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Despite great progress in the management of atherosclerosis (AS), its subsequent

cardiovascular disease (CVD) remains the leading cause of morbidity and mortality. This

is probably due to insufficient risk detection using routine lipid testing; thus, there is a

need for more effective approaches relying on new biomarkers. Quantitative nuclear

magnetic resonance (qNMR) metabolomics is able to phenotype holistic metabolic

changes, with a unique advantage in regard to quantifying lipid-protein complexes. The

rapidly increasing literature has indicated that qNMR-based lipoprotein particle number,

particle size, lipid components, and some molecular metabolites can provide deeper

insight into atherogenic diseases and could serve as novel promising determinants.

Therefore, this article aims to offer an updated review of the qNMR biomarkers of AS

and CVD found in epidemiological studies, with a special emphasis on lipoprotein-

related parameters. As more researches are performed, we can envision more qNMR

metabolite biomarkers being successfully translated into daily clinical practice to enhance

the prevention, detection and intervention of atherosclerotic diseases.

Keywords: quantitative nuclear magnetic resonance, metabolomics, biomarker, lipoprotein, atherosclerosis,

cardiovascular disease

INTRODUCTION

Cardiovascular disease (CVD) remains the leading cause of morbidity and mortality around the
world (1). Of the 55.95 million global deaths in 2017, 17.79 million (31.8%) were due to CVD
(2). Atherosclerosis (AS), as the underlying pathogenesis, starts early in life and takes decades to
develop into serious vascular occlusion, thus, effective detection and well-understanding of the
diseases would be valuable for primary prevention (3).

Although definite mechanisms of atherogenic process continue to be intensively investigated,
lipids or lipoproteins are known to play pivotal roles (4). Circulating low-density lipoprotein (LDL)
and other ApoB-containing lipoproteins constitute a key driver of plaque formation through their
interaction with monocyte-derived macrophages in the arterial intima. Due to the accumulation
of retained lipoproteins, macrophage cells and extracellular matrix, the vascular lesions gradually
enlarge and progress into more complex arterial plaques (5). Since dyslipidemia is a recognized
risk factor for atherosclerosis, routine evaluation of lipoprotein level offers a valid contribution to
stratify atherosclerotic risk (6). However, the standard lipid panel is not always sensitive and specific
enough for the identification of patients at risk.
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Low-density lipoprotein cholesterol (LDL-C) is a well-
established risk factor and the primary intervention target (7–9).
However, individuals who develop atherosclerotic diseases may
have “optimal” LDL-C levels (10, 11), especially subjects with
insulin resistance (12, 13). Additionally, patients who receive
cholesterol-lowering treatment and reach satisfactory LDL-C
targets still develop CVD (14). This is partly due to other
nonlipid risk factors, such as hypertension, cigarette smoking,
inactivity, obesity, and type 2 diabetes (T2DM). However, it is
likely that other lipid or lipoprotein factors also play a part in the
atherogenic process.

Many large epidemiological studies have supported that
triglycerides (TGs) correlate with CVD risk (15–17), although
the association is sometimes attenuated with adjustment
for other traditional risk factors (18). However, increasing
evidence now has highlighted the importance of triglyceride-
rich lipoproteins (TRLs) and their remnants, both in fasting
and nonfasting periods (19–22). Populations with mild-to-
moderately elevated nonfasting TG levels have increased risks for
ischemic stroke, myocardial infarction, ischemic heart disease,
and all-cause mortality (23–25). Mendelian randomization
studies also demonstrate that TRLs are causally associated with
CVD and all-cause mortality (26). Thus, new insights strongly
suggest that TRLs are independent CVD factors; however, the
discrepancies in atherogenicity among their subclasses and lipid
content are still an area of continuing investigation.

Additionally, there exists a widely held view that high-density
lipoprotein cholesterol (HDL-C) levels causally relate to AS.
Nevertheless, the EPOCH-JAPAN (Evidence for Cardiovascular
Prevention from Observational Cohorts in Japan) study (27)
and CANHEART (Cardiovascular Health in Ambulatory Care
Research Team) study (28) both presented a U-shaped
relationship between HDL-C and CVD mortality. In addition,
elevated HDL-C from cholesterol ester transfer protein (CETP)
inhibitors failed to lower CVD risk (29, 30), and gene variants
altering HDL-C levels in Mendelian randomization studies were
not necessarily associated with CVD (31). Instead, it has been
proposed that indexes of HDL structure and function may better
mediate the atheroprotective effects of HDL (32).

Hence, the standard metrics in routine lipid testing are
only part of lipoprotein factors, which cannot account for
all CVD risks. Lipoprotein is known to be a lipid-protein
conglomerate possessing complex structure, composition and
function (33). Chylomicron containing ApoB-48 is secreted from
the intestine, whereas very low density lipoproteins (VLDL)
containing ApoB-100 is synthesized in hepatocytes and then
enters the systemic circulation. TGs in VLDL are hydrolyzed by
lipoprotein lipase (LPL), resulting in small, cholesterol-enriched
VLDL remnants and IDL (34). IDL particles can be further
converted into LDL by hepatic lipase (HL), and both of them
can be removed by the interaction of apolipoproteins with
hepatic LDL receptor (LDLR) (35). The HDL metabolism begins
with secretion of small discoidal protein-phospholipid complex
mainly from liver. The nascent HDL removes cholesterol
from peripheral tissues, and increasingly matures into a
larger spherical HDL particle. In summary, the metabolic
processes of lipoproteins are very complex, which involve

dynamic changes of cholesterol, triglyceride, phospholipid and
apolipoprotein in various lipoprotein subclasses (36). More
detailed lipoprotein profiles based on advanced detection
methods are necessary to identify new biomarkers of AS and its
clinical manifestations (37–39).

Metabolomics is able to measure the global metabolic status
in cells, tissues or biological fluids (40). Being downstream
of biometabolic processes, the metabolome can filter out
nonfunctional effects and greatly amplify small functional
changes at the genetic or protein expression levels (41).
Quantitative nuclear magnetic resonance (qNMR) metabolomics
enables rapid, nondestructive, reproducible and high-throughput
quantifications of lipoproteins, lipids and molecular metabolites
with uncomplicated sample preparations (42). Since mass
spectrometry (MS) cannot analyze protein-lipid complexes,
qNMR metabolomics occupies a very important position in
lipoprotein testing. It has also been demonstrated that qNMR
lipoprotein detection is unaffected by frozen storage andmultiple
freeze-thaw cycles (43). Because of these advantages, qNMR
metabolomics paves the way for large population-based studies
and, therefore, provides a distinct perspective on atherosclerotic
diseases (44, 45).

Over the past two decades, accumulating evidence has
suggested that qNMR metabolomics can serve as a promising
strategy to discover new biomarkers in atherosclerotic diseases
(46, 47). The qNMR-based lipoproteins with differing sizes and
densities have diverse vascular effects (48, 49). The profiling of
metabolic status holds promise of unraveling the pathological
mechanisms underlying atherosclerosis. In addition, qNMR
metabolomics may better reflect atherogenesis than traditional
lipid testing (48, 50, 51). The quantification of circulating
metabolites identifies changes prior to the onset of overt
disease, and hereby contributes to earlier and more accurate
cardiovascular risk assessment.

Despite such a large number of studies in this field,
no literature has systematically reviewed the qNMR-based
metabolite biomarkers in detail. In this review, we intend to
(1) describe the detection and analytical principle of qNMR
metabolomics; (2) summarize the epidemiological findings
that seek novel biomarkers for AS and CVD using qNMR
metabolomics, focusing on lipoprotein and lipid; (3) discuss the
significance of identifying qNMR biomarkers; (4) illustrate the
current challenges and future directions in this field.

QUANTITATIVE NMR-BASED
METABOLOMICS

In 1983, Nicholson et al. (52, 53) pioneered the application
of NMR spectroscopy to study multicomponent metabolic
composition. NMR-based metabolomics identifies metabolites
subjected to a magnetic field by characteristic chemical shifts
in resonance frequency. Quantitative NMR metabolomics, also
known as metabolite profiling, offers transparent biological
information about metabolite identification and absolute
quantitation (54). The most versatile and widely used method
is 1H qNMR. Each molecule with hydrogen atoms gives a
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characteristic signal with a shape that is quantum mechanically
distinctive, and the area is proportional to the concentration
of the molecule (55, 56). Using standard equipment, qNMR
can resolve the concentrations of target molecules down to the
micromolar range. By enhancing or attenuating different signals
with multiple pulse programs, qNMR is able to optimize large or
small molecules (57). Individual molecular signals may overlap,
but current linefitting methods relying on molecule-specific
model lineshapes and regression modeling can robustly handle
part of the overlapping information (58, 59).

It is also widely known that qNMR is suitable for
detecting and quantifying lipoproteins because the chemical
shifts fundamentally reflect the physical structure of the particle
(60, 61). Lipoproteins give rise to a series of broad peaks
in spectral regions that are superimposed on the very broad
envelope from proteins such as albumin and the sharp peaks
of small-molecule metabolites (62). Among them, the shapes
of two peaks, i.e., the terminal CH3 group peak and the
long-chain (CH2)n peak of the fatty acyl groups, can reflect
the differences derived from lipid chemical heterogeneity and
lipoprotein particle size (63). According to the size of the particle,
the lipid methyl and methylene moieties in lipoproteins resonate
at different frequencies, with smaller particles resonating at lower
frequencies. Therefore, the concentrations of lipoproteins can
be quantitated when decomposing the methyl and methylene
signals of the core lipids into individual signals or using statistical
methods to estimate the entire envelope (64).

To further determine lipoprotein parameters, research teams
have developed various fitting models to cover different
lipoprotein subfractions categorized by size or density.
The research team led by Otvos first developed lipoprotein
quantification in 1991 (65); they detected the particle numbers
and sizes of large, medium, and small subclasses of VLDL,
LDL, and HDL separately. The group then created a simplified
LipoProfile R© panel, which has been commercially available from
LipoScience Inc. (Raleigh, North Carolina) since 1997 (66). The
Finnish research team led by Ala-Korpela determined the particle
numbers and sizes of 14 lipoproteins (CM, 5 VLDL, 1 IDL, 3
LDL, and 4 HDL) (67). A Spanish research team developed a
Liposcale panel, which was reported to be more accurate than
the LipoProfile (68). The spectrometer manufacturer company
Bruker BioSpin also offers lipoprotein analysis. The latest
method is capable of quantifying over 100 parameters, including
16 lipoprotein subclasses (5 VLDL, 1 IDL, 6 LDL, and 4 HDL)
and their compositional components (total cholesterol, free
cholesterol, triglyceride, phospholipid, apolipoprotein etc.) (62).
It also reports 41 low-molecular-weight metabolites in units of
mole, mildly extending the metabolic profiles.

BIOMARKERS FOR ATHEROSCLEROTIC
DISEASES USING qNMR METABOLOMICS

Herein, drawing on discoveries in population-based studies, we
describe the qNMR biomarkers from a perspective of three main
categories of lipoproteins (i.e., LDL, VLDL, andHDL), along with
some molecular metabolites. We provide a tabular overview of

qNMR-based potential lipoprotein biomarkers (Table 1).We also
summarize the epidemiological studies of biomarker discovery
in subclinical atherosclerosis (Supplementary Table 1) and
cardiovascular disease (Supplementary Table 2) using qNMR
metabolomics in recent 5 years.

LDL Particle Number, Subclasses, Particle
Size, and Lipid Components
The LDL-C in standard lipid panel is calculated from
the Friedewald equation which is easily influenced by
hypertriglyceridemia (69), but qNMR provides quantitative
data directly. In addition, the LDL-C only refers to cholesterol in
LDL, while qNMR detects various LDL-related measures such as
particle number, subclasses, particle size, and lipid components.

There has been agreement that LDL particle number (LDL-P)
is strongly related to atherosclerotic diseases. In 2,888 individuals
from the EPIC (European Prospective Investigation into Cancer
and Nutrition)-Norfolk study, LDL-P correlated with coronary
artery disease (CAD), even after adjusting for the Framingham
risk score and LDL-C (70). Toth et al. (71) showed that patients
undergoing LDL-P measurement were more likely to receive
intensive lipid-lowering therapy and had lower CVD risk than
those in the LDL-C cohort. In fact, LDL-C and LDL-P may
be discordant in some cases, exerting an additional risk (72–
74). In the MESA (Multi-Ethnic Study of Atherosclerosis) study,
Otvos et al. (72) identified 5,598 participants with discordant
LDL-P and LDL-C. The carotid intima-media thickness (cIMT)
was highest in subjects with raised LDL-P but normal LDL-
C. Among 27,533 initially healthy women that were followed
up for 17.2 years in another study (74), a similar result was
observed, namely, coronary risk was underestimated for women
with such discordance. Therefore, as described in the National
Lipid Association (NLA) consensus statement (75), LDL-P is a
“reasonable measure” in the estimation andmanagement of CVD
risk and may be a potential intervention target.

In regard to LDL subclasses, it is well-established that
small dense LDLs (sdLDLs) are more atherogenic (76–79). In
fact, the necessity of monitoring the sdLDL concentration has
been stressed by many guidelines, such as the 2016 Chinese
guidelines (80) and 2019 ESC/EAS guidelines (81). However,
some researchers regard the large LDL subclass to be as important
as sdLDL. Mora et al. (82) found that failure to adjust the
strong inverse association between sdLDL and large LDL might
conceal the atherogenic effect of large LDL. Likewise, Otvos et al.
(83) demonstrated that both LDL subclasses were significantly
related to coronary events once their correlation was taken into
account.Moreover, it is worth noting that LDL particle size (LDL-
S) in nanometers (nm) reflects similar but weaker information
compared to the LDL subclass distribution. Specifically, although
LDL-S was shown to be negatively associated with atherosclerotic
diseases in some studies (84, 85), the relationship was not
sustained in other studies or lost its statistical significance when
adjusting for other lipid parameters (82, 86).

With regard to lipid components in LDL, most of the
current studies targeting triglycerides in LDL (LDL-TG) use
other methods, such as the enzyme-linked immunosorbent assay
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TABLE 1 | Lipoprotein biomarkers of atherosclerotic diseases identified in epidemiological studies using quantitative NMR metabolomics.

Biomarker Full name Unit Potential ability Hypothesized mechanisms Need for further study

Low-density lipoprotein (LDL)

LDL-P LDL particle

number

nmol/L LDL-P is a “reasonable measure” for

atherosclerotic diseases. When

LDL-C and LDL-P are discordant,

LDL-P indicates additional risk

information. The LipoProfile panel

including LDL-P has entered clinical

practice in United States.

Increased LDL-P, within the

same level of LDL-C, reflects

elevated small, dense LDL

particles which is more

atherogenic.

Although LDL-P in LipoProfile

has achieved initial clinical

transformation, the clinical

utilization rates and practical

benefits remain unclear so far.

Small LDL-P Small LDL particle

number

nmol/L Small and dense LDL (sdLDL) is a

well-recognized atherogenic indicator,

which has been highlighted by many

guidelines.

Smaller LDL has a lower affinity

for receptor, greater affinity for

arterial wall, and is more prone to

oxidation.

The precipitating factors for

elevated small LDL-P under

various disease environments

need to be explored.

Large LDL-P Large LDL particle

number

nmol/L Some studies regarded large LDL as

important as sdLDL. Failure to adjust

the strong negative correlation

between large and small LDL might

conceal the atherogenicity of large

LDL.

Unclear. Large LDL is enriched in

cholesterol, which may become

cholesterol donors at some

point.

Future studies should consider

the inverse correlation between

LDL subclasses to identify the

true effect of large LDL-P.

LDL-S LDL size nm LDL-S was found to be inversely

associated with atherosclerosis (AS)

and cardiovascular disease (CVD),

reflecting similar but weaker

information compared to LDL

subclasses distribution.

The smaller LDL-S is, the more

sdLDL particles may exist.

The relationship between LDL-S

and atherosclerotic diseases was

inconsistent or lost statistical

significance after adjustments.

LDL-TG Triglycerides in

LDL

mg/dL LDL-TG was proved to be positively

associated with AS and subsequent

CVD even after multivariable

adjustments, but some studies failed

to prove the association.

Unclear. LDL-TG may participate

in the local inflammation after

penetrating into arterial wall.

The number of studies focusing

on LDL-TG using NMR is limited.

Since TG is not riched in LDL, to

which degree LDL-TG explains

the risk and the exact

mechanisms remain to be

solved.

Triglyceride-rich lipoprotein (TRL)

Small VLDL-P Small VLDL

particle number

nmol/L Small VLDL-P was found to have a

positive dose-response relationship

with residual CVD risk, independent

of LDL-C.

Small VLDL can diffuse into

arterial wall without modification.

Whether small VLDL-P can serve

as a therapeutic target needs

more clinical and basic studies.

Large VLDL-P Large VLDL

particle number

nmol/L Large VLDL-P was presented to be

positively associated with AS and

CVD in some studies, but the

relationship was not supported in

other studies.

Large VLDL may correlate with

delayed chylomicron clearance,

reflecting the postprandial

lipemia.

The relationship between large

VLDL and atherosclerotic

diseases was discordant in

different studies, and needs

further researches.

RLP-C Cholesterol in

TRLs remnant

mg/dL RLP-C, especially cholesterol in small

VLDL, showed strong association

with residual CVD risk.

Cholesterol in RLP, including

small VLDL and IDL, exhibits

increased retention time in artery

wall.

The relationship between fasting

and (or) postprandial RLP-C

levels and CVD has been a

research hotspot, and needs

further confirmation in different

populations.

VLDL-TG Triglycerides in

VLDL

mg/dL VLDL-TG was not shown to explain

CVD risk like VLDL-TC. But in

insulin-resistant subjects, VLDL-TG

usually increases, generating

lipoprotein disturbances.

Insulin resistance induces

increased TG-enriched VLDL,

which leads to atherosclerotic

lipoprotein profile.

Whether VLDL-TG accounts for

CVD risk and how it exerts an

adverse effect, remain to be

investigated.

High-density lipoprotein (HDL)

HDL-P HDL particle

number

nmol/L HDL-P had a negative association

with CVD, with a consistency across

diverse ethnicities.

HDL is the only protective

lipoprotein in circulation.

Elevated HDL-P reflects efficient

protection effects.

Whether HDL-P presents stable

relationship with CVD across

diverse ethnicities, ages, sex

requires validation.

(Continued)
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TABLE 1 | Continued

Biomarker Full name Unit Potential ability Hypothesized mechanisms Need for further study

Smaller

HDL-P

Smaller HDL

particle number

nmol/L Smaller HDL-P negatively correlated

with CVD and improved the

prediction efficiency.

Smaller HDL removes cholesterol

from arterial wall, and has

anti-inflammatory, antioxidant,

antiapoptotic actions.

Several issues remain unclear:

which HDL subclass better

protects against CVD, the

mechanisms of performing these

Large HDL-P Large HDL particle

number

nmol/L Large HDL-P showed a inverse

association with CVD risk.

Unclear. Larger HDL may also

relate to the reverse cholesterol

transport activity.

functionalities, how these actions

are compromised in pathological

states etc.

HDL-S HDL size nm HDL-S inversely correlated with AS,

but the relationship may be

attenuated by other factors.

Unclear HDL-S seems to be a weaker

predictor than other HDL-related

parameters.

HDL-ApoA1 apolipoproteinA-1

in HDL

mg/dL ApoA1 strongly correlated with

HDL-C, HDL-P, and offered extra risk

information.

ApoA1 ensures HDL structural

stability and cholesterol efflux.

Whether distribution of ApoA1

plays a part needs further

research.

HDL-TG Triglycerides in

HDL

mg/dL HDL-TG was reported to be directly

associated with arteriosclerotic

diseases.

Unclear The mechanisms of HDL-TG

exerting pathogenic effects

require to be solved.

(ELISA) kits and automated homogeneous methods (87, 88).
For example, Saeed et al. (89) examined plasma LDL-TG levels
with automated homogeneity and discovered that LDL-TG
independently correlated with the incidence of CVD events.
In 4,381 patients with established CAD, high LDL-TG was
associated with worse cardiovascular outcomes, suggesting its
utility among secondary prevention populations (90). Likewise,
Tzoulaki et al. (91) assessed metabolic profiling among 3,867
MESA participants based on qNMR metabolomics. The results
indicated that TGs in total and large (density 1.019–1.031 kg/L)
LDL were related to cIMT and CVD events (P < 0.005) when
adjusting for other risk factors. Nevertheless, Albers et al. (92)
failed to prove the correlation between LDL-TG and CVD events
in the AIM-HIGH (Atherothrombosis Intervention in Metabolic
Syndrome with Low HDL/High Triglycerides and Impact on
Global Health Outcomes) trial. Thus, more studies using qNMR
to precisely quantify LDL-TG levels are needed to explore
its atherogenicity.

Although the mechanisms underlying the atherosclerotic
process that are secondary to dyslipidemia remain largely
unclear, the adverse effects of LDL have been partially identified.
Circulating LDLs penetrate endothelial cells and enter the intimal
space, especially in the context of hypercholesterolemia (93,
94). After being exposed to oxidative injury by free radical
species, modified LDL can then be engulfed by monocyte-
derived macrophages through receptor-mediated endocytosis
and phagocytosis (95, 96). Macrophages subsequently turn into
foam cells engorged with large amounts of cholesteryl esters,
which give rise to the initiation of vascular lesions and the
formation of fatty streaks (97). Regarding lipid components in
LDL, it is interesting to note that TG can be catabolized by
macrophages, which is different from cholesterol (98). LDL-
TG may not directly lead to plaque formation, but may
still potentiate atherogenesis. Elevated LDL-TG correlated with
inflammatory markers such as C-reactive protein, white blood
cell count, amyloid-A, fibrinogen, and interleukin-6 (89, 99) and
was negatively associated with adiponectin levels, which have
anti-inflammatory and cardioprotective effects (100). Therefore,

chronic low-grade inflammation may be the link between
LDL-TG and atherosclerosis, and more possible mechanisms
remain under active investigation.

VLDL Subclasses, and Lipid Components
in VLDL and IDL
Increasing attentions have been focused on TG-rich lipoproteins,
which consist of VLDL, IDL in the fasting state, and plus
chylomicron (CM) in the postprandial state (101–103). Since
CM particles may generate NMR spectral interference, qNMR
detections usually avoid nonfasting serum or plasma, we thereby
discuss the fasting TRLs, namely, VLDL and IDL in this part.

The first thing to mention is the concentrations of VLDL
subclasses. Early in 1998, Freedman et al. (104) found that
large (diameter 60–100 nm) VLDL was positively associated with
CAD independent of age and standard lipid measurements.
Four years later, Mackey et al. (105) reported that the level of
large (diameter 60–200 nm) VLDL was associated with higher
coronary calcification (CAC) after multivariable adjustments.
However, studies performed in the JUPITER (Justification for the
Use of Statins in Prevention) trial seemed to endorse the smaller
VLDL subclasses. In 11,984 participants with a baseline LDL-
C lower than 3.36 mmol/l (130 mg/dl), each standard deviation
(SD) increase in the concentration of small (diameter 29–42 nm)
VLDLs resulted in a 68% increase in residual CVD risk (106).
However, statin-induced changes in large (diameter > 60 nm)
or medium (diameter 42–60 nm) VLDL particles caused no risk
reduction (107). In addition to the two opposite views, some
studies considered all VLDL subclasses to have adverse effects.
Mora et al. (108) found that total VLDL and its subclasses, as well
as IDL, all independently predicted the incidence of CVD events
in 27,673 women that were followed up for over 11 years. In 4,662
individuals from the CKB (China Kadoorie Biobank) cohort, the
adjusted odds ratio (OR) for myocardial infarction ranged from
1.18 (1.07–1.29) for extremely large VLDL to 1.30 (1.19–1.44) for
small VLDL, including IDL in the interval (109).
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The second point that needs to be discussed is lipid
components in VLDL and IDL. In recent years, cholesterol in
TRL remnants (RLP-C), mainly small VLDL-C, has been proven
to play a crucial role in residual CVD risk. Lawler et al. (107)
observed a dose-dependent relationship between a decrease in
VLDL-C and the residual risk reduction. In addition to VLDL-C,
VLDL-TG is also an index of great concern but is under debate.
In 25,480 Copenhagen subjects, Balling et al. (110) discovered
that VLDL-TG did not account for MI risk, whereas VLDL-C
explained 50% of the risk among ApoB-containing lipoproteins.
However, for the same CVD endpoint, Holmes et al. (109) found
that TG in all VLDL subclasses (diameter from 31.3 to >75 nm)
had strong positive correlations with MI. Similarly, Tzoulaki
et al. (91) demonstrated that nearly all VLDL-TG correlated with
cIMT and TG in total and that the largest VLDL was related to
CVD after multivariable adjustments (P < 0.005). Hence, VLDL-
TG is very likely to take part in the atherogenic process and
should be considered seriously in future studies.

Despite belonging to ApoB-containing lipoproteins, large
VLDL, owing to the size limitation of transcytotic vesicles,
cannot traverse the endothelium and exert atherogenic effects
like LDL (111). However, some studies considered elevated
large VLDL might reflect postprandial dyslipidemia, which is
characterized by delayed chylomicron clearance and prolonged
atherogenic lipoprotein retention (105). In addition, basic
studies suggested that small RLP particles, which contain 5–
20 times more cholesterol than LDL, had a greater affinity
for subendothelial components. The TRL remnants could
be taken up by macrophages directly without modification,
thus promoting rapid cholesterol accumulation in lesional
macrophages (22, 112). TRL remnants are also proposed to
exacerbate the atherosclerotic process by inducing the secretion
of TNF-α and IL-1β (113), activating the coagulation cascade
(114), impairing endothelium-dependent vasodilation (115),
and increasing oxidative stress (116). Except for its own
pathogenicity, elevated VLDL under insulin resistance can also
initiate lipoprotein destabilization (117). Specifically, excess
VLDL particles undergo deficient TG lipolysis and poor hepatic
uptake, which results in increased RLP particles. Afterwards,
VLDL particles and remnants promote TG transfer to LDL
and HDL by CETP. The latter two particles consequently
become TG-enriched and can be further hydrolyzed into
more atherogenic sdLDL and small TG-depleted, TC-depleted
HDL (118). The whole pathological disturbances alter the
lipoprotein profile towards an atherogenic form. In summary,
TRL subclasses and their lipid composition promote endothelial
dysfunction, but further research is still needed to identify the
underlying mechanisms.

HDL Particle Number, Subclasses, Particle
Size, and Compositional Components
Since HDL is not simply a carrier of cholesterol but a complex
particle with physiological heterogeneity, the structural, and
compositional parameters measured by qNMR such as particle
number, particle size, subclasses, and compositional components
tend to better reflect the cardioprotective effects of HDL.

