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The high incidence and mortality of acute myocardial infarction (MI) drastically threaten

human life and health. In the past few decades, the rise of reperfusion therapy

has significantly reduced the mortality rate, but the MI diagnosis is still by means

of the identification of myocardial injury markers without highly specific biomarkers

of microcirculation disorders. Ferroptosis is a novel reported type of programmed

cell death, which plays an important role in cancer development. Maintaining iron

homeostasis in cells is essential for heart function, and its role in the pathological process

of ischemic organ damages remains unclear. Being quickly detected through blood

tests, circulating endothelial cells (CECs) have the potential for early judgment of early

microcirculation disorders. In order to explore the role of ferroptosis-related genes in

the early diagnosis of acute MI, we relied on two data sets from the GEO database

to first detect eight ferroptosis-related genes differentially expressed in CECs between

the MI and healthy groups in this study. After comparing different supervised learning

algorithms, we constructed a random forest diagnosis model for acute MI based on these

ferroptosis-related genes with a compelling diagnostic performance in both the validation

(AUC = 0.8550) and test set (AUC = 0.7308), respectively. These results suggest that

the ferroptosis-related genes might play an important role in the early stage of MI and

have the potential as specific diagnostic biomarkers for MI.

Keywords: ferroptosis, myocardial infarction, diagnostic model, random forest, supervised machine learning

INTRODUCTION

Myocardial infarction (MI), the most common and most precarious outcome of coronary heart
disease, endangers the health of the majority (1). With the progress of interventional and
reperfusion therapy in recent years, the mortality rate of acute MI has been significantly reduced.
However, it cannot be ignored that there is still a lack of efficient tools and biomarkers for the
early diagnosis of acute MI. Even in the early stage of acute MI, every hour of early diagnosis and
timely treatment could increase the survival rate by about 15% (2, 3). Specificmarkers ofmyocardial
injury, such as cardiac troponin T (cTnT) (4) and typical changes on an electrocardiogram (ECG)
(5) take the top priority for MI diagnosis in recent clinical guidelines (6). However, such diagnostic
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strategy still faces a lot of challenges. The cTnT in myocardial
cells lacks timeliness for the early diagnosis of acute MI because
it only reflects myocardial damage and even rupture caused by
ischemia, hypoxia, and other factors without characterizing the
early myocardial perfusion abnormalities. Moreover, the half-life
of cTnT in the blood is too long to identify the reinfarction (7).
What is more, typical changes on ECG of MI are not always
stable and could be interfered with by other cardiomyopathy.
Hence, measures should be taken immediately to explore novel
biomarkers for early diagnosis.

Circulating endothelial cells (CECs) are derived from the
metabolism of the vascular endothelium (8), which directly
reflects the contractile function of blood vessels, the perfusion
of capillaries, and the state of ischemia and hypoxia earlier than
cardiomyocytes (9). Meanwhile, ischemia and hypoxia directly
lead to abnormal metabolism and programmed death of vascular
endothelial cells, which could also be obtained from the state of
circulating endothelial cells through direct blood tests.

Ferroptosis is a newly discovered type of programmed cell
death in recent years. It is well-known for its iron-dependent
phospholipid peroxidation process to cause cell membrane
damage and even cell death (10). In fact, iron metabolism
is tightly regulated in the organism, and excessive Fe2+

could induce the production of active reactive oxygen species
(ROS), which would trigger the oxidative stress. Meanwhile,
glutathione peroxidase (GPX4) could reverse lipid peroxidation
and ferroptosis by consuming glutathione. Recent studies show
that the regulation of ferroptosis is associated with autophagy
in cancer (11). And CD8+ T cells activated by immunotherapy
can exert their antitumor effects by enhancing the ferroptosis of
tumor cells. Although this evidence demonstrates the importance
of ferroptosis in cancer, few studies focus on its role in ischemic
disease. In the field of cerebrovascular disease, it is reported that
activating the expression of GPX4 could protect neurons in the
ischemic stroke model (12). However, the underlying regulation
of ferroptosis is still in the veil in the field of cardiovascular
disease, especially in MI (13).

Here, we screened the differentially expressed genes in
CECs of acute MI patients from the GEO database. Then, the
ferroptosis-related genes collected from the FerrDb database
(http://zhounan.org/ferrdb) (14) and other previous literature
(15–18) were utilized to identify the differential ferroptosis-
related genes in acute MI. Finally, we established and evaluated a
random forest diagnostic model based on these genes and verified
it in another data set in GEO after comparing three different
supervised machine learning algorithms.

