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Exosomes, with an diameter of 30∼150 nm, could be released from almost all types

of cells, which contain diverse effective constituent, such as RNAs, proteins, lipids,

and so on. In recent years, exosomes have been verified to play an important role in

mechanism, diagnosis, treatment, and prognosis of cardiovascular disease, especially

coronary artery disease (CAD). Moreover, it has also been shown that exosomes derived

from different cell types have various biological functions based on the cell stimulation and

microenvironment. However, therapeutic exosomes are currently far away from clinical

translation, despite it is full of hope. In this review, we summarize an update of the

recent studies and systematic knowledge of therapeutic exosomes in atherosclerosis,

myocardial infarction, and in-stent restenosis, which might provide a novel insight into the

treatment of CAD and promote the potential clinical application of therapeutic exosomes.
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INTRODUCTION

Coronary artery disease (CAD) still remains a high-prevalence, high-risk, and high-fatality
cardiovascular disease worldwide. In spite of the profound development of device and agents in
CAD treatment, the prognosis of CAD, especially acute myocardial infarction, is far from being
satisfactory (1, 2). Recently, exosome emerges as a novel, full of hope, and potential alternative to
cell-based therapies of CAD due to its cardioprotective properties (3).

Exosomes, with diameter of 30∼150 nm and density of 1.13∼1.19 g/ml, are the smallest
extracellular vesicles (EVs) (4), with a bilayer membrane structure released by almost all types
of cells (5, 6). The biogenesis of exosomes triggers from membrane proteins being endocytosed
via inward budding of the cell membrane, which are then transferred to early endosomes (EEs).
Afterwards, the EEs mature into multivesicle bodies (MVBs), filled with numerous intraluminal
vesicles (ILVs) (7, 8), which incorporate proteins, lipids, and genetic material during invagination
(9). Finally, MVBs can fuse with cell membrane and release ILVs to the extracellular space (10), as
we call them exosomes, or result in degradation via fusing with lysosomes (Figure 1) (11).

However, therapeutic exosomes are currently far away from clinical application, in spite of
so many outstanding qualities of exosomes. In this review, we will summarize an update of the
recent findings and systematic knowledge of therapeutic exosomes in CAD, which might provide
a novel insight into the treatment of CAD and promote the potential clinical translation of
therapeutic exosomes.
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FIGURE 1 | The biogenesis, formation, and content of exosomes. The formation of exosomes begins with invagination of the plasma membrane, and then forms early

exosomes, which form multiple vesicles after fusion, and finally release the exosomes out of the cell. During the formation of exosomes, it will actively or passively

carry exogenous or endogenous cargoes. The picture on the right shows the membrane structure of exosomes, the contents of exosomes, including proteins, DNA,

RNA, and others.

EXOSOMES AND CAD

According to the progress of CAD, the relationships between
exosomes and CAD are summarized into three parts: exosomes
in the prevention of atherosclerosis, exosomes in the diagnosis
and treatment of myocardial infarction, and exosomes in the
development of in-stent restenosis (Table 1).

Therapeutic Exosomes in Atherosclerosis
A basic progress in the development of atherosclerosis is
monocytes/macrophages accumulation into the vessel wall
to produce pro-inflammatory cytokines (32). It has been
reported that molecularly engineered M2 macrophage-derived
exosomes (Further electroporated with hexyl 5-aminolevulinate
hydrochloride) alleviated inