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Objectives: The aim of this study is to develop a scar detection method for routine

computed tomography angiography (CTA) imaging using deep convolutional neural

networks (CNN), which relies solely on anatomical information as input and is compatible

with existing clinical workflows.

Background: Identifying cardiac patients with scar tissue is important for assisting

diagnosis and guiding interventions. Late gadolinium enhancement (LGE) magnetic

resonance imaging (MRI) is the gold standard for scar imaging; however, there are

common instances where it is contraindicated. CTA is an alternative imaging modality

that has fewer contraindications and is faster than Cardiovascular magnetic resonance

imaging but is unable to reliably image scar.

Methods: A dataset of LGE MRI (200 patients, 83 with scar) was used to train and

validate a CNN to detect ischemic scar slices using segmentation masks as input to

the network. MRIs were segmented to produce 3D left ventricle meshes, which were

sampled at points along the short axis to extract anatomical masks, with scar labels from

LGE as ground truth. The trained CNN was tested with an independent CTA dataset (25

patients, with ground truth established with paired LGE MRI). Automated segmentation

was performed to provide the same input format of anatomical masks for the network.

The CNN was compared against manual reading of the CTA dataset by 3 experts.

Results: Note that 84.7% cross-validated accuracy (AUC: 0.896) for detecting scar

slices in the left ventricle on the MRI data was achieved. The trained network was

tested against the CTA-derived data, with no further training, where it achieved an

88.3% accuracy (AUC: 0.901). The automated pipeline outperformed the manual

reading by clinicians.

Conclusion: Automatic ischemic scar detection can be performed from a routine

cardiac CTA, without any scar-specific imaging or contrast agents. This requires only

a single acquisition in the cardiac cycle. In a clinical setting, with near zero additional

cost, scar presence could be detected to triage images, reduce reading times, and guide

clinical decision-making.

Keywords: computed tomography angiography, deep learning, convolutional neural network, fibrosis, left

ventricle, automated classification
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1. INTRODUCTION

Imaging cardiac scar is clinically indicated to assist in
diagnosis, patient selection, risk assessment, and guiding heart
failure therapies (1). Identifying whether a patient has scar
present is important in procedure planning such as pacemaker
implantation (2). Location of scar can impact treatment
outcomes, with the influence of basal scar differing from scar at
the apex (3, 4).

Late gadolinium-enhanced (LGE) magnetic resonance

imaging (MRI) is the clinical gold standard in cardiac scar
imaging (1). However, there are many patients where MRI
with LGE is contraindicated. LGE is contraindicated in patients
with implanted devices, which are non-MRI safe or cause

significant imaging artifacts (5). Furthermore, cases including
co-morbid respiratory issues limiting the length of breath-hold
and claustrophobia are not ideal for LGE MRI. There is a clinical
need for alternative, reliable imaging methods for the detection
of cardiac scar.

Coronary computed tomography angiography (CTA) is an

alternative. There are a large number of situations where CTA
is the first-line investigation (6) and is part of various existing
patient pathways. It is more widely available and is cheaper than
MRI. CTA can be used to screen for invasive angiography (7) and
is recommended as the first-line test for coronary artery disease
(8). There would be a clear clinical advantage in identifying
ischemic scar in CTA.

The accuracy of detecting scar visually on routine coronary
CTA is unknown but, as we demonstrate in this study, it is likely
related to operator experience and can be inconsistent. Iodinated
contrast agent enhanced CTA have been shown, in a limited
case series, to detect scar with comparable accuracy to LGE MRI
(9) and electro-anatomic mapping (10); however, these earlier
studies have proven hard to reproduce and are not widely used.
Dual-source Computed Tomography scanners, with increased
soft tissue discrimination, are a possible method of scar detection
from CTA image intensities alone (11) but due to high costs and
recency of their development, they are not commonly available.
Due to their lack of widespread availability, there are no widely
accepted clinical protocols for determining scar from dual-energy
CTA. Akinetic regions are good indicators for scar (12); however,
CTA motion imaging requires a high radiation dose. Ideally, scar
would be rapidly and automatically detected from a standard
single CTA image. This would allow the likelihood of scar to be
provided on-site, at scan time to triage cases, improve scan read
times, and guide clinical decision-making.

Anatomy-based prediction from a single acquisition is an
alternative method of scar detection. Well-established methods
of automated segmentation of CTA (13) make it possible to
extract anatomical features from routine single frame scans. Left
ventricle (LV) shape extracted from MRI can be used to identify
scar across the whole ventricle (14). Localized LV wall thinning
has also been shown to be indicative of infarction on non-
gated CTA scans (15). Consistent with MRI (16), thinning in
CTA has been retrospectively shown to align with scar locations
confirmed by invasive electro-anatomic mapping (17). However,
current wall thickness based scar detection uses a wall thickness

TABLE 1 | Demographic information for both magnetic resonance imaging (MRI)

training dataset and the computed tomography angiography (CTA) testing

datasets.

MRI Dataset CTA Dataset

Gender

Male 136 18

Female 52 7

Unknown 12

Scar 83 10

No Scar 117 15

Age groups

<60 5

60 - 64 7

65 - 70 8

>70 5

threshold (18), which will cause miss-classification of scar due
to variability in heart size. Previously proposed biomarkers for
detecting scar are based on single variables, need specialized
imaging, or require user-defined thresholds. We aim to perform
scar detection in CTA in a single frame, without any additional
imaging or user-defined input variables.

The aim of this study was to develop an automated method
of LV scar detection for CTA using deep convolutional neural
networks (CNNs). Our hypothesis was that the lack of labeled
training data for CT can be overcome by utilizing a common
data format between CTA and MRI to allow use of clinical gold
standard LGE data for training. Such a method could increase
both accuracy and reading time in CTA analysis.

2. MATERIALS AND METHODS

2.1. Data Sources
The data were primarily retrospective data collected from
previous studies, which were approved by a regional Research
Ethics Committee (reference ID 264642) and conformed to the
Declaration of Helsinki. A portion of the data for both MRI
and CTA datasets were collected as part of a prospective study
(reference ID 15/LO/1803) for which all participants provided
written, informed consent.

Additional anonymized, retrospective cases for algorithm
validation were provided as part of a data sharing agreement
between Sheffield Teaching Hospitals and Kings College
London (KCL).

2.2. CTA Test Dataset
Twenty-five CTA datasets were used with their meta-data
displayed in Table 1 and clinical reason for the scans in Table 2.
The mean age was 65, and 72% were male. Patients were
retrospectively identified who had an MRI with LGE followed by
a CTA scan, allowing us to estimate a scar ground truth in CTA
using data from MRI. The MRIs were all within 2 years prior to
the CTA (mean difference of 122 days). Potential effect on the
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TABLE 2 | Breakdown of indication for imaging in both magnetic resonance

imaging (MRI) and computed tomography angiography (CTA) datasets.

MRI Dataset

Chest pain clinic attendees with no infarct or evidence of

cardiovascular disease (CVD)

31

Healthy volunteers from previous studies 50

Enrolled in previous studies at KCL with scar on LGE 8

Patients receiving pacing devices or defibrillators due to heart

failure

111

CTA Dataset

Patients who attended a chest pain clinic 11

CRT implant candidates 3

Ventricular tachycardia ablation treatment planning 5

Decreased LV function 3

Aortic valve replacement planning 2

Ischemic heart disease 1

TABLE 3 | Results of optimizing network and network hyperparameters using the

particle swarm algorithm (discussed in the supplement).

LR M Batch Size γ α Accuracy AUC

VGG 0.009 0.73 10 1.560 0.6 84.7% 0.896

CT Test 88.3% 0.901

Computed tomography angiography (CTA) test performance with the common network

having been retrained only with the entire magnetic resonance imaging (MRI) dataset

for 500 epochs. LR, learning rate; M, momentum; AUC, Area under receiver operator

characteristic curve.

ground truth quality from the lag between scans is discussed in
the Supplementary Material. These MRIs are used to generate
ground truth for testing purposes only and are not seen by the
network or clinicians.

The CTAs were all standard first-pass single-phase images
with no additional iodinated contrast agent or ionizing radiation
dose beyond normal clinical practice for the site. Single bolus of
contrast (at 5 or 6 mL/s dependent on patient size) with saline
flush was used in both sites. Three of the CTA cases had artifacts
due to existing pacemaker leads and other implants. The scanner
models used are discussed in Supplementary Table 3).

CTA datasets were segmented automatically using a tool
provided by Siemens Healthineers as prototype software, which
was previously described in Behar et al. (19). This generates
3D surface meshes of the LV without any operator input. LGE
MRIs were segmented using the same tool but with manual
input for both shape correction and scar identification. This
produces a 3D surface mesh of the LV and scar segmentations
to the same scale as the CTA segmentation, resolving any
difference in resolution between the two modalities. Iterative
closest point registration was used to produce a registration
translation between the MRI and CT anatomical meshes using
their long axes and valve intersection points. This translation
was then applied to the MRI scar mesh to obtain a CTA scar
mesh estimate (Figure 1). A mean difference of ±19% of the
blood volume was observed betweenMRI and CTAmeshes of the

endocardium. Differences in image acquisition and the amount
of aorta included in mesh segmentations between modalities
account for these differences. Scans being acquired at different
time points would also contribute to variations. Anatomical slices
were then generated using the same slicing procedure described
for the MRI dataset. This produced 420 test slices, 133 with scar
present. These slices are in the form of segmentation masks,
which are the input to the network.

2.3. Clinician Manual CTA Dataset
Classification
Three independent clinical observers examined the CT dataset
separately. These were either level II or III Cardiac CT
practitioners with between 3 and 10 years experience each.
For each CT case, they were requested to detect, as a binary
classification, scar presence in the apex, mid, and basal regions.
These were provided with the full CTA image stack. This can be
compared directly to the task the automated system will perform,
which is accurate to the slice by working off the CT image
stack only.

They were also asked whether their clinical decision-making
would be influenced by the presence or absence of myocardial
scar in each case. Also whether an automated scar prediction tool
would improve scan reading time.

2.4. MRI Only Training Dataset
Note that 200 MRI cases, independent of the CTA cases, were
used for the training dataset. Short axis (SA), 4 chamber cine,
and matching LGE images were used. Ages for MRI were not
available due to automated anonymization steps prior to us
receiving the data. Gender information was missing for 14
patients. Gender and scar presence information are presented in
Table 1. Clinical indications for the scans are shown in Table 2.
MRIs were acquired using a mixture of different scanner models
and magnetic strengths as they came from different sites. Note
that 1.5T scans accounted for 60% of the dataset with the
remainder being done with 3T models. As described below,
segmentation and 3D model creation with normalized scaling is
done prior to the data being seen by the network, so this does not
affect prediction.

Semi-automatic segmentationwas carried out on the cineMRI
to produce an LV mesh, which was then registered to the LGE
images to perform the scar segmentation. The segmentation tool
was the same as for the CT but manual correction was required
to get a good result for the MRI data. Scar was segmented
manually from LGE. Custom slicing and processing code were
developed using the VTK C++ library (20) to randomly sample
slices from the 3D mesh segmentations. The long and short axes
for themeshes were calculated via principal components analysis.
Twenty-five slices were made along the short axis at regular
intervals starting from 20% of the total length above the apex
until the aortic valve. Intersecting contours were converted into
256× 256 pixel anatomical masks for myocardial wall. Scar mesh
intersection was calculated to determine the slices’ binary ground
truth. Slices were excluded if they were self-intersecting, from
hitting valves, or under 50 pixels in total volume. Note that 2806
valid slices were extracted for the MRI dataset, 1006 with scar
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FIGURE 1 | Independent computed tomography angiography (CTA) test dataset generation pipeline. Showing how the CTA anatomical masks are created as input

for the network at test time. Registration of the 3D scar segmentation from paired late gadolinium enhancement (LGE) magnetic resonance imaging (MRI) is performed

to determine scar ground truth for the CTA anatomical mask slices.

present. In the Supplementary Material, we discuss distributions
in the dataset driving slicing protocol design. Figure 2 shows this
pipeline that produces segmentationmasks, which are used as the
input to the network.

2.5. Classification Network
The CNN and a testing framework were implemented in Python
3 with CNNs implemented and trained using the PyTorch library
version 0.4.1 (21). A network based on VGG16 (22) was used as
the common CNN. In the Supplementary Material, we discuss
network design considerations and alternative topologies that
were explored.

The input to the network is the segmentation mask slices,
which are a common format produced by either the MRI or
CTA processing pipelines. This means the network is not aware
of the imaging modality used to produce the data it is seeing.
Input masks were converted to polar coordinates from the center

of blood pool mass. This was found to increase performance in
early experiments as it removes location as a variable in the data.
The input images were 256 × 256 pixels with a resolution of 1
mm and 360/256◦ in the radial and circumferential coordinates,
respectively. Images were padded at the base with zero-valued
pixels, compensating for cases where the center of mass was
near an edge, to bring them back to 256 × 256 pixels. This
format provides the network with a mask showing the change in
thickness around the slice.

2.5.1. MRI Training and Validation
Stochastic gradient descent was used to optimize the networks.
Focal loss (23), a modified version of cross-entropy loss,
designed to compensate for class imbalances and easy vs. hard
classifications was used. γ acts as a tunable focusing parameter.
An additional tunable parameter α is added as a weighting to
address class imbalances. Equation 1 shows the loss function
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FIGURE 2 | Magnetic resonance imaging (MRI) dataset processing pipeline for training and validation.

where pt is probability of correctly classifying whether an image’s
class is y = 1.

FL(pt) = −α(1− pt)
γ log(pt) (1)

Ten-fold, patient-wise, cross-validation with class balancing
was used. The validation statistics were calculated using
the results of test sets in all folds. Networks were trained
for 100 epochs per fold, which was found to be sufficient
(see Supplementary Material). The hyperparameters were
tuned using the particle swarm algorithm described in the
Supplementary Material.

2.5.2. CTA Testing
After training and validation of the common CNNs using the
MRI dataset, the network was tested against the independent
CTA dataset to demonstrate the imaging modality independence
of the network. Using the complete MRI training dataset, without
seeing any of the CT test cases, the network was re-trained for
500 epochs. The network did not see any data, CT or MRI,
from the test dataset during training. Figure 3 shows the pipeline

of training and subsequent testing with the two-branch VGG
variant as an example.

3. RESULTS

3.1. Optimization and Cross-Validation
Results With MRI Dataset
Accuracy was calculated using predictions of all slices when they
were in the test set, which happens for each slice once in the
cross-validation. Folds were generated ensuring all slices from
each patient were in the same fold and that the folds contained
a balanced proportion of scar slices.

Accuracy =
Sum of correct predictions from test set for all folds

total number of samples
(2)

Accuracy on the MRI dataset was 84.7% slice accuracy (AUC:
0.896, sensitivity: 0.76, specificity: 0.89, 95% CI: [0.885–0.906]).
Table 3 displays the optimum hyperparameters tuned with the
particle swarm algorithm.
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FIGURE 3 | Pipeline of model training and testing. The network is trained using the dataset derived from the gold standard late gadolinium enhancement (LGE)

magnetic resonance imaging (MRI) dataset. This trained network can then be tested against the target modality dataset without additional retraining.

3.2. Clinician Reading of CTA Dataset
The clinicians had, in order of least experience to most, accuracy
of 60% (sensitivity: 0.69, specificity: 0.46), 71% (sensitivity: 0.53,
specificity: 0.54) and 67% (sensitivity: 0.84, specificity: 0.46)
compared against the LGE-derived ground truth.

It was reported that clinical judgment would be assisted by
an automated suggestion of scar location in 20 cases by two or
more clinicians. Two or more also reported 18 cases they said
the automatic systemwould have sped up their assessment. There
were only four cases they all agreed they would not be helped by
an automated tool.

Fleiss’ kappa was calculated, in order to assess the inter-
operator agreement between the clinicians, at κ = 0.49, which
is classed as moderate agreement.