METHODS AND MATERIALS

Original Gene Expression Profiles
Acquisition and Data Preprocessing
Two related CEC databases, GSE66360 (19) and GSE48060 (20),
were selected and downloaded from the GEO database (https://
www.ncbi.nlm.nih.gov/GEO/). Both of these data sets were
updated onMarch 25, 2019. Although these two databases shared
the same supplementary microarray probe platform GPL570,

GSE66360 alone was selected as the training and validation
sets. Meanwhile, GSE66360 is confirmed to be matched by
both gender and age in the experimental and control groups
(19). GSE48060 was treated as the test set to avoid the
possible interference of a batch effect. Then, quality control
and normalization of these two gene expression profiles were
conducted through the scale function in R 4.0.3 software.

Differential Gene Expression
The latest version of the “stringr” and “limma” packages in R 4.0.3
software were used to perform differential expression analysis.
The fold change (FC) was calculated based on the average
gene expression of the acute MI and control groups, and the
differentially expressed genes were defined by the cutoff values
(FC > 1.5 and P < 0.05). Meanwhile, the gene probe IDs were
matched with the “Gene Symbol” through “Gene ID Conversion”
in the DAVID online database (http://david.ncifcrf.gov/) (21).

Functional Enrichment Analysis of
Differential Genes
The DAVID online database was also adopted for the gene
ontology (GO) enrichment analysis, including three aspects of
biological process (BP), cell composition (CC), and molecular
function (MF) for functional annotation (21). Meanwhile, the
KEGG online database (http://genome.jp/kegg/pathway.html)
(22) was used to analyze the KEGG signal pathway of those
differentially expressed genes. In addition, hierarchical clustering
of samples and differential genes were performed and visualized
through the “heatmap” R package.

Collection of Ferroptosis-Related Genes
Ferroptosis-related genes were collected and retrieved from the
FerrDb database (http://zhounan.org/ferrdb) (14), and other
previous literature (15–18) was referenced for proofreading and
completion. All the ferroptosis-related genes are provided in
Supplementary Table 1.

Analysis of Differential Ferroptosis-Related
Genes
The latest version of the “venneuler” package in R 4.0.3
software was applied to depict the intersection of differential and
ferroptosis-related genes, and the “seaborn” library in Python
3.90 was used to visualize the expression of different ferroptosis-
related genes between the MI and control groups, and Student’s
t-test was adopted as the statistical analysis by “scipy.stats”
Python library. The P-value < 0.05 was considered statistically
significant, and all P-values were two-tailed. Meanwhile, the
STRING database (http://string-db.org/) (23) was used to
perform a protein–protein interaction (PPI) network on the
differentially expressed proteins of those ferroptosis-related
genes. In addition, principal component analysis (PCA) was
performed on the differentially expressed ferroptosis-related
genes as a dimension-reduction strategy to distinguish the MI
and control groups through the “sklearn” Python library.
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Construction of Diagnostic Prediction
Model Through Machine Learning
Differential expressions of ferroptosis-related genes were treated
as independent variables to construct a prediction model for
the diagnosis of acute MI based on CECs. In this study, we
used the GSE66360 data set as the training and validation
set (4:1), and the GSE48060 data set was treated as the test
set. In order to prevent the overfitting phenomenon caused
by the complex model, K-fold cross-validation with cv =

15 was adopted in this study to improve the generalization
ability of the training set. Feature selection was implemented
through the “sklearn.model_selection” Python library. Then,
three different supervised machine learning algorithms were
used to initially explore the diagnostic prediction model.
The logistic regression, support vector classification, and
random forest models were, respectively, built through the
“sklearn.linear_model,” “sklearn.svm,” and “sklearn.ensemble”
Python libraries. After comparing the performance of different
models, the random forest algorithm was selected, and some
parameters and structures were adjusted to optimize this
algorithm. ROC curves were visualized through the “matplotlib”
Python library. Then, the validation set was used to verify the
prediction model, and the test set was applied to demonstrate the
generalization ability of this diagnostic model.

RESULTS

Research Flow and the Collection of
Ferroptosis-Related Genes
GSE66360, a CECs data set of acute MI with clinical information,
was downloaded from the GEO database for further differential
gene screening. This data set included 49 acute MI patients with
strict diagnostic criteria and 50 healthy controls. Meanwhile, all
the patient CECs were isolated from peripheral blood within 48 h
of acute MI and identified with a CD146+ specific antigen. Then,
differential expression and functional enrichment analyses were
performed after quality control and normalization of the gene
expression matrix.

