% CI

Homoserine, IDP, and α-ketoglutarate 0.9810 0.9614–1.0000 94.10 100 3.02 2.12 to 3.93

Methionine 0.9643 0.9309–0.9978 89.40 94.60 3.48 2.01 to 4.94

Homoserine 0.9431 0.893–0.9932 80.90 100 1.61 1.04 to 2.18

α-Ketoglutarate 0.9390 0.8876–0.9905 100 0.00 −0.11 −0.28 to −0.03

Uracil 0.9166 0.8585–0.9747 100 0.00 −2.38 −3.45 to −1.32

Deoxyuridine 0.9166 0.8462–0.987 80.90 100 3.01 1.71 to 4.30

2-Dehydro-D-gluconate 0.9040 0.8362–0.9717 2.10 100 −1.69 −2.53 to −0.84

Cysteine 0.8976 0.8302–0.9651 100 0.00 −0.41 −0.61 to −0.20

Deoxyadenosine monophosphate 0.8976 0.8335–0.9618 100 0.00 −5.57 −8.61 to −2.53

IDP 0.8838 0.8124–0.9553 100 0.00 −5.15 −7.86 to −2.44

Glyceric acid 0.8758 0.8022–0.9493 100 0.00 −1.53 −2.08 to −0.98

Citrate 0.8568 0.7774–0.9362 100 0.00 −1.69 −2.50 to −0.88

Succinate 0.8562 0.7768–0.9357 100 0.00 −1.48 −2.14 to −0.83

Pantothenate 0.8332 0.7452–0.9213 100 0.00 −0.98 −1.36 to −0.59

Xanthine 0.8240 0.7312–0.9168 2.10 100 −1.06 −1.46 to −0.65

Arginine 0.8235 0.7319–0.9151 2.10 100 −0.82 −1.10 to −0.53

Logarization transformation of the data was applied to the data before the calculation.

TABLE 5 | Mean of deoxyuridine, methionine, and homoserine in certain subgroups of the controls, non-MIs, and MI cases.

Risk factors Subgroups Deoxyuridine Methionine Homoserine Non-risk factors Subgroups Deoxyuridine Methionine Homoserine

Smokers Controls 4.22 5.04 5.82 Non-smokers Controls 4.24 5.05 5.8

Non-MI cases 4.22 5.03 5.76 Non-MI cases 4.22 5.03 5.75

MI cases 5.48*,# 5.44*,# 6.13*,# MI cases 5.45*,# 5.43*,# 6.11*,#

Diabetic Controls 4.22 5.04 5.8 Nondiabetic or insulin resistance Controls 4.24 5.05 5.8

Non-MI cases 4.2 5.03 5.75 Non-MI cases 4.21 5.04 5.73

MI cases 5.44*,# 5.43*,# 6.12*,# MI cases 5.34*,# 5.40*,# 6.09*,#

Hypertensive Controls 4.24 5.05 5.8 Normotensive Controls 4.22 5.04 5.8

Non-MI cases 4.22 5.03 5.75 Non-MI cases 4.22 5.04 5.73

MI cases 5.40*,# 5.42*,# 6.11*,# MI cases 5.37*,# 5.42*,# 6.10*,#

Age 45–54 Controls 4.29 5.07 5.83 Age 55–65 Controls 4.23 5.03 5.83

Non-MI cases 4.21 5.05 5.72 Non-MI cases 4.18 5.04 5.75

MI cases 5.30*,# 5.37*,# 6.13*,# MI cases 5.60*,# 5.45*,# 6.11*,#

Male Controls 4.22 5.05 5.8 Female Controls 4.28 5.05 5.82

Non-MI cases 4.22 5.05 5.77 Non-MI cases 4.23 5 5.72

MI cases 5.43*,# 5.44*,# 6.11* MI cases 5.32*,# 5.35*,# 6.10*,#

*MI vs. controls, p < 0.05; #MI vs. non-MI, p < 0.05.

