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Background: Acute myocardial infarction (AMI) is associated with a poor prognosis.

Therefore, accurate diagnosis and early intervention of the culprit lesion are of extreme

importance. Therefore, we developed a neural network algorithm in this study to

automatically diagnose AMI from 12-lead electrocardiograms (ECGs).

Methods: We used the open-source PTB-XL database as the training and validation

sets, with a 7:3 sample size ratio. Twenty-One thousand, eight hundred thirty-seven

clinical 12-lead ECGs from the PTB-XL dataset were available for training and validation

(15,285 were used in the training set and 6,552 in the validation set). Additionally, we

randomly selected 205 ECGs from a dataset built by Chapman University, CA, USA and

Shaoxing People’s Hospital, China, as the testing set. We used a residual network for

training and validation. The model performance was experimentally verified in terms of

area under the curve (AUC), precision, sensitivity, specificity, and F1 score.

Results: The AUC of the training, validation, and testing sets were 0.964 [95%

confidence interval (CI): 0.961–0.966], 0.944 (95% CI: 0.939–0.949), and 0.977 (95%

CI: 0.961–0.991), respectively. The precision, sensitivity, specificity, and F1 score of the

deep learning model for AMI diagnosis from ECGs were 0.827, 0.824, 0.950, and 0.825,

respectively, in the training set, 0.789, 0.818, 0.913, and 0.803, respectively, in the

validation set, and 0.830, 0.951, 0.951, and 0.886, respectively, in the testing set. The

AUC for automatic AMI location diagnosis of LMI, IMI, ASMI, AMI, ALMI were 0.969 (95%

CI: 0.959–0.979), 0.973 (95% CI: 0.962–0.978), 0.987 (95% CI: 0.963–0.989), 0.961

(95% CI: 0.956–0.989), and 0.996 (95% CI: 0.957–0.997), respectively.

Conclusions: The residual network-based algorithm can effectively automatically

diagnose AMI and MI location from 12-lead ECGs.
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INTRODUCTION

Acute myocardial infarction (AMI) is the main cause of mortality
worldwide. The World Health Organization reported that ∼15.9
million patients worldwide had an AMI in 2015, of which more
than 3 million patients were diagnosed with acute ST-segment
elevation myocardial infarction (1, 2). The mortality rate of
patients with AMI is ∼30%, with 50% of those deaths occurring
before the patients arrive at the hospital (3). Early diagnosis and
revascularization were associated with an improved prognosis for
patients with AMI (4, 5). Therefore, early AMI recognition and
culprit lesion intervention are important.

An electrocardiogram (ECG), with its low price, high safety,
and fast reporting, is a routine examination for AMI diagnosis.
The Fourth Universal Definition of Myocardial Infarction lists
an ECG as an important element of AMI diagnosis (6). However,
AMI diagnostic ability is limited in developing countries, where
many patients with AMI are not diagnosed in time, which in
turn delays treatment with revascularization. Physician workload
and patient prognosis could be improved through deep learning
algorithms that can automatically identify and diagnose AMI.

A deep learning algorithm can capture multiple features of
an image and can automatically classify it (7). Deep learning
has been widely used in medical fields, one such application is
classifying 12-lead ECG results to automatically diagnose atrial
fibrillation (8), hypertrophic cardiomyopathy (9), anemia (10),
and other diseases. Therefore, the purpose of this study was
to develop a convolutional neural network for automatically
diagnosing AMI and evaluate the model’s performance.

MATERIALS AND METHODS

Data Collection
In this study, we used the open-access PTB-XL dataset as the
training and validation sets (11). The PTB-XL dataset includes
21,837 clinical 12-lead ECGs from 18,885 patients. The length of
each ECG signal is 10 s. Because 4,096 samples from the signal
of each ECG lead to use as the neural network input, we used
only the 500-Hz ECGs but not the 100-Hz ECGs as dataset. The
AMI diagnoses were extracted from the file ptbxl_database.csv.
Additionally, we used a dataset built by Chapman University,
Orange, CA, USA, and Shaoxing People’s Hospital, China, as
the testing set (https://figshare.com/collections/ChapmanECG/
4560497/2) (12). This dataset contains 12-lead ECGs from 10,646
patients. The length of each ECG signal is also 10 s and the
ECG frequency is 100Hz. There are 11 common heart rhythms
and additional cardiovascular diseases in this dataset, with the
images labeled by cardiovascular experts. The AMI diagnoses
were extracted from the file Diagnostics.csv.