In addition, 259 ferroptosis-related genes were confirmed
through the FerrDb database and other previous references after
deduplication. Subsequently, the intersection of differentially
expressed and ferroptosis-related genes were taken, and the
expression differences of these genes were tested in the two
groups. The PPI network of these differential ferroptosis-
related genes was also built. Then, the GSE66360 data set was
divided into the training and validation sets at a ratio of 4:1.
Finally, a diagnostic prediction model of acute MI based on
the random forest algorithm was constructed by those screened
differential ferroptosis-related genes after K-fold cross-validation
and algorithm comparison and verified on the test set GSE48060
including 26 acute MI patients with non-recurrent events and 21
normal controls (Figure 1).

Verification and Functional Analysis of
Differentially Expressed Genes in Acute MI
The 99 samples in the MI and control groups of GSE66360
were normalized and the FC calculated through the “limma” R

package. After setting the cutoff values (FC > 1.5 and P < 0.05),
256 differentially expressed genes of ECEs in the control and
MI groups were screened, including 37 upregulated genes and
219 downregulated genes (Figure 2A). Meanwhile, the top five
upregulated genes with huge significance were NR4A2, NLRP3,
EFEMP1, CLEC7A, and CLEC4D in the MI group. The top
five downregulated genes were XIST, TSIX, CTD-2528L19.6,
LPAR5, and DAB1 in the MI group. Some of these genes were
reported to be involved in various processes of the development
of cardiovascular diseases, including hypoxia, autophagy, and
oxidative stress (24–26).

In order to further explore the pathophysiology functions of
these differentially expressed genes in acute MI, GO analysis
according to the DAVID online database was adopted to cluster
the BP, CC, and MF among them. The results were that
most genes participated in the inflammatory response in BP,
followed by extracellular space in CC and receptor activity in MF
(Figure 2B).

In addition, the KEGG pathway analysis of these differentially
expressed genes showed that the top three signal pathways
with the largest number of enriched genes were the TNF
signaling pathway, osteoclast differentiation, and Toll-like
receptor signaling pathway (Figure 2B). All these pathway
enrichments were also supported and echoed by corresponding
literature (13, 27, 28).

What is more, hierarchical clustering was also applied to verify
the reliability of these differential genes, and the two groups
could be significantly distinguished according to a heat map
(Figure 2C).

Expression and Functional Analysis of
Differential Ferroptosis-Related Genes
By intersecting the collected ferroptosis-related genes with the
differentially expressed genes described above, eight differentially
expressed ferroptosis-related genes including C-X-C motif
chemokine ligand 2 (CXCL2), endothelial PAS domain protein
1 (EPAS1), Jun dimerization protein 2 (JDP2), activating
transcription factor 3 (ATF3), Toll-like receptor 4 (TLR4),
ferritin heavy chain 1 (FTH1), AP-1 transcription factor subunit
(JUN), and DNA damage-inducible transcript 3 (DDIT3) were
obtained (Figure 3A). The relevant information of all these genes
is demonstrated in Table 1. All these differentially expressed
ferroptosis-related genes were shown to be significantly highly
expressed in the acute MI group with P-values < 0.0001
(Figure 3B).

Although the specific mechanism of ferroptosis in
cardiovascular disease was not clear, our results first confirmed
the potential role of these ferroptosis-related genes in acute MI.
CXCL2 occupied the most obvious difference in expression,
which was thought to be associated with neutrophil-mediated
inflammation (29). However, it is also gradually recognized
as a key factor involved in cellular ferroptotic response in
recent years. Meanwhile, it is also shown that CXCL2 is
significantly highly expressed in the plaques and peripheral blood
mononuclear cells of patients with coronary atherosclerosis,
and it might be closely related to the prognosis (30). Another
significant difference was shown on EPAS1, which played a
critical role in ferroptosis through lipid peroxidation. It could
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FIGURE 1 | Flow chart of research design and analysis. GSE66360 was applied to analyze differentially expressed genes (DEGs) between acute myocardial infarction