3.3. CNN Testing With CTA Database
The network was trained using the optimum hyperparameters
using the entire MRI dataset for 500 epochs. Prediction accuracy
on the CTA dataset was 88.3% (AUC: 0.901, sensitivity: 0.85,
specificity: 0.90, CI: [0.867–0.934]). There was no difference
found in performance between the KCL and Sheffield cases
since sources of variation such as operator and scanner model
are handled by the automated segmentation tool. Similarly, the

artifact cases did not have diminished performance. The network
processes the entire CTA dataset in 5.85 s. Including fully
automated segmentation and data processing, the time taken for
one CT case to be predicted using this method would be 1 min
total on the hardware we tested on, varying only on the size of
CTA to segment. Figure 4 shows receiver operator characteristic
curves comparing the network performance on both the CTA
datasets and the MRI set during cross validation.

For comparison to the clinician manual reading, two cases
were not identified as having scar by all clinicians but were
correctly picked up by the classification network. The network
outperformed the clinicians on both sensitivity and specificity.
Improved detection rates of ischemic scar in CTA would be
possible by combining the network output with clinical opinion,
as well as increased reading speed.

Figure 5 shows examples from the CTA dataset, one which
was correctly identified by the network and the clinician and one
which was only detected by the network.

4. DISCUSSION

This study shows that ischemic scar presence can be detected
in an LV SA slice using only anatomical information from a
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FIGURE 4 | ROC curves displaying the performance on the validation [magnetic resonance imaging (MRI) dataset] calculated across all 10 folds of cross validation

using the optimum hyperparameter tuning. Performance of the independent computed tomography angiography (CTA) test set using the same network, trained with

the MRI dataset only, is also shown. ROC curves were generated using the Scikit-learn (28) implementation varying the threshold required for a positive classification.

Confidence is shown with 1 standard deviation from the mean sensitivity and specificity values shown for each curve as calculated using bootstrapping with

replacement.

single acquisition in CTA. The experiments using MRI-derived
data shows this method can be used to detect scar presence in a
SA slice without the need for LGE enhancement. After training
a CNN, using the clinical gold standard of MRI with LGE as
ground truth, it can detect scar using data derived from CTA
in a fully automatic manner. This allows for automatic scar
presence detection and apical to basal location using only a CTA
scan, without the need for any additional scar-specific imaging.
The cardiologist manual reading experiment showed this task is
difficult and inconsistent between readers. The automated CTA
detection compared favorably to manual reading of the images.
Since it is completely automatic for CTA, our method could be
integrated into existing pipelines to increase the accuracy and
speed of clinician CTA reading.

Testing the CTA dataset showed comparable results to the
cross-validated accuracy results for the MRI dataset. A challenge
in this work was obtaining the CTA database. To generate the
ground truth as described, both a CTA exam and a recent MRI
with LGE were required. It was not common for cardiac patients
to have both types of imaging in the two sites from which we
had data available. A larger test dataset would be desirable but
the similarity between the CT and MRI dataset results indicates
the method works independently of imaging modality due to the
segmentation mask based input to the CNN.

In CTA images, additional information about scar presence
may be available in the gray values; however, a large database
of paired CTA and MRI data would be required for each

training case to estimate ground truth, making such an approach
impractical. Even using approaches such as transfer learning a
much larger dataset would need to be compiled. We explore
other possible input formats other than single slice segmentation
masks, including regional 3Dmeshes and multi-slice approaches,
in the Supplementary Material.

Our results compare favorably with previous methods using
anatomy to measure scar presence. Higher accuracy has been
described predicting scar based on anatomical shape models, but
only on a whole ventricle level and requiring two frames of MRI
data that would require Supplementary Figures to work with
CTA (14). Our CTA results are similar to previously reported
AHA level scar classification in CTA using biomechanical
modeling to estimate myocardial strain, but these have only been
shown in a small sample of canine hearts (24). Voxel methods
with high accuracy have been reported using no contrast motion
basedmethods; however, all suchmethods are inMRI and require
multiple frames (12, 25). For these to work with CTA, non-
routine sequences with higher radiation doses would be required.
For this reason, we argue our method would provide benefit
in supplementing routine CTA imaging and could therefore be
easily integrated into an existing workflow. Contrast-free scar
detection in echo has been shown in small pilot studies but would
be highly operator dependent compared to our method, which is
fully automated for CT (26). Our method can be added onto any
automated segmentationmethodwhere a validmesh is produced;
it is not tied to the automated tool we have used for this study.
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FIGURE 5 | 1: Patient with a large defect, detected correctly by both clinician and prediction network. Imaging acquired for valve replacement procedure and