In the MESA cohort, HDL particle number (HDL-P) was
protective against cIMT and CHD after adjusting for HDL-
C, LDL-C, LDL-P, TG, and other confounders (119). In the
Dallas Heart Study, when HDL-C was no longer related to
CVD in multivariable analyses, HDL-P maintained a strong
correlation (120). With no interaction with black race, HDL-
P had consistency across diverse ethnicities (121). Moreover,
among four HDL-related biomarkers in the JUPITER trial, HDL-
P was consistently the strongest predictor of CVD at baseline or
on statins (122). These studies all support that HDL-P might be a
promising protective biomarker in atherosclerotic diseases.

The HDL subclass that best reflects the antiatherogenic
features of HDL has been laden with controversy. Some studies
describe large HDL as an effective form. A nested case-control
study in the CKB cohort discovered that all HDL subclasses,
except for small (diameter < 8.7 nm) HDL, were negatively
associated with MI (109). In the Chicago Healthy Aging
Study, large (diameter 8.8–13 nm) and medium (diameter 8.2–
8.8 nm) HDL particle levels positively correlated with HDL
cholesterol efflux capacity (CEC), which characterizes the key
function of effluxing cellular cholesterol (123). Nevertheless,
conflicting results have been reported. Ditah et al. (124) suggested
that medium (diameter 8.2–9.4 nm) and small (diameter 7.2–
8.2 nm) HDL were associated with CAC even after adjusting
for HDL-C, while large (diameter 9.4–14 nm) HDL fell short
of statistical significance. Silbernagel et al. (125) presented an
inverse correlation of small (diameter 7.0–8.5 nm) HDL with
CVD mortality, which could further improve the performance
of the prediction model. Kim et al. (126) found that small and
medium HDL-P was strongly associated with cardioprotective
paraoxonase 1 (PON1) activity and that PON1 is a glycoprotein
enzyme that prevents oxidation of LDL. These studies fuel the
speculation that small HDL subclasses act as more accurate
risk indicators.

HDL particle size (HDL-S) is usually inversely correlated
with AS, but the negative relationship might be attenuated or
abolished by other factors. In the Women’s Health Study, the
adjusted hazard ratio (HR) for HDL-S was 0.65 (0.51–0.81) (108).
However, in the EPIC study, the association between HDL-S
and CAD was diminished after adjusting for ApoB and TG
levels (127). In the JUPITER trial, HDL-S underwent slight drug-
induced changes and showed no association with CVD in fully
adjusted models (128). As a result, in the long run, HDL-S seems
to be a weaker predictor than the HDL subclass distribution.

In addition to HDL quantity, HDL quality has aroused
growing attention. HDL functions are closely related to its
compositional components. ApoA1 is the major protein on
HDL that ensures structural stability and stimulates cholesterol
efflux from cells to HDL (32). In the post-hoc analysis of the
IDEAL (Incremental Decrease in End Points through Aggressive
Lipid Lowering) trial and EPIC-Norfolk study, when HDL-C lost
its inverse relationship with major coronary events after serial
adjustments, ApoA1 exhibited a stable negative association in
most models (129). Moreover, it also suggested that high levels
of very large HDL particles not accompanied by high levels
of ApoA1 were associated with increased but not decreased
CVD risk (129). Therefore, ApoA1 should be taken into account
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more in risk assessment. Regarding lipid components in HDL,
most cohort studies indicated that the cholesterol in small HDL
subclasses primarily drove the inverse association with CVD
events (130, 131). However, there is also a study that supports
the idea that the cholesterol in large HDL inversely correlates
with MI (109). Furthermore, despite the protective properties of
HDL on the whole, HDL-TG has been reported to be positively
correlated with arteriosclerotic diseases in many populations,
such as the CKB cohort (109), MESA cohort (91) and T2DM
or MS patients (132). Thus, it may be a potential pathogenic
biomarker of CVD risk.

HDL particles demonstrate multiple antiatherogenic
biological functions. The most widely known is reverse
cholesterol transport (RCT) (133). Small HDL particles remove
cholesterol from the arterial wall, primarily from the lipid-
overloaded macrophages, and gradually expand into larger
spherical HDL. These large HDL particles transfer their
cholesterol esters to hepatocytes by scavenger receptor-B1
(SR-B1) or to ApoB-containing lipoproteins using CETP,
regenerating a smaller HDL that repeats the process. Additional
atheroprotective properties of HDL, particularly the small and
mediumHDL subclasses, include angiectatic, anti-inflammatory,
antioxidant, and antiapoptotic actions. Specifically, HDL can
stimulate the production of nitric oxide (NO) and prostacyclin to
exert vasodilatory effects (134). HDL also suppresses the chronic
inflammatory response by decreasing the generation of adhesion
molecules, platelet-activating factor and Von Willebrand factor
(135). By reducing the production of reactive oxygen species
and contrasting the oxidation of LDL through paraoxonase
or platelet activating factor acetyl hydrolase (136, 137), HDL
is able to decrease intracellular oxidative stress. Furthermore,
HDL particles exert cytoprotective actions, protecting both
macrophages and endothelial cells from apoptosis (138).
Taken together, small HDL particles seem to mainly represent
the protective capacity of HDL, but more evidence from
experimental studies in vitro and in vivo is needed.

qNMR-Based Molecular Metabolites
The risk assessments of atherosclerotic diseases are traditionally
based on lipoproteins and lipids. However, several qNMR
platforms also enable the simultaneous detection of low-
molecular-weight metabolites, offering multimetabolic
signatures. In this review, we briefly introduce some typical
qNMR-based molecular biomarkers.

Glycoprotein acetyls (GlycA) is a novel NMR biomarker of
systemic inflammation that reflects the enzymatic glycosylation
state of the main acute-phase reactants. Compared with hsCRP,
GlycA was reported to have lower analytic imprecision and
intraindividual variability (139). In the MESA cohort, GlycA was
associated not only with subclinical atherosclerosis (140–142) but
also with poorer CVD health independent of hsCRP, d-dimer, IL-
6, and fibrinogen (143). However, it is not clear whether GlycA is
a determinant or just an indicator of atherosclerotic progression.

The amino acid profile is also included in the qNMR
metabolome, even though its overall picture may not be as
clear as the lipoprotein profile. In the Taizhou Imaging Study,
two branched-chain amino acids (leucine and isoleucine) were
positively correlated with arterial stiffness (144). Additionally,

phenylalanine showed an inverse association with CVD (91).
In another multiqueue study, a high phenylalanine level was
consistently associated with CVD death but was only associated
with CVD events at a young age, except in elderly individuals over
60 years (145).

Lactate was inversely associated with cIMT in the Taizhou
Imaging Study (144). But in another multi-racial study, lactate
showed positive associations with CVD events (91). With respect
to fatty acids, higher levels of monounsaturated fatty acid
(MUFA) were positively correlated with CVD risk while higher
levels of omega-6 fatty acids and docosahexaenoic acid (DHA)
negatively related to CVD risk (145).

SIGNIFICANCE OF qNMR-BASED
METABOLITES IN ATHEROSCLEROTIC
DISEASES

A statement by the American Heart Association addressed the
potential impact of metabolomics on CVD health and disease
(146). Indeed, studies looking for novel biomarkers using qNMR
metabolomics, as described in the previous section, usually have
threemajor, interlinked objectives, which will be discussed below.

Improving Risk Assessment
Current CVD risk assessments, such as the Framingham Risk
Score (FRS) (147) and the China-PAR tool (148), rely on
traditional risk factors (TRFs). However, the first CVD event
often originates in people classified as being at intermediate
or low risk; hence, it is hoped that new qNMR-based
metabolite biomarkers can complement or outperform the
existing risk estimations.

The weighted metabolite score derived from 13 replicated
signals was independently associated with CHD incidence.When
adding age and sex to the score, the predictive performance
paralleled that of TRFs (C-index 0.81 and 0.82) (149). The model
using the calculated “VLDL extra-hepatic lipolysis indicator” and
“VLDL hepatic turnover indicator” combined with LDL-C and
HDL-C had better CVD risk prediction performance than that
with only TRFs (AUROC 0.812 vs. 0.795) (150). In addition,
in a meta-analysis across three cohorts, the prediction score
incorporating phenylalanine, MUFAs, omega-6 fatty acids and
DHA improved risk classification, particularly for people in the
intermediate (5–10%) risk range (145).

Thus, qNMR metabolites not only offer additional risk
information beyond traditional lipids but also have the clinical
potential to reclassify the CVD risk stratification. In other words,
qNMR metabolomics can be taken as an extension to routine
analysis and, to a certain degree, may supersede lipid panels in
the future.

Unraveling Disease Etiology
qNMRmetabolomics is expected to shed light on the “black box”
mechanisms of AS and CVD. Biological pathways underlying the
biomarkers can be characterized by searching metabolic pathway
databases such as the Kyoto Encyclopedia of Genes and Genomes
(KEGG; https://www.kegg.jp) and Human Metabolome Database
(HMDB; https://www.hmdb.ca) (151). Clinical studies and basic
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research studies have shown that during AS progression,
metabolic perturbations lie in lipid and fatty acid metabolism,
BCAA and aromatic acid metabolism, the TCA cycle, glycolysis,
urea metabolism, oxidative stress, and inflammatory and insulin
pathways (152–154). Mapping the molecular interaction gene
network can further depict interconnections between disturbed
pathways to gain a more precise understanding (91).

Exposure to various environmental factors may bring about
metabolic changes contributing to atherogenesis. Ameta-analysis
of 26,065 individuals from eight cohorts reported that age-
specific metabolic profiles differed by sex, and the menopausal
transition in females induced a proatherogenic lipoprotein
profile along with amino acid changes (155). Additionally, the
association between HDL-C and CVD events was attenuated
in patients with chronic CAD or chronic kidney disease,
probably owing to long-term inflammation, oxidative stress, and
abnormal hormone secretion (38). In addition, a polymorphism
of the APOA5 gene, which encodes a key regulator of TG
levels, could modify lipoprotein distributions toward a more
atherogenic pattern. This pattern was significantly associated
with increased cIMT, especially in overweight or centrally obese
patients, thus reflecting a “double hit” from gene-environment
interactions (118).

Guiding Therapeutic Strategy
The qNMR-based metabolic profile is capable of monitoring
treatment efficacy. For example, among subjects treated
with gemfibrozil, a fibric acid derivative, neither TG
nor HDL-C predicted CHD events, but LDL-P and
HDL-P could serve as independent predictive indexes
(83). Therefore, the therapeutic benefit not reflected by
conventional biochemical testing may be uncovered by
qNMR metabolomics.

The profiling of metabolic changes also contributes to
personalized intervention or optimal evaluation. Six metabolic
patterns were identified in the early stage of AS (156). Among
them, phenotype A held the highest risk (RR = 2.6); phenotype
B presented less lipoprotein variation than A (RR = 2.4).
Phenotype C held a relatively optimal profile, but the risk
(RR = 1.8) was not accordingly desirable. For phenotypes D,
E, and F, the relative risks were statistically similar. Thus,
various metabolic phenotypes may involve varying risk levels.
Proper classification of AS patients can help direct individualized
treatment. Moreover, in the JUPITER trial that recruited subjects
with low LDL-C, a small (diameter 29–42 nm) VLDL-P was
responsible for residual CVD risk (106), and HDL-P was the
strongest inverse predictor for CVD among several HDL-related
indexes (122). Hence, qNMR metabolic profiles allow for the
identification of potential targets for intervention and prognostic
indicators for evaluation.