(MI) and healthy controls. Ferroptosis-related genes were collected from the FerrDb database and other previous references. After checking the DEGs and the

ferroptosis-related genes, eight differential ferroptosis-related genes were selected to perform functional analysis and construct a clinical diagnosis model. Compared

with different supervised learning algorithms, including logistic regression and support vector classification, the random forest algorithm was determined to build the

acute MI diagnostic model and was confirmed with the external verification of GSE48060.
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FIGURE 2 | Verification and functional analysis of differentially expressed genes (DEGs) in acute myocardial infarction (MI). (A) DEGs in acute MI and control group by

the (FC > 1.5 and P < 0.05) cutoff value (top five upregulated genes are marked in red; top five downregulated genes are marked in green; the following differential

ferroptosis-related genes are marked in purple); (B) gene ontology (GO) enrichment analysis among these DEGs, including biological process (BP), cell composition

(CC), and molecular function (MF), and the KEGG pathway enriched by these DEGs; (C) the hierarchical clustering of all the DEGs and clinical status.

selectively enrich polyunsaturated lipids by upregulating hypoxia
and lipid droplet-related protein. In some tumors, such as clear-
cell carcinomas, EPAS1 may even promote the tumor-dependent
ferroptotic death procession by recruiting some specific
downstream factors (31). Another transcriptional regulator,

JDP2, could activate the expression of inflammatory genes
and promote fibrosis, which has been shown as a prognostic
marker for MI patients to develop heart failure (32). As a key
effector of ferroptosis, TLR4 plays an important role in reducing
cardiomyocyte death and improving left ventricular remodeling.
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FIGURE 3 | Expression and functional analysis of differential Ferroptosis-related genes in acute myocardial infarction (MI). (A) The intersection between the collected

ferroptosis-related genes and differentially expressed genes (DEGs) in acute MI; (B) the expression of different ferroptosis-related genes between the acute MI and

control groups with the two-tailed Student’s t-test (P < 0.05 as significance); (C) the protein–protein interaction (PPI) network on those ferroptosis-related genes.

After knocking down TLR4, autophagy and ferroptosis could
be alleviated through the TLR4 and NADPH oxidase 4 (NOX4)
pathway, which provides a potential treatment strategy for heart
failure (33).

At the same time, the STRING database was used to
construct the PPI interaction network of these differential
ferroptosis-related proteins (Figure 3C). It was revealed that JUN
might be the hub node in all eight differential ferroptosis-related
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TABLE 1 | Summary of all these differential expressed ferroptosis-related genes in acute myocardial infarction (MI).

Gene Full name Role in Ferroptosis logFC P-value

CXCL2 C-X-C motif chemokine ligand 2 Marker 1.019 1.51 × 10−11

EPAS1 Endothelial PAS domain protein 1 Driver 0.770 1.19 × 10−7

JDP2 Jun dimerization protein 2 Marker 0.736 4.39 × 10−13

ATF3 Activating transcription factor 3 Driver 0.722 1.33 × 10−11

TLR4 Toll-like receptor 4 Driver 0.659 2.46 × 10−10

FTH1 Ferritin heavy chain 1 (FTH1) Marker 0.614 5 × 10−7

JUN AP-1 transcription factor subunit Suppressor 0.606 4.27 × 10−12

DDIT3 DNA damage-inducible transcript 3 Marker 0.588 7.1 × 10−9

genes because it was related to almost all other genes except
FTH1. In previous studies, Jun is shown to regulate the
ferroptotic cell death with the help of hepatocyte nuclear factor
4 alpha (HNF4A) (16). Our results first report the potential
role of Jun in acute MI by mediating abnormal ferroptosis. The
following two key nodes are DDIT3 and ATF3, both of which
are related to four other differential ferroptosis-related genes. The
endoplasmic reticulum is an important organelle for maintaining
cell homeostasis. As a key regulator of endoplasmic reticulum
stress, DDIT3 is also reported to be involved in the ROS-
dependent ferroptotic process (34), but its role in the pathological
process of cardiovascular disease still remains unknown. In terms
of ATF3, this famous common stress sensor could accelerate the
progression of ferroptosis by inhibiting system Xc− (35). Some
studies also show that suppressing the expression of ATF3 could
improve the prognosis of cardiovascular and cerebrovascular
diseases through reducing cell death (36). Meanwhile, the
isolation of FTH1 did not make sense. As a regulatory element of
cellular iron storage, FTH1 is critical formaintaining intracellular
iron homeostasis. Knockout of FTH1 is shown to induce
ferroptosis through erastin, sorafenib, and other pathways in
various disease models (37) while overexpression of FTH1 could
restrain ferritinophagy to reduce ferroptosis (38). Moreover,
FTH1-mediated ironmetabolism disorder is shown to exacerbate
myocardial damage during MI and reduce heart function (39).