Data Processing
Each ECG is a 12× 5,000 matrix (12 leads, 10 s duration, 500Hz
sampling), where the first (12) represents the space dimension
and the second (5, 000) represents the time dimension. We
extracted 4,096 samples from the signal of each ECG lead to
use as the neural network input. The original ECG data were
pre-processed before training. To eliminate ECG signal baseline

drift and low-power noise, we first used a low-pass filter on the
original data to obtain a baseline and zeroed the average value to
make the baseline flat. Next, we denoised the data by filtering the
high-frequency signals.

Data Splitting
Of the PTB-XL data, 30% were used for model validation
and the remainder were used for model training. There were
relatively few ECGs (only 41 cases) with an AMI diagnosis in
the database from Chapman University and Shaoxing People’s
Hospital. Therefore, we randomly selected 164 non-AMI ECGs
(four times the number of AMI ECGs) and merged them with
the AMI ECGs to form the testing set (205 cases in total).

Model Development
We used a residual network with a structure similar to that
of a convolutional neural network (13). This architecture
allows a deep neural network to be trained effectively by
skipping connections. The network consisted of a convolutional
layer (Conv) and four residual blocks, each of which had
two convolutional layers. The output of the last block was
fed back to a fully connected layer (dense) with a sigmoid
activation function. The output of each convolutional layer
was rescaled using batch normalization and fed into a rectified
linear activation unit (ReLU). Dropout50 was applied after non-
linearity. The filter length of the convolutional layer was 16.
Starting from the first convolutional layer and residual block
with 4,096 samples and 64 filters, 64 filters were added for
each subsequent residual block, and four times subsampling was
performed for each residual block. A convolutional layer with
maxpooling51 and a filter length of 1 (1 × 1 Conv) was included
in the skip connection to match the size of the main branch
signal. The average cross-entropy wasminimized using the Adam
optimizer 52 with default parameters and a learning rate (lr) of
0.001.When there was no improvement within seven consecutive
iterations when verifying the loss, lr was reduced by a factor
of ten. The initial value of the neural network weight was as
referenced in the literature (14), and the initial bias was 0. In the
optimization process, the final model was the one with the best
verification results after 40 epochs.

Because neural networks are initialized randomly, different
initializations usually produce different results. To show the
stability of the algorithm, we trained ten neural networks. The
hyperparameters of these neural networks were the same, but the
initializations were different. We chose the model in which the
micro-average accuracy was immediately above the median.

Furthermore, we performed an additional analysis to evaluate
the deep learning model performance in predicting the MI
location. The number of ECG per MI location in the Chapman
University and Shaoxing People’s Hospital dataset was small;
therefore, we did not use this dataset as the testing set in this
analysis. Alternatively, we used 10% of the ECGs in the PTB-
XL dataset as a testing set; the sample size ratio of the training
and validation sets was 7:3 in the remaining ECGs. The deep
learning model performance was evaluated in identifying five MI
locations, namely, lateral myocardial infarction (LMI), inferior
myocardial infarction (IMI), anteroseptal myocardial infarction

Frontiers in Cardiovascular Medicine | www.frontiersin.org 2 August 2021 | Volume 8 | Article 654515

https://figshare.com/collections/ChapmanECG/4560497/2
https://figshare.com/collections/ChapmanECG/4560497/2
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Chen et al. Acute Myocardial Infarction Detection

(ASMI), anterior myocardial infarction (AMI), and anterolateral
myocardial infarction (ALMI). Because the number of posterior
MI (PMI) locations in the PTB-XL dataset was very small (only
17 cases), and because this location is commonly identified in 18-
lead ECGs, we did not include it in the target identification object.

