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Background: Branch vessel occlusion is reported in endovascular repair of aortic

pathology. This study aimed to evaluate the hemodynamic indicators associated with

in-stent thrombosis (IST) of a branched stent-graft (BSG) after endovascular aortic repair

(EVAR) of a complex abdominal aortic aneurysm.

Methods: A retrospective evaluation was performed based on the computed

tomography (CT) scans and clinical data of three patients who underwent multi-branched

endovascular repair. Patient-specific 3-dimensional models were reconstructed, and

hemodynamic analysis was performed for IST. Hemodynamics-related parameters

including time-averaged wall shear stress (TAWSS), oscillatory shear stress index (OSI),

and relative residence time (RRT) were compared among the individual patients.

Results: The flow velocity, TAWSS, OSI, and RRT were radically changed in the area of

the IST. In BSGs, IST tended to occur in the regions of hemodynamic alteration near the

bends in the device, where a decreased flow velocity (<0.6 m/s) and TAWSS (<0.8 Pa)

and an elevated OSI (>0.2) and RRT (>5 s) were consistently observed.

Conclusions: Hemodynamic perturbations in BSGs cause a predisposition to IST,

which can be predicted by a series of changes in the flow parameters. Early

hemodynamic analysis might be useful for identifying and remediating IST after

multibranched endovascular repair.

Keywords: in-stent thrombosis, branched stent-grafts, computational fluid dynamic, endovascular aortic repair

(EVAR), biomechanic
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INTRODUCTION

The endovascular aortic repair (EVAR) has emerged as the “first
choice” to treat abdominal aortic aneurysm (AAA) (1). For
patients with thoracoabdominal or para-renal aneurysms that
that not anatomically amenable to standard EVAR (2), a variety
of approaches (3–5), including the physicianmodified stent grafts
(PMSGs), the custom-made devices (CMDs) and the off the
shelf devices, have been reported. However, the branched stent-
graft (BSG) occlusion caused by the in-stent thrombosis (IST)
has been reported in the clinical studies (6, 7), often leading to
organ malperfusion (8). Morphological analysis alone might be
insufficient to comprehensively evaluate the IST. Hemodynamics
is considered to play a critical role in the formation and
progression of IST (9, 10). Hemodynamic parameters might
reveal the flow status of a BSG and provide quantifiable and even
predictable evaluations of the IST, thus helping to informmedical
decision making. However, the mechanism and hemodynamic
characteristics of IST in BSG are poorly understood. Therefore,
we aimed to evaluate the IST-related hemodynamic features of
stent-grafts in this study.

METHODS

Patient Data
The CT images of three patients were imported into Mimics
software (v19.0, Materialize, Ann Arbor, MI, USA) to build three-
dimensional (3D) models. All CT scan images were obtained
from Peking University People’s Hospital (Beijing, China).
Informed consent was obtained from all the patients, and the
study protocols were approved by the Ethical Review Board
and the Statistics Department of Peking University People’s
Hospital (No. 2017 PHB166-01). The pre- and postoperative
CT scan images of three cases are shown in the upper and
lower rows of Figure 1A, respectively. The mesh models of
the three cases (based on the CT scan images) were all
obtained at the 1 month follow-up and shown in Figure 1B.
All three of these patients with complex AAAs were treated
with physician-modified stent grafts (PMSGs) repair for the
aorta (EndurantTM, Medtronic, Santa Rosa, Calif, USA) and
the visceral arteries (ViabahnTM, W. L. Gore, Flagstaff, AZ,
USA). The patients were administrated with anti-platelet (aspirin
100 mg/per day) and anticoagulants (Rivaroxaban 10 mg/per
day) during the first month, and only administrated with anti-
platelet (aspirin 100 mg/per day) thereafter. The procedural
details are illustrated in Figure 2. The orientation of the proximal
part of the branched stent grafts was modified based on the
measurement of the preoperative CTA. The orientation of the
cuff branches was preoperatively analyzed, and the stent-grafts

Abbreviations: AAA, abdominal aortic aneurysm; EVAR, endovascular aortic

repair; BSG, branched stent-graft; IST, in-stent thrombosis; CT, computed

tomography; CA, celiac artery; SMA, superior mesenteric artery; LRA, left renal

artery; RRA, right renal artery; TAWSS, time-averaged wall shear stress; OSI,

oscillatory shear stress index; RRT, relative residence time; PMSGs, physician

modified stent grafts; CMDs, custom made devices.

were deployed according to the preoperative measured angle and
clock bit.

The celiac artery (CA), superior mesenteric artery (SMA), left
renal artery (LRA), and right renal artery (RRA) were repaired
in Case 1; the SMA and the bilateral renal arteries were repaired
in both Case 2 and Case 3. In order to unify the models for
comparison between different cases, the celiac artery in the
Case 1 model was removed. In the case 2, the adopted model
was the one with actual thrombosis developed in the BSG,
which was confirmed by the CT scan (Figure 3). The models
were smoothed and optimized in Geomagic Studio software (3D
System, Morrisville, NC, USA) for the meshing process.

Mesh Generation and Computational Flow
Dynamics (CFD) Simulations
Models were meshed using ICEM software (ANSYS, Inc.,
Canonsburg, PA, USA). In order to achieve the same degree of
accuracy for all simulations, the same maximum global base cell
size of 2mm was used for each model. A hybrid meshing method
(11) comprising both tetrahedral and hexahedral elements was
used in all models. In addition, prism layers were created near
the boundaries to ensure the accuracy of the model meshing.
The total number of elements in models of case 1–3 is 993470,
805931, and 785617, respectively. The meshes of three models
are shown in Figure 1B. The mesh sensitive analysis did not
reveal any significant difference of the vessels among 3 cases.
Furthermore, the blood flow of the visceral arteries was not
obviously altered between the cases. There was no significant
association observed for pre and post-operative anatomy. The
hemodynamic analysis did not recognize any anomaly alteration
of hemodynamic parameters at the first month and 6 months
among cases.

Boundary Conditions
The simulations were performed under pulsatile flow conditions,
with the velocity profile (Figure 1C) as the inlet boundary
conditions (12–15). Outflow conditions were used as outlet
conditions, with the volume flow divided into 20.2% to the SMA,
19% to each renal artery, and 41.8% to the infrarenal aorta
(16, 17). The flow ratio of each branch is marked in Figure 1B.

Assumptions and Governing Equations
The blood was assumed to be an incompressible Newtonian fluid
(18) with a dynamic viscosity of 0.0035 kg·m−1·s−1 and a density
of 1,050 kg/m3. The numerical simulation was based on the
Navier-Stokes equation (neglecting gravity) and the conservation
of mass:

ρ

[

∂
−→u

∂t
+ (u · ∇)

−→u

]

+ ∇p− µ∇2−→u = 0 (1)

∇ ·
−→u = 0 (2)

where −→u and p, respectively, represent the fluid velocity vector
and the pressure, while ρ and µ, respectively, are the density
and viscosity of blood. The CFD software package ANSYS Fluent
14.5 (ANSYS, Lebanon, NH, USA) was used for the simulations.
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FIGURE 1 | Computed tomography (CT) images and modeling images. (A) The CT angiograms (pre- and postoperative) of the three cases; the preoperative CT

angiograms of these cases are shown in the top row, and the postoperative CT angiograms of the same cases are shown in the bottom row. (B) Meshes of the three

models and the flow split ratio of each single branch vessel in the three cases. (C) Inlet velocity waveform of the aorta (four typical moments are marked in a cycle: t1
= 0.125 s, t2 = 0.225 s (the peak systolic moment), t3 = 0.435 s (the end systolic moment), and t4 = 0.62 s).

The pressure-based solver and SIMPLE algorithm were used
for calculation.