Establishment of the Diagnostic Model
Based on Differential Ferroptosis-Related
Genes
First, PCA was performed on the above differentially expressed
ferroptosis-related genes as a dimension reduction strategy.
The results demonstrate that the MI and the control groups
could be distinguished accurately (Figure 4A), which means that
these differential genes might be treated as independent feature
parameters for the diagnosis of acute MI. Then, the GSE66360
data set including 49 acute MI patients with strict diagnostic
criteria and 50 healthy controls was taken as the training and
validation sets (4:1), and the GSE48060 data set including 26
acute MI patients with non-recurrent events and 21 normal
controls was treated as the test set.

After utilizing the K-fold cross-validation with cv = 15,
the generalization ability of the training set was improved to

prevent overfitting. Then, three different supervised machine
learning algorithms, including logistic regression, support vector
classification, and random forest, were attempted to construct
the diagnostic prediction model of acute MI. The evaluating
results of all three algorithms is shown in Table 2. The
Kolmogorov–Smirnov (KS) values reflect the power of the binary
model to classify positive and negative samples. The random
forest algorithm is shown to take the leading advantage of
distinguishing the two groups with KS = 0.70 in this study, and
the KS values of the other two algorithms was 0.60. Admittedly,
we also found that the diagnostic accuracy of the random forest
model (accuracy = 0.75) was not as good as the other two
models (accuracy = 0.80). However, it was far from enough to
rely on accuracy to evaluate the diagnostic power, which was
easily affected by the bias caused by the imbalance of categories.
In other words, the recall rate was another evaluation feature
that could not be ignored for diagnosing acute MI. The recall
rate of the random forest algorithm (recall = 0.90) was higher
than the other two models (recall = 0.80). It was indicated that
the random forest model could minimize the missed cases of
acuteMI, whichmight provide a sufficient treatment window and
significantly improve the prognosis of patients.

In addition, the ROC curves of the validation set from

GSE66360 also described that the area under the curve (AUC)

of the random forest model was 0.8550, which was higher than

AUC= 0.80 and 0.81 of the other two groups (Figure 4B). Hence,

the random forest algorithm was selected to further construct the

acute MI diagnostic model after comprehensively analyzing all
these parameters.

Simultaneously, GSE48060 was used as a test set to externally

verify the diagnostic model based on the random forest

algorithm. Figure 4D shows the ROC curve verified by external

data, and its AUC is 0.7308 (Figure 4C), demonstrating a

compelling diagnostic performance. What’s more, the confusion
matrix was visualized to evaluate the classification model

(Figure 4D). Twenty-six patients with MI were correctly

classified, and three healthy volunteers were identified as the
control group. There was no misidentification of patients
with MI as healthy people, which meant that this method
could effectively reduce the false negative rate. Admittedly,
we also noticed that some healthy people were misclassified
as MI (n= 18).
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FIGURE 4 | Establishment of the random forest diagnostic model based on differential ferroptosis-related genes in acute myocardial infarction (MI). (A) Principal

component analysis (PCA) of these differentially expressed ferroptosis-related genes as dimension reduction; (B) the comparison of three different supervised learning

models (RF, random forest; LR, logistic regression; SVC, support vector classification); (C) the diagnostic performance of the predictive model in the test set; (D) the

confusion matrix of the test set.

TABLE 2 | Comparison of the diagnostic efficacy of three different supervised learning models.

Model Precision Recall F1-score Accuracy Error KS

Random forest 0.69 0.90 0.78 0.75 0.25 0.70

Logistic regression 0.80 0.80 0.80 0.80 0.20 0.60

Support vector classification 0.80 0.80 0.80 0.80 0.20 0.60

CONCLUSION

In this study, we first identified eight differentially expressed
ferroptosis-related genes in CECs of patients with acute
MI and analyzed their potential functions by means of
two GEO data sets. Compared with the performance of
different supervised learning models, we established a
random forest diagnostic models of MI based on these

ferroptosis-related genes in CECs (AUC = 0.8550) through
K-fold cross-validation and verified it with another data set
(AUC= 0.7308).