Statistical Analysis
Continuous variables are presented as mean ± standard
deviation, and categorical variables are presented as numbers
(percentages). Differences in baseline variables between groups
were ascertained using analysis of variance or the Kruskal-Wallis
test for continuous variables and the chi-squared test or Fisher’s
exact test for dichotomous variables. We created a receiver
operating characteristic (ROC) curve for the training, validation,
and test sets and used the area under the curve (AUC) to evaluate
the deep learning model performance in diagnosing AMI (15).
Additional indicators for evaluating model performance include
precision, specificity, sensitivity, and F1 score. Additionally, we
performed the adjusted ROC curve to evaluate the influence
of general metadata on the AUC. The statistical analysis was
performed using R software version 3.5.2.

RESULTS

The sample size of the training, validation, and testing sets and
the numbers of AMI ECGs and non-AMI ECGs are shown in
Figure 1. There were 15,285 ECGs in the training set, of which
3,440 were AMI ECGs and 11,845 were non-AMI ECGs. There
were 6,552 ECGs in the validation set, of which 1,864 were
AMI ECGs and 4,688 were non-AMI ECGs. Finally, there were
205 ECGs in the testing set, of which 41 were AMI ECGs and
164 were non-AMI ECGs. The electrocardiogram criteria for
AMI diagnosis is based on the 2012 joint ESC/ACCF/AHA/WHF

Task Force for the Universal Definition of Myocardial Infarction,
i.e., the new ST-segment elevation at the J point in two
anatomically adjacent leads (16). For example, Figure 2 shows
AMI ECG features with ST-segment elevation in two adjacent
leads (V3–V4), with r-wave/Q-wave formation, and inverted or
bidirectional T waves.

Baseline Characteristics
The baseline characteristics between patients with AMI ECGs
and those with non-AMI ECGs are shown in Table 1. In the
training set, patients with AMI ECGs were associated with higher
age, height, and weight and were less likely to be male (P <

0.05). In the validation set, patients with AMI ECGs were also
associated with higher age, height, and weight and were less likely
to be male (P < 0.05). In the testing set, patients with AMI ECGs
were associated with higher ages than those with non-AMI ECGs
(P < 0.05), but gender makeup was similar between the two
groups (P = 0.403).

Performance of the Deep Learning Model
The ROC curves for automatic AMI diagnosis in the training,
validation, and testing sets are shown in Figure 3. The AUC of the
training, validation, and testing sets were 0.964 [95% confidence
interval (CI): 0.961–0.966], 0.944 (95% CI: 0.939–0.949), and
0.977 (95% CI: 0.961–0.991), respectively. The adjusted AUC of
the training, validation, and testing sets were 0.936, 0.908, 0.927,
respectively. Table 2 shows the precision, sensitivity, specificity,
and F1 scores of the deep learningmodel on the different datasets.
For AMI ECGs, the precision, sensitivity, specificity, and F1
score were 0.827, 0.824, 0.950, and 0.825, respectively, when
using the training set, 0.789, 0.818 0.913, and 0.803, respectively,
when using the validation set, and 0.830, 0.951, 0.951, and 0.886,
respectively, when using the testing set. For non-AMI ECGs,

FIGURE 1 | A flow diagram indicating the selection of electrocardiography for the training, validation, and testing.
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FIGURE 2 | The electrocardiography feature of acute myocardial infarction. ST-segment elevation in two adjacent leads (V3–V4), with r-wave/Q-wave formation, and

inverted or bidirectional T waves.

TABLE 1 | The baseline characteristics between patients with acute myocardial

infarction ECGs and those with non-myocardial infarction ECGs.

Non-MI MI P

Training set

Number 11,845 3,440

Age [mean (SD)] 57.41 (17.98) 67.30 (13.00) <0.001

Male (%) 6,190 (52.3) 1,354 (39.4) <0.001

Height [mean (SD)] 167.18 (10.58) 168.16 (11.02) <0.001

Weight [mean (SD)] 71.08 (15.79) 72.22 (16.61) <0.001

Validation set

Number 4,688 1,864

Age [mean (SD)] 58.37 (16.41) 65.34 (12.34) <0.001

Male (%) 2,304 (49.1) 610 (32.7) <0.001

Height [mean (SD)] 168.39 (10.13) 168.97 (9.91) 0.038

Weight [mean (SD)] 72.15 (16.71) 73.75 (15.69) <0.001

Testing set

Number 164 41

Age [mean (SD)] 58.87 (18.05) 67.83 (16.64) 0.004

Male (%) 102 (62.2) 29 (70.7) 0.403

MI, myocardial infarction.

the precision, sensitivity, specificity, and F1 score were 0.943,
0.958, 0.799, and 0.950, respectively, using the training set, 0.887,
0.963, 0.692, and 0.923, respectively, when using the validation
set, and 0.964, 0.982, 0.854, and 0.973, respectively, when using
the testing set.

The number of ECGs diagnosed with false-negative
results was 339 and 2 in the validation and testing set,
respectively. The MI location of these ECGs is shown in
Supplementary Table 1. These results show that most IML
ECGs (191 cases) were not correctly identified by the deep
learning model.

The ROC curves for automatic AMI location diagnosis are
shown in Supplementary Figure 1. The AUC for automatic
AMI location diagnosis of LMI, IMI, ASMI, AMI, ALMI
were 0.969 (95% CI: 0.959–0.979), 0.973 (95% CI: 0.962–
0.978), 0.987 (95% CI: 0.963–0.989), 0.961 (95% CI: 0.956–
0.989), and 0.996 (95% CI: 0.957–0.997). The adjusted AUC for
automatic AMI location diagnosis of LMI, IMI, ASMI, AMI,
ALMI were 0.902, 0.934, 0.964, 0.866, and 0.958, respectively.
The deep learning model performance in predicting the MI
location in the testing set is shown in Supplementary Table 2.
These results show that the precision, sensitivity, specificity,
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FIGURE 3 | Receiver-operating characteristic curves for automatic diagnosis of acute myocardial infarction in the training, validation, and testing sets.

and F1 score of the model to predict the LMI location
was 0.835, 0.786, 0.989, and 0.81, respectively. The precision,
sensitivity, specificity, and F1 score of the model were 0.815,
0.892, 0.919, and 0.852, respectively, when predicting the IMI
location, 0.923, 0.909, 0.982, and 0.916, respectively, when
predicting the ASMI location, 0.520, 0.600, 0.987, and 0.557,
respectively, when predicting the AMI location, and 0.932,
0.873, 0.998, and 0.902, respectively, when predicting the
AlMI location.

DISCUSSION

A total of 10 neural networks were trained. These
neural networks used the same hyperparameters but
different initializations. The model with micro-average
accuracy immediately above the median was selected.
We used the training, validation, and testing sets to
evaluate the model performance. These results show
that the diagnostic performance of the residual network
was satisfactory.

ECGs are associated with high specificity in AMI diagnosis
and are therefore important for diagnosis. The AMI ECG
features are ST-segment elevation in two adjacent leads,
with or without Q-wave formation, and bidirectional or

TABLE 2 | The precision, sensitivity, specificity, and F1 scores of the deep learning

model on the different datasets.

Precision Sensitivity Specificity F1 score

Training dataset

MI 0.827 0.824 0.950 0.825

Non-MI 0.943 0.958 0.799 0.950

Validation dataset

MI 0.789 0.818 0.913 0.803

Non-MI 0.887 0.963 0.692 0.923

Testing dataset

MI 0.830 0.951 0.951 0.886

Non-MI 0.964 0.982 0.854 0.973

MI, myocardial infarction.

inverted T waves. Certain patients with chest pain were
diagnosed with acute myocarditis, which resembles AMI
because of its similar ECG features (17). Therefore, correct
identification and rapid diagnosis of AMI will allow active
treatment to begin (e.g., coronary intervention therapy) to
save most of the necrotic myocardium and improve patient
prognosis (18).
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Additionally, many hospitals are equipped with ECG
machines because they are convenient to use, and the reports
can be obtained quickly. However, AMI diagnosis is still difficult
because of physician shortage and poor diagnosis ability in
developing countries. Therefore, the misdiagnosis rate and
physician workload could be reduced by using deep learning to
detect AMI automatically.

Gupta et al. developed a ConvNetQuake neural network
model to correctly diagnose AMI from ECGs with a classification
accuracy of 99.43%. Furthermore, their results also showed
that the II, Vz, and V6 lead signals are important to correctly
identify AMI (19). Acharya et al. developed a convolutional
neural network model and used the II lead signal as the input
with an average diagnostic accuracy of 93.53% (20). Jafarian et
al. used an end-to-end neural network to automatically detect
AMI with an accuracy of 98% (21). However, these studies
used the PTB database as the training set and had no external
validation. The PTB dataset contains only 549 records from 290
subjects (22). Therefore, the diagnostic performance of those
models still needs to be validated using clinical data. Moreover,
the ECG in the above-mentioned studies was spilt into multiple
heartbeat to extend the dataset. In this study, we proposed
a residual network-based algorithm to automatically diagnose
AMI. The residual neural network uses a skip connection for
the degradation phenomenon. Additionally, the residual network
eliminates the problem of increasing layers in the neural network,
which causes training difficulties such as gradient explosion
and disappearance (13). Furthermore, this study uses the open-
source PTB-XL dataset as the training and validation set (11).
The PTB-XL dataset contains a large number of ECG signals,
and a significant proportion of the ECGs show AMI, which
improves the model’s ability to identify AMI. Instead of the
beat-to-beat classification used in previous studies (18–20),
our study is based on 12-lead ECG exams, which are more
common in clinical practice. In addition, we used a database
built by Chapman University and Shaoxing People’s Hospital as
an external testing set (12), which fully confirms the superior
performance of the residual network using different datasets.
Identifying the AMI location is important in clinical practice
because the treatment strategy might be different for different
MI locations. For example, capacity management is different for
patients with acute anterior AMI that for patients with acute
right ventricular AMI (23). Accordingly, the proposed deep
learning model performance in predicting the MI location was
also evaluated. The results showed that the deep learning model
can effectively automatically diagnose the MI location from 12-
lead ECGs.

LIMITATIONS

Despite its many advantages, this study has its limitations. First,
our study was based on open-access ECG databases. These
datasets included general metadata, such as age, sex, weight,
and height, but other clinical features, such as the target vessel
and clinical comorbidities, which might influence the AMI ECG
feature, are not included. We performed the adjusted ROC curve

to evaluate the influence of general metadata on the AUC. The
results showed that AUC was robust to the general metadata.
Second, our results need to be transformed into applications in
the future, such as developing a program to be implanted in the
ECG equipment to guide clinical practice. Third, certain patients
with AMI havemultivessel disease. Therefore, an algorithmneeds
to be developed to identify patients with such conditions. Fourth,
the ECG and troponin should be comprehensively evaluated
in the diagnosis of non-ST-elevation acute coronary syndrome
(NSTE-ACS). NSTE-ACS diagnosis based on ECG results alone
is still a challenge in clinical practice. Moreover, our algorithm
is not suitable for NSTE-ACS patients. Thus, it is necessary
to further develop deep learning algorithms for NSTE-ACS
diagnosis in the future. Fifth, deep learning models are being
increasingly used in medical fields. In our study, we mainly
evaluated the deep learning model performance to automatically
identify AMI and found that it could effectively automatically
diagnose AMI from 12-lead ECGs. The software for automatic
ECG interpretation is common and already available in daily
practice. However, these software are mainly based on the
expert system, Bayesian paradigm, and cluster analysis (24–
26). A performance comparison between the deep learning
model and the traditional paradigm is warranted in future
work. Sixth, although our algorithm has great performance in
automatically diagnosing MI location, it still has low accuracy
and sensitivity in diagnosing AMI. Therefore, the results of this
study should be interpreted with caution in clinical practice.
Finally, AMI suspicion is mainly based on symptoms and
medical history, which could not be covered by a better
ECG interpretation.

CONCLUSION

Based on the obtained results, it is concluded that the residual
network-based algorithm developed in this study can effectively
automatically diagnose AMI andMI location from 12-lead ECGs.
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