CHALLENGES AND FUTURE DIRECTIONS
OF qNMR METABOLOMICS STUDIES IN
ATHEROSCLEROTIC DISEASES

Although great progress has been made in regard to
techniques, including automatic sample injection, spectral

feature extraction, and efficient analytical tools, studies
using qNMR metabolomics in AS and subsequent CVD
still face a series of issues. In this section, we discuss several
challenging points.

Identifying Key Metabolite Biomarkers
It is required to determine the “golden value” biomarkers
for clinical applications. An eligible biomaker should fulfill
some prerequisites, including valid and precise measurement,
additional value beyond existing tests, and clinical benefit to
subjects (157, 158).

NMR metabolomics offers metabolic profiles in reproducible
manners. The relative standard deviations (RSD) of metabolites
derived from qNMR spectroscopy are much smaller (i.e., values
are within less fluctuation range) than those detected by mass
spectrometry (57). In this regard, qNMR metabolomics endows
its biomarkers with some practicability.

Despite a plethora of biomarkers for AS and CVD that have
been identified in epidemiological studies, very few successfully
find their way into clinical use. Various biomarker panels
comprise different lipoproteins and/or molecular metabolites,
which bring great difficulties in comparison and validation.
Another point that needs to be noted is the application
scope. Although AS is a systemic disease, risk factors across
differing arterial beds and atherosclerotic endpoints do not
necessarily overlap (159, 160). Thus, owing to intergroup
variability and disease complexity, few biomarker candidates
have been translated into clinical practice, and further research
is still required.

In addition, the cost-benefit needs to be considered. NMR
metabolomics detects a suite of metabolites. Making a diagnosis
based on so many metabolites would not be convenient or
economical in clinical practice. Encouragingly, the simplified
LipoProfile panel (including LDL particle number, NMR
determined HDL-C, and TG) was approved by the U.S. Food and
Drug Administration in 2008 (161) and was covered by some
health insurance companies in America. However, the clinical
utilization rates and practical benefits remain unclear. If the
clinical benefits are very small or deficient, the additional costs
may not be justified.

Various Analytical Platforms
The lack of standardized and uniform settings has become one
of the biggest barriers to putting biomarker candidates into
practice. A variety of analytical methods have been developed
to separate lipoprotein subfractions according to their size or
density. However, the measurement units differ between qNMR
platforms, which makes it difficult to compare or combine results
from different studies.

However, on the upside, a series of consortia or programs
have been established to overcome the heterogeneity. The
Consortium of Metabolomics Studies (COMETS) was developed
in 2014 (162). As the largest consortium worldwide, it builds
on 47 prospective studies that include over 136,000 participants
from Asia, Europe, North America, and South America as of
April 2018. Furthermore, the Atheroflux consortium consists of
two earlier EU consortia, AtheroRemo and RiskyCAD (157). The
intention of these alliances is to combine multiple data and to
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discern more reliable targets for clinical treatment and scientific
research. It can be anticipated that with more communication
among researchers, uniform criteria or comparative
methods across various platforms may be available in
the future.

Necessity of Collaboration With Other
Methodologies
Despite the many advantages of qNMR, especially the unique
ability to quantify lipoproteins, its sensitivity is relatively poor
in contrast to that of mass spectrometry. It is difficult to
identify molecules with concentrations much lower than the
detection limit; thus, qNMR is currently less preferred than MS
in lipidomics. Moreover, the high sample volume requirement
makes it difficult to perform assays on specimens at trace levels.
The overlapping resonances in spectral regions may correspond
to multiple metabolites, posing a great challenge to metabolite
annotation (45). By comparison, MS has a greater sensitivity
and can identify complex mixtures, despite its suboptimal quality
control and high cost of absolute quantification. Therefore, NMR
and MS have become complementary technologies in the field
of metabolomics.

It should be noted that qNMR metabolomics provides
only a “snapshot” of metabolic profiles. To learn about
the potential causal pathways and upstream changes,
cooperation with genomics, transcriptomics, proteomics,
and microbiomics is required to identify serial biomarkers
(38, 158). Additionally, metabolomics studies may only function
as hypothesis-generating to provide an initial framework
for further research. Whether the identified biomarkers
are pathogenic and through which signaling pathways the
biomarkers play their role remain to be solved. Hence, to
elucidate definitive pathological mechanisms underlying the
atherogenic process, more scientific investigations need to
be performed.

CONCLUSION

In the postgenomic era, qNMR metabolomics has been
widely applied in atherosclerotic diseases, which allows for
the rapid, accurate and high-throughput measurements of
circulating lipoproteins, lipids, and some molecular metabolites.
In this review, we summarized the recent qNMR metabolomics
studies associated with AS and CVD, with a particular
emphasis on lipoprotein biomarkers referring to particle number,
particle size, and compositional components. Since various
qNMR platforms have discordant categorization criteria, along
with intraindividual variability, interlab heterogeneity, and
confounding factor interference, few biomarker candidates
have been ultimately accepted in routine clinical practice. In
conclusion, more extensive exploration in large population-
based cohorts and validation of clinical applications should be
pursued in the future. To successfully translate the “golden value”
metabolite biomarkers from bench to bedside, we still have a long
way to go.
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