The convergence criterion was set to 10−5 for both continuity
and velocity residuals. A uniform time step of 0.005 s was chosen
for all simulations. For each model, four cardiac cycles were
carried out in each simulation process to obtain a periodic
solution (19), and the results of the final cycle were used for
post-processing and analysis (20).

Wall Shear Stress (WSS)-Related
Parameters
This study focused particularly on the various near-wall
hemodynamic (NWH) parameters that have been shown to have
an effect on thrombus formation. Therefore, the time-averaged
wall shear stress (TAWSS), used to describe the general features of
WSS, in the pulsatile cycle was analyzed. The TAWSS was defined
as follows:

TAWSS =
1

T

∫ T

0
|WSS (s, t)| · dt (3)

where T is the duration of the cardiac cycle, WSS is the
instantaneous wall shear stress vector, and s is the position on
the vessel (or stent-graft) wall.

The oscillatory shear stress index (OSI) is a parameter that can
describe the changing frequency of the WSS direction. It ranges
from 0, where the flow is unidirectional and does not oscillate, to
0.5, where the WSS direction frequently changes.

The OSI on the inner wall of the models was calculated as
follows (21, 22).

OSI = 0.5

[

1−

(

| 1T

∫ T
0 WSS (s, t) · dt|

1
T

∫ T
0 |WSS (s, t)| · dt

)]

(4)

where WSS is a vector parameter whose direction changes with
the cardiac cycle time, T is the duration of the cardiac cycle, and
s is the position on the vessel (or stent-graft) wall.

The relative residence time (RRT) is generally used to
characterize the length of time that particles stay near the wall
(23). This metric can reflect both OSI and TAWSS (24). The RRT
is defined as:

RRT =
1

(1− 2 · OSI) · TAWSS
(5)
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FIGURE 2 | Representative illustration of the construction of physician-modified branched stent-grafts and the process of stent-graft implantation. (a) Splitting a Gore

ViabahnTM into 3 sections. (b) Sewing the caudally directed cuff to a Medtronic EndurantTM bifurcated stent-graft. (c) Completion of the modification. (d) Top view of

the visceral cuff showing no gutters. (e) The operation was performed using right femoral and left brachial access. (f) A Valiant CaptiviaTM thoracic stent-graft was first

deployed at the descending aorta. (g) Implantation of the main body of the modified Endurant bifurcated stent-graft through the right femoral approach and

cannulation of the celiac arteries preferentially through left axillary artery access using a long sheath and an extra-stiff guidewire. (h) Sequential bridging of the visceral

arteries with Viabahn while reinforcing the bilateral renal arteries using a self-expandable bare metal stent dilated from the target vessel to the cuff. (i) The distal iliac

limb extension was docked, and flow was restored to the lower limbs (Department of Vascular Surgery, Peking University People’s Hospital; all rights reserved).

Data Analysis and Statistics
Qualitative and quantitative analyses of the full dataset were

performed to observe local/global influences of the parameters

of interest and their inter-correlation. Depending on the
normality of the data, a 2-tailed t test or Mann-Whitney

rank sum test was used to examine differences between

continuous variables at the 4 time points (Replicated 3 times
for each sections). The level of significance among the 4

hemodynamic parameters of interest (Velocity, TAWSS,

OSI, RRT) were determinated using one-way analysis
of variance (ANOVA) followed by Dunnett’s multiple

comparisons test. Statistical analyses were performed using
R (R Foundation for Statistical Computing, Vienna, Austria;

http://www.r-project.org) and GraphPad Prism R© version 7

(GraphPad, San Diego, CA); statistical significance was defined
as p < 0.05.

RESULTS

Clinical Outcomes
Table 1 shows the demographic characteristics and clinical
outcomes of the three patients. No complications were observed
during the postoperative period in any of the three cases. During
the follow-up period, Case 2 showed abdominal pain at 6 months
after hospital discharge. CT angiography revealed that there was
thrombosis in the BSG of the SMA and LRA (Figure 3). However,
no IST was detected in either Case 1 or Case 3 (Figure 3).

Flow Velocity
Figure 4 shows the flow velocity in the three cases at four
successive moments in the last cardiac cycle using four
simulations (t1 = 0.125 s, t2 = 0.225 s, t3 = 0.435 s, t4 =

0.62 s). In order to reveal the flow characteristics of the BSG,
the parameters are illustrated on the branched arterial region.
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FIGURE 3 | The follow-up CT scans of the three cases. Case 1 had no thrombi in the branches, Case 2 had branched stent-graft thrombosis (marked in green), and

Case 3 had no thrombi in the branches.

TABLE 1 | Demographic characteristics and clinical outcome of three cases.

Case 1 Case 2 Case 3

Height (cm) 156 180 172

Weight (kg) 61 90 79

BMI 25.1 27.8 26.7

Gender Female Male Male

Age 65 61 68

Follow-up time (months) 24 20 16

Blood pressure (mmHg) 130/91 120/81 150/90

BSG-IST No Yes No

Velocity (m/s) >0.6 <0.6 >0.6

TAWSS (Pa) >0.8 <0.8 >0.8

OSI <0.2 >0.2 <0.2

RRT (s) <5 >5 <5

Stent-graft EndurantTM,

36-14-120mm;

6*150mm,

ViabahnTM

EndurantTM,

38-14-120mm;

6*150mm,

ViabahnTM

EndurantTM,

30-14-120mm;

6*150mm,

ViabahnTM

BMI, body mass index; BSG, branched stent-graft; IST, in-stent thrombosis; TAWSS,

time-averaged wall shear stress; OSI, oscillatory shear stress index; RRT, relative

residence time.

The streamlines for the three cases are shown in Figures 4A–F,
and the magnitude of the velocity is indicated by the color.
The locations of thrombosis in Case 2 were precisely matched
with the identified low-velocity areas in Figure 4C where IST
occurred in the BSGs. In order to investigate the velocity change
in these low-velocity regions, cross-sections were taken from the

models of Case 1, Case 2, and Case 3. The velocity contours
in different sections are also shown (Figures 4B,D,F). It was
observed that the thrombosis/IST areas in Case 2, marked with
black circles (Figure 4C), seemed to have lower velocity than
the corresponding areas in Case 1 (Figure 4A) and Case 3
(Figure 4E) and lower velocity than the adjacent upstream and
downstream areas in Case 2.

WSS, TAWSS, OSI, and RRT
Figure 5 shows the WSS distributions of the BSG through four
successive moments in a cardiac cycle in each of the three cases.
There was no remarkable change in the WSS along the BSG in
Case 1 or Case 3. Nevertheless, low-WSS regions appeared over
the course of the pulse cycle in Case 2, and the regions matched
the IST area. Therefore, the hemodynamic parameters, including
TAWSS, OSI and RRT, were analyzed to visualize the quantitative
characteristics of the three cases. Contours of TAWSS, OSI and
RRT on the walls of the stent-grafts are shown in Figures 6A–C.
We found that the IST areas consistently matched the regions
in which TAWSS, OSI and RRT were significantly altered in the
BSGs. The IST area had a consistently lower values of velocity
(<0.6m/s) and TAWSS (<0.8 Pa), whereas a higher values of
OSI (>0.2) and RRT(>5 s) than the non-thrombotic regions
of the BSG.