decreased left ventricle (LV) function from suspected infarction. (1A) A large defect on the late gadolinium enhancement (LGE) scan. (1B) The computed tomography

angiography (CTA) with thinning visible in the same region. (1C) The input to the network for a mid-ventricle slice, in the form of a polar coordinates myocardium mask

derived from the CTA segmentation. Thinning can be seen around the red arrow. (2) Patient with a smaller defect and less remodeling, which was detected by the

network but not the clinician. Imaging performed for VT ablation planning. (2A) A positive LGE area on a mid short-axis slice. (2B) A CTA slice without an obvious

defect visible. (2C) The polar mask with a change in anatomy, which is picked up by prediction network as a possible scar.

Some proportion of variance in anatomical remodeling with
scar would not be detectable in the data format supplied to
the model, either due to atypical presentation or only subtle
remodeling. Additionally, the age of scar was not known in our
dataset. Some of the scars in our dataset may have been recently
formed and would have minimal remodeling (27). Additional
patient information such as time since a cardiac event may
improve the prediction. In the Supplementary Material, we
show our method outperforms direct measurements of wall
thickness, demonstrating the strength of this method compared
to simpler approaches and indicating thinning alone is not
enough to indicate scar with this accuracy. We also show there
was no performance loss on varying heart sizes, which was
demonstrated with the distributions of myocardium thickness in
incorrectly classified slices.

It is possible to apply this method automatically on CTA
scans, providing clinicians with likely scar slice locations
without any additional input required. Such a method could be
added automatically to CTA scan reports, providing additional
information to help screen for LGE MRI, aid in diagnosis, and
decrease reading times.

4.1. Limitations
This approach is designed for ischemic scar detection. In the
Supplementary Material, we show examples of the method

performing poorly on non-ischemic scar from hypertrophic
cardiomyopathy (HCM) where anatomical biomarkers are
different. Additional datasets may make it possible to predict
non-ischemic scar; however, either automated exclusion by
detecting HCM as a pre-prediction step or utilizing clinician
judgment to avoid known atypical anatomy would avoid
this limitation. Further datasets containing non-ischemic scar
could increase the generalizability of our method to detecting
non-ischemic conditions.

Scar presence was treated as a binary classification per SA slice,
without a prediction of transmurality or percentage myocardium
affected. Scar burden is challenging to estimate with a single
phase of anatomy. With a larger CT-MRI paired dataset, other
CNN-basedmethods may be able to give estimates of scar burden
or more detailed localization, including transmurality. This is not
possible with inputs based from single frame segmentations. This
limits the usefulness of the method presented here as a stand-
alone prognostic tool; therefore, we present it as useful as an
automatic indicator to increase reading speed and accuracy for
skilled clinicians or to indicate the need for follow-up imaging.

Observable remodeling will differ with the age of the scar as
well as the size. Without knowing the age of the scar, which
may not be available in many clinical settings, it would not
be possible to control for this variable. This would limit the
clinical utility in determining tissue viability using this method
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alone; however, in such cases, scar-specific imaging would be
recommended. Applications such as pacemaker lead placement
and improving manual reading speed would still benefit from a
binary classification. Triaging scans as part of an existing patient
pathway would also be possible with this method.

The principal aim of the study was to develop a method of
scar detection on routine CTA images. An impact assessment
of the utilization of this technique was not performed in terms
of clinical outcomes or reporting times; however, the clinicians
involved reported their reading would have been faster with
indications of regions of potential scar from an automated
tool. Ongoing work, therefore, aims to investigate this method
in a clinical setting as well as improve the output based on
clinical utility.

4.2. Conclusion
Ischemic scar presence in the left ventricle short-axis slices
can be detected using a CNN and anatomical information
extracted from a single acquisition of CTA. We demonstrated
our method performing well in both MRI and CTA. For CTA,
there is no automated scar detection method and clinician
detection will vary based on operator experience. This method
outperformed manual reading, requires only routine CTA scans,
and is automatic. The proposed method provides a near zero cost
automated scar presence detection with apical-basal location.
Applying this approach to routine cardiac CTA images can be
used to automate screening for potential infarcts, to triage images,
and to improve scan reading times.
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