DISCUSSION

With the increase of global aging, how to deal with the
medical challenges brought about by aging is a topic of
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general concern (40). Age-related diseases such as cardiovascular
diseases, especially coronary artery diseases, continue to be
a major threat to human health in the future. Advances in
interventional technology and reperfusion therapy in recent
years have effectively improved the prognosis of MI. However,
there is still more attention that needs to be paid, and the
early diagnosis of MI is still a key factor restricting mortality
and prognosis.

As a kind of disease caused by insufficient myocardial
perfusion, MI mainly contributes to coronary atherosclerosis.
Although the current diagnostic methods are established on a
series of biomarkers based on myocardial injury, which cannot
give early warning when the myocardium has just appeared
insufficient without yet being damaged. Not being a specific
feature of MI, myocardial injury in many cardiomyopathies can
also interfere with diagnosis in addition to the delayed diagnosis.
Therefore, it is imperative to advance the diagnostic window
of acute MI and develop diagnostic biomarkers that reflect
myocardial hypoperfusion directly (9).

As a novel kind of iron-dependent programmed cell death,
ferroptosis was first proposed in 2012 (41). The decrease
in the activity of glutathione peroxidase (GPX4) and the
depletion of glutathione interrupt the metabolic reaction of
lipid oxides, which induces the Fe2+ to produce ROS, thereby
promoting ferroptosis. Its sensitivity involves a large number
of cellular metabolic processes, including amino acid, iron, and
polyunsaturated fatty acid metabolism. Hence, the induction
of ferroptosis leads to the increase of intracellular lipid
ROS, and this regulating process could be inhibited by lipid
antioxidants (17). As iron-rich and ROS production–based
organelles, mitochondria are considered to be the critical place
for ferroptosis with specific lipid precursors. Studies in recent
years show that ferroptosis is associated with tumors (42), stroke
(12), cerebral hemorrhage (43), and renal failure (44). However,
the relationship between MI, especially the vascular endothelium
and ferroptosis, still remains unknown.

Artificial intelligence and machine learning are important
productivity tools in the twenty-first century (45). Different
from traditional biomedical research, artificial intelligence, and
machine learning are dedicated to learning natural laws from
massive amounts of high-throughput data and then using the
natural learned laws to predict unknown data, which are widely
used in computer vision (46), natural language processing (47),
biological features identification (48), and other fields. In the
field of oncology research, a large number of machine learning
diagnostic models based on gene expression have been widely
developed and applied because samples of cancer can be obtained
more conveniently through pathology. However, a majority of
clinical prediction models are based on traditional risk factors
and biomarkers for model fitting in non-tumor research fields.
For example, a retrospective cohort study was used to construct a
random forest model for atrial fibrillation diagnosis (49).

By means of machine learning and bioinformatics technology,
our study first revealed the differential expression of ferroptosis
genes in CECs of patients with acute MI. Meanwhile, all the
results were verified in different data sets, which first implied
that ferroptosis may be involved in regulating the metabolism

of CECs in acute MI. On one hand, the eight ferroptosis-related
genes described in this article have been verified and functionally
confirmed through different bioinformatics technologies (GO
enrichment analysis, PPI interaction analysis). Among them,
CXCL2 (30), JDP2 (32), TLR4 (33), ATF3 (36), and FTH1 (39)
are reported to participate in the regulation of a variety of
cardiovascular diseases through different pathways, and Jun and
DDIT3 were first described to be related to acute MI. All these
results provide the direction and cornerstone for subsequent
basic experiments to explore the role of ferroptosis regulation
mechanism in the pathogenesis of acute MI.

On the other hand, this study constructed a random
forest diagnostic model of acute MI through the above eight
differentially expressed ferroptosis-related genes in CECs. The
AUC of some clinical prediction models is extremely high,
and their external verification has unsatisfactory results due
to the overfitting caused by the small sample data. In this
study, the K-fold cross-validation with cv = 15 was utilized
to improve the generalization power. Hence, the variability of
AUC between our validation and test sets was small enough
to be satisfying. Meanwhile, we compared the performance of
three supervised machine learning algorithms, including logistic
regression, support vector classification, and random forest. After
comprehensively evaluating KS, accuracy, recall, and AUC of
all these three algorithms, this random forest model showed
good diagnostic performance (AUC= 0.8550) and was validated
in different data sets (AUC = 0.7308), which provides new
ideas and directions for finding new MI-specific biomarkers in
advance of the diagnosis window. What is more, the results of
a confusion matrix indicate that this model has a strong ability
to eliminate false negative interference, which is critical for MI
with a very high fatality rate. Changes of gene expression level
are the first step in the occurrence and development of diseases.
The application of machine learning to analyze different gene
expression levels can help explain the original mechanism of the
disease and can build the first line of defense for disease diagnosis
and early warning at the same time, which plays a strong guiding
role of diseases such as acute MI with rapid disease development,
high fatality rate, and no obvious symptoms in the early stage.