DISCUSSION

Since PMSGs were introduced for the repair of complex
aortic aneurysms (25), studies have amended the technique
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FIGURE 4 | Velocity streamlines and continuous contours of velocity through a cardiac circle in each of the three cases. (A,C,E) show the velocity streamlines of the

three cases at four typical moments (t1–t4) during a cardiac cycle; (B,D,F) show the locations of the sections in each model and the contours of flow velocity in the

marked sections at four typical moments (t1–t4) during a cardiac cycle in the three cases.
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FIGURE 5 | The wall shear stress (WSS) distributions of the stent-grafts in three cases. The WSS is presented at the same four selected moments (t1-t4) in each case.
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FIGURE 6 | The time-averaged wall shear stress (TAWSS), oscillatory shear index (OSI), and relative residence time (RRT) distributions of the three cases. (A) TAWSS

distributions. (B) OSI distributions. (C) RRT distributions.
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and demonstrated its feasibility and durability for patients
with complex aortic aneurysms (26–28). Despite high technical
success, however, visceral branch IST remains one of the
leading complications after BSG implantation (29, 30). The
flow characteristics of the BSG and the relationship between
these characteristics and the IST remain largely unknown.
Therefore, CFD with patient specific models were applied
in this study to evaluate the hemodynamic mechanism of
thrombosis within the visceral branches and explore IST-related
hemodynamic parameters.

Low velocity is known to be associated with thrombosis. As
shown in the velocity streamline diagram (Figure 4), the BSGs
of Case 1 and Case 3 had higher velocities and more uniform
flow patterns than the BSG of Case 2, and IST was observed
in the marked areas (black circles). In Case 2, the velocity was
significantly lower in the three marked (thrombosis) areas than
in the upstream and downstream areas of the BSG (Figure 4) or
in the corresponding locations of the other two cases.

Theoretically, low velocity induces a low TAWSS distribution
(31). Our result demonstrated that the regions with low TAWSS
(<0.8 Pa) (Figure 5) matched the regions with low flow velocity
(<0.6 m/s) (Figure 4). Owing to the relevance of theWSS-related
NWH hemodynamic parameters (Figure 6), we compared the
TAWSS, OSI (an index to evaluate the fluctuation of the blood
flow) and RRT and identified the consistent tendencies of these
parameters. It has been reported that low WSS, high OSI and
high RRT will promote platelet aggregation and ultimately lead
to thrombus formation (31–33). Conti et al. showed that the
femoro-popliteal in-stent thrombosis is characterized by larger
diameter, low tortuosity, low flow velocity, low helicity, and low
wall shear stress (34). Leg bending induces an overall increase
of arterial tortuosity, helix flow, and reduces flow velocity which
may furtherly promote the luminal area exposed to thrombosis
related hemodynamic parameters. However, compared to the
lower extremity, the stent-graft implanted in the visceral arteries
were relatively steady to the lumbar vertebra, which may produce
less helix flow rotation. Therefore, we used the established
parameter-oscillatory shear index (19, 35) instead of helicity to
address the turbulence in the endovascular aortic repair. In our
results, the flow characteristics of TAWSS, OSI, and RRT were
consistent in the non-thrombotic areas, whereas hemodynamic
alteration appeared solely in the IST area. By analyzing the
distribution of these parameters, we showed that the IST
areas (Figure 3) matched the low-velocity areas (Figure 4).
Furthermore, IST areas matched the areas of reduced TAWSS
(Figure 6A), elevated OSI (Figure 6B), and RRT (Figure 6C).
Our data have shown the hemodynamic parameters at the first
month rather the 6 months. The configurations of the 3 patients
with BSGs were not rigorously changed. The hemodynamic
parameters were not statistically different at the first month and
6th months. The abnormal hemodynamics properties may not
be observed at the very beginning. But it might be discovered
and used to anticipate early thrombosis in a retrograde
fashion. Together, these data demonstrated that hemodynamic
perturbations introduced radical changes in hemodynamic
parameters, which may predispose patients to IST. Alterations in
hemodynamic parameters may be able to predict IST.