All data were logarized before calculating, and the result showed the means of each subgroup.

controls and is a risk factor for CAD occurrence in unadjusted
OR analysis (31). Our data further showed that methionine
has the potential to be an independent biomarker for MI.
Notably, we found that the diagnostic performance of biomarker
candidates for MI varied with individual characteristics. When
we studied individuals with a history of diabetes, methionine
achieved an AUC score as high as 100% (sensitivity = 100.00%,
specificity = 100.00%). For non-diabetic inpatients, the AUC
score of methionine was only 73%, which is much lower than
that of diabetic inpatients.

Our study suggests that a higher methionine, homoserine, or
dU level has the potential in confirming MI diagnosis among
chest pains and in contributing to the occurrence of MI. They

could also be candidate predictors of futureMI, but they still need
to be further studied.

Moreover, methionine, homoserine, and dU also have the
potential of being independent predictors of lipid plaque
rupture. This is supported by the finding that logistic regression
showed that the logOR(ACS/Control) of dU is 40.767, methionine
10,596.739, and homoserine 434.394. After being adjusted for
age, gender, diabetes/hypertension/smoking history, and lipid
levels, the logOR(ACS/Control) of methionine is 158,368.17, the
logOR(ACS/Control) of dU is 37.185, and that of homoserine
is 628.728. The above data suggest that homoserine, dU, and
methionine also have the potential to be indicators of ACS
occurrence, which also has the potential to indicate coronary lipid
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plaque rupture. However, their ability to predict future MI or
ACS occurrence needs further cohort studies.

Decreased Metabolites in MI Cases
Both high level and low level of risk markers in plasma were
detected in the MI. Among all the discriminant metabolites
that declined in MI cases, arginine was the most noteworthy
(Figure 3C). Arginine ROC analysis showed an AUC = 0.8865
(MIs vs. non-MIs). Our study showed that as cardiac damage and
function worsened (further elevation of cTnT, AST, CK-MB, and
NT-proBNP levels), these plasma arginine biosynthesis-related
metabolites dropped more (Table 3). Arginine is the primary
source of a vasodilator—nitric oxide. The lack of plasma arginine
hints a deficiency of vasodilator in MI patients. Some reported
that diminished global arginine bioavailability is predictive of
increased CAD risk (17).

Uracil, a pyrimidine found in RNA, was also significantly
decreased in MI plasma. Figures 4D,F show the relationship
of uracil and dU in a brief dU-centered pathway. The panel
implies the demand for damage repair after a heart attack. This
suggests that after MI occurs, the body continues to repair itself
by producing more RNA or even DNA (32).

Elevation of the ATP by-product inosine has been detected in
human plasma samples as early as 15min after exercise-induced
myocardial damage (7). However, the level of inosine dropped
in MI cases in this study. It is possible that circulating inosine
change after myocardial infarction is very time-sensitive: it rises
immediately after the myocardial damage but dropped within
1–2 days.

The Association Between Plasma Cells
and Circulatory Metabolites
Although the causes of metabolite alterations could bemany (e.g.,
gut microbial metabolites), we studied plasma transcriptomics
data because circulating substances can cross the cell membranes
and influence plasma metabolites most directly. We studied
transcriptomics of circulating cells of MI patients and healthy
controls from the GEO database (GSE48060). Differential genes
between MI and controls were determined as those FDR < 0.05,
FC > 1.2/FC < 0.8 (Supplementary Table 6). The metabolite–
gene–disease interaction network analysis from MetaboAnalyst
3.0 (https://www.metaboanalyst.ca/MetaboAnalyst/Secure/
network/MnetParamView.xhtml) showed the interaction
network between differential metabolites from our study and
differential genes from GSE48060 (Supplementary Figure 4A).
Glucose, uric acid, cholesterol, glycine, and arginine are all
important hubs with high-degree centrality.

Metabolite–gene interaction analysis showed that abnormal
plasma level of purine metabolism intermediates ADP, ATP,
GDP, and beta-alanine may relate to the expressions of
plasma cells’ ADCY7, YES1, PTGDR, etc. in mRNA level
(Supplementary Figure 4B).

Plasma Cells Cannot Explain the Elevation of Plasma

Methionine
Figure 4A shows methionine, homocysteine, and cystathionine
in a panel. Inconsistent with the observed elevation of

methionine, circulating transcriptomics of MI patients
(GSE48060) showed that among the methionine abundance-
related genes, methionine synthase 5-Methyltetrahydrofolate-
Homocysteine Methyltransferase (MTR) expression decreased
and Cystathionine β-synthase (CBS, converting homocysteine to
cystathionine) increased (p < 0.05, Figure 4B). The other genes
involved in methionine turnover, including methionine-tRNA
ligase (MetRS), MrsB/MrsA [MARS, reduced methionine-(S)-
S-oxide), and Mat2a/Mat1a (methionine adenosyltransferase),
remained statistically unchanged in plasma cells. The above
data showed that plasma cells tend to utilize methionine and
homocysteine to produce more cystathionine in MI blood
samples. Considering that plasma cells cannot explain the
elevation of plasma methionine, it is more likely that damaged
cardiac tissues (or other tissues/germs) are responsible for that.
A transcriptomics study of MI mouse model (induced by left
anterior descending ligation, GEO accession: GSE775) revealed
that in ischemic cardiac tissue, MetRS decreased significantly
(p 0.05) in MI mouse cardiac samples, and the utilization of
methionine is handicapped (Figure 4C).

dU Abundance Is Likely to Be Related to Blood Cells
Unlike methionine, the elevation of dU is likely to be related
to injured cardiomyocytes or blood cells. Normally, little dU
and purines can be detected in the plasma of a healthy
volunteer. When there is pathological change of the tissue or
the cells, intracellular substances are released and enter into
the circulation system. According to the human metabolome
database (HMDB0000012), dU is detected in the blood. However,
we only identified dU peak in plasma, not in serum. According to
GSE48060, cytidine deaminase (CDA) and uridine phosphorylase
1 (UPP1) are upregulated in MI-circulating cells (p < 0.05). CDA
catalyzes the formation of deoxyuridine from deoxycytidine and
UPP1 catalyzes the reversible transformation of dU to uracil, and
the above two upregulated enzymes can lead to dU elevation.
Figure 4D shows the metabolites and metabolic enzymes in the
dU-related pathway.

CDA and UPP1 are both highly enriched in immune cells
(mainly in neutrophils and monocytes). Immune cells increased
in MI plasma samples. Figure 4G shows white blood cell (WBC)
counts, neutrophil (NE) counts, monocyte (MO) and lymphocyte
(LY) counts, and dU abundance in MI and non-MI cases. A
previous study (GSE103182) showed that STEMI patients feature
more neutrophils and CDA mRNA in plasma than NSTEMI
patients. Consistent with this finding, our data showed that in the
STEMI group, both dU and neutrophil counts were higher than
those in the NSTEMI group (Supplementary Figure 3G).

On the one hand, dU originates from plasma neutrophils,
and it could also originate from damaged and remodeling
hearts. Our study on transverse aortic constriction (TAC)
mouse models showed that cardiac CDA mRNA expression
increased as BNP and ANF mRNA levels increased
(Supplementary Figures 3D–F,H). It is possible that damaged
human heart could also expressed more CAD and produce more
dU. Hopefully, more plasma single-cell information (33, 34)
and omics data (e.g., cfDNA methylome (35)) will reveal the
mechanism behind the changes very soon.
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Limitations
As indicated by adjusted and unadjusted OR values, traditional
risk factors, such as diabetes, hypertension, and smoking, had
confounding effects on the candidate MI metabolite markers
(36). In this study, diabetes and smoking also ranked as the
marked risk factors for MI occurrence, but the history of
hypertension was not (OR < 1, p > 0.05). As for the key
substances in lipid metabolism, higher levels of TC and TG are
risk factors for MI groups.

However, the OR of LDL-C scored 0.58 between cardiac
chest pains and control, indicating that LDL-C is not a
risk for healthy controls to develop into cardiac chest pains
(Supplementary Table 6). Similarly, hypertension has been
recognized as a risk for developing CAD, but it is not indicated
as a risk factor in this study on MI. Considering that around
65% of inpatients had received medical treatment either with
antilipidemic or antihypertensive drugs, or both, before blood
collection, their HDL-C, LDL-C, and blood pressure levels may
had been normalized or improved, so as to bring deviation of
the data.
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