Compared with the traditional diagnostic model based on
the detection of myocardial injury markers, the new model
in this article based on the ferroptosis-related genes of CECs
focuses more on reflecting the damage of endothelial function
and the non-invasive screening for high-risk populations.
Vascular endothelial injury is the key factor and initiating
link of atherosclerosis. Normally, the anti-inflammatory system
composed of cytokines and endothelial progenitor cells in
the body repairs damaged endothelium and blood vessels.
However, when the endothelial anti-inflammatory self-repair
system is exhausted, endothelial cells develop a series of
dysfunctions, including aging, autophagy, apoptosis, ferroptosis,
etc. (50, 51), which causes endothelial cells to leave the blood
vessel wall and enter circulation, which, in turn, leads to a
series of undesirable consequences, such as vascular plaque
formation, vascular remodeling, inflammation, vasoconstriction,
thrombosis formation, and even plaque rupture. In fact, changes
in CECs are important predictors of cardiovascular events before
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the development of atherosclerotic morphological changes (52).
At present, there have been a series of research on the evaluation
of CEC functions (53, 54). So far, there is no reliable and
recognized gold standard for the detection of functional changes
of CECs (55). The identification and integrated analysis of
ferroptosis-related genes in CECs in this model are helpful to
reflect the early functional changes of CECs, which is ready
for judging vascular endothelial function and predicting the
occurrence of cardiovascular events, especially for early non-
invasive detection of high-risk population screening.

It also cannot be ignored that coronary microcirculation
dysfunction, an important independent prognostic factor for
cardiovascular events, is inseparably related to functional changes
in endothelial cells (56), which can lead to a decrease in coronary
blood flow and myocardial perfusion. However, conventional
coronary angiography cannot detect microcirculation cracks.
At present, the methods for evaluating microcirculation
disorders are mainly based on invasive methods, such as
fractional flow reserve (FFR), and imaging detection, such as
cardiovascular magnetic resonance (CMR). Studies suggest that
microvascular occlusion (MVO) is inseparable from the swelling
of capillary endothelial cells. The lack of endothelial integrity and
functionality leads to the release of large amounts of cytokines,
which, in turn, activates neutrophils and platelets, contributing
to the formation of microthrombi. In this pathological process,
the functional changes of CECs are considered to be an
indispensable link. This model based on ferroptosis-related
genes in CECs can directly reflect the regulation of ferroptosis-
related networks in CECs, which may help determine whether
the patient is in the process of MVO and the degree of MVO.
In subsequent studies, the inclusion of more data related to
MVO patients, such as FFR and CMR data collection, can help
enhance the model’s advantages in judging microcirculation
lesions, which shows a large potential value in early non-
invasive and accurate identification of patients with coronary
microcirculation disorders.

Meanwhile, models based on CECs not only have important
clinical significance for the diagnosis of endothelial function
damage, but also play a crucial role in the risk stratification and
prognosis of coronary heart disease. Early research on CECs
focused on changes in their quantification, and the increase
of CEC counts was shown to predict cardiovascular event
risk to a large extent among patients with acute coronary
syndrome (57), which suggests CECs would be applied for
the judgment of long-term prognosis of MI. The development
of more biomarker clusters with clinical application potential
based on the internal genomics, transcriptomics, and secreted
cytokines of CECs is still in its infancy, which is yet an
unsolved mystery waiting for people to decipher. Due to
the limitation of public data sets, data on patient severity is
unfortunately not included in this model. However, according
to the model constructed in this article and the support of the
previous literature, it is very necessary in the subsequent cohort
studies to associate the severity of coronary occlusion or the
incidence of long-term cardiovascular events with ferroptosis-
related genes in CECs to expand the scope of application of
the model.

Of course, this study also has a few shortcomings. First,
the biological functions of co-expressed genes have not been
further explored through weighted gene co-expression network
analysis and other technologies due to the small number of
differentially expressed ferroptosis-related genes. Second, this
model is not compared with some traditional clinical risk
models because we cannot obtain individual specific clinical data
from public data sets. This undoubtedly reduces the reliability
of our results. However, every coin has two sides. Since the
Framingham Study (58) proposed risk stratification for coronary
heart disease, various risk scoring systems for coronary heart
disease have been quickly built. The GRACE (59) and TIMI
(60) risk scoring systems are two relatively representative scoring
systems released in recent years. Several independent clinical
predictive variables were screened out and applied to divide
patients with different risk levels in these scoring systems through
multivariate logistic regression analysis of large-scale clinical
trials. However, most of the clinical predictive variables screened
out rely on epidemiological evidence instead of the pathogenesis
of the disease. Therefore, these traditional models can only
perform macroscopic stratification without subtly reflecting the
real endothelial function status of patients, not to mention
achieving the purpose of precision medicine (61). In contrast,
this diagnostic model based on ferroptosis-related genes has
an irreplaceable advantage in reflecting the patient’s immediate
endothelial function status. It can provide diagnostic prediction
models with pathological progress from the perspective of genetic
and molecular pathology. In fact, these two kinds of diagnostic
models are absolutely not opposite, and there is no sense
comparing them in a single scale. On the contrary, they are
complementary to pool their experiences. On one hand, the
traditional model provides a macro-level risk assessment based
on the past average body state of the patients. On the other
hand, the novel gene–related score provides accurate evidence
such as immediate and subtle molecular pathological changes
for judging the pathological process of the patients. Under
this cooperative consensus, future research directions should
be to integrate traditional risk and novel gene–related scores
and jointly develop a new model in order to help evaluate
the patients and guide treatment in the mode of precision
medicine. In addition, high-quality data determines the pros
and cons of machine learning. The training and validation tests
were built on the data set that was matched in both gender
and age in the experimental and control groups so that the
interference of potential confounding factors on our model could
be eliminated. However, other data sources used in this study
all come from the GEO database without additional clinical
features. In future studies, traditional risk factors, such as age,
gender, and hypertension in the cohort could be added to the
existing models to construct new combined diagnostic model
tools. Meanwhile, this diagnostic model can be further compared
with myocardial markers such as cTnT, or a novel diagnostic
model could be constructed by these ferroptosis-related genes
in CECs combined with cTnT. What is more, there are different
subtypes of acute MI (62), and different subtypes need different
treatment measures. For example, acute ST-segment elevation
MI (STEMI) requires immediate interventional treatment, and
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some non-ST-segment elevation MI (NSTEMI) could choose
selective intervention. Whether ferroptosis-related genes are
differentially expressed in these different subtypes of MI and play
different regulatory roles remains to be revealed. As is known
to all, cardiovascular disease is a complex pathological process
involving multiple factors and multilevel biomarkers should be
established for different types or stages of the same disease to
precise classification and treatment through various machine
learning algorithms. In fact, the method of constructing clinical
prediction models based on differentially expressed genes related
to tumor incidence, metastasis, and prognosis risk via gene chip
screening has been widely used in the research of different tumors
(63–65). However, a model based on gene-related score in the
research of cardiovascular diseases is still in its infancy due to
the lack of traditional pathological specimens. Because CECs
stand for changes in endothelial cell function to a large extent,
enrichment and detection of differential genes may be helpful for
assessing vascular endothelial dysfunction, especially identifying
the risk of early coronary heart disease. Meanwhile, whether
the diagnostic model based on ferroptosis-related gene labels
could be practically accessible in clinical practice is worthy of
attention. At present, relatively mature CEC rapid enrichment
schemes have been constructed (66), and a rapid test kit based
on the eight ferroptosis-related genes included in this model
could be designed and produced with available test results
within 4–6 h. In the next study, the cohort can be expanded
to optimize and improve the model, which might reduce the
missed diagnosis of early coronary heart disease and acute MI
due to the heterogeneity of myocardial enzyme spectrum and the
limitations of invasive coronary angiography. It is believed that
integrating diverse molecular tags through machine learning can
guide clinicians to more reasonable management and treatment
of acute coronary syndromes in the future.

There is no doubt that the precision medicine bring
about a revolution in the medical world and change the
whole clinical practice. With the continuous development of
artificial intelligence and machine learning, the discovery and
confirmation of biomarker groups becomes possible under
the maturity of massive biological information data analysis

technology. Fully discovering and verifying the biomarker groups
of different types and stages of MI help to comprehensively
improve the prediction risk power of cardiovascular and
cerebrovascular diseases, thereby reducing the mortality rate and
improving the prognosis of MI.
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