In a systematic review of off-the-shelf or physician-modified
fenestrated and branched endografts, the author suggested that
off-the-shelf and physician-modified technology seems effective
and safe in both the elective and acute clinical outcome
for the treatment of complex aortic aneurysms (29). The
clinical outcomes of these techniques have been compared
and reported in the articles (3, 36). Until for now, there is
lack of literature that compared the hemodynamic differences
under PMSGs, CMDs, or Off-the-shelf devices. With similarity
in configurations, however, the hemodynamic environment
underlying these modalities were unknown and it should be
of great value to analyze the differences of hemodynamic
characteristics. A variable flow properties characterized by flow
separation, stagnation, low fluid velocity, and low WSS are
associated with thrombosis and stenosis (10, 37). The curvature
of the device and the change in diameter near the curved
region can both contribute to these hemodynamic changes. In
clinical practice, BSGs longer than the original vessels are almost
invariably required for conveniently cannulation in the treatment
of complex aortic aneurysms. Although a longer BSG would
provide more gradual changes in momentum and allow blood
flow to change gradually before reaching the target vessel (38), it
would result in a curved portion, where the blood flow would be
disturbed and thrombus-prone environments would be created.
The hemodynamic parameters are known to be influenced by
the highly curved and tortuous areas, which were commonly
seen in the endovascular management for the complex aortic
aneurysm. But what is not adequately described are, which
certain types of hemodynamic changes (due to highly angled
areas) were related to the in-stent thrombosis and whether these
changes were of wide suitability among different techniques. In
the present study, all three of the regions that developed IST after
the procedure were at the bend of the BSG, which suggested that
sharp curvature in a stent-graft adversely affects blood flow near
the curved section, thereby accelerating thrombus formation.
Therefore, we advocate preoperative planning to avoid sharp
curvature at the bends of endografts.

Note that the PMSGs is a non-standardized technique and the
long-term consequences of modifications remain unknown (39).

Research has illustrated the evolution from physician-
modified to company-manufactured fenestrated-branched
endografts in the treatment of complex and thoracoabdominal
aortic aneurysms (36, 39). Through the evolution of devices,
BSGs are typically used in multibranched endovascular aortic
repairs. Despite the refinement of stent-grafts, preoperative
design of the morphological configuration of the BSG should be
considered. Our results suggested that sharp curvature in the BSG
should be avoided and that early postoperative hemodynamic
assessments of the BSG could assist in detecting predisposition
toward IST after the operation. If the calculations identify
regions with significantly changed hemodynamics in the BSG,
special attention needs to be paid to these regions, as they may
have an increased risk of IST. Our data indicated that relatively
low velocity (<0.6 m/s) and TAWSS (<0.8 Pa) distributions and
high OSI (>0.2) and RRT (>5 s) distributions were associated
with the IST in the BSG. Therefore, high OSI and RRT and low
TAWSS may predict the areas where IST will develop.
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In contrast to the previous ideal model used to study branched
stent configurations (16, 38), the models used in this study were
derived from clinical cases, augmenting current knowledge with
“real-world” data. Moreover, the models in this study provided
important insights into the velocity and WSS distributions
of BSGs.

LIMITATION

This study has several limitations that should bementioned. First,
only the fluid domain of the blood vessel was used for simulation.
Although the interaction between stent-grafts and blood flow
with the pulsatility of the flow were not considered in this study,
the results are still reliable because it was a common practice in
CFD analysis for fenestration endograft (40). Second, the stiffness
and conformability of the bridging stents are important and it
should be addressed by rigorous mechanics analysis. However,
this condition cannot be achieved at present. Third, it should
be noticed that the PMSGs was used outside the instruction
for use and it should be used in the condition when validated
treatments are not available. PMSGs is a non-standardized
technique and the long-term consequences of modifications
remain unknown. Although the patient specific models may
improve computational simulation and integrate further details,
the sample size was limited in our study. We recommend further
evaluation with a large sample size, patient-specific boundaries,
and long-term follow-up to validate these findings.

CONCLUSION

This study found that anomaly hemodynamic parameters
predispose patients to IST within BSGs. Analysis of these
parameters in the early postoperative period may be beneficial
for identifying and remediating IST after multibranched
endovascular aortic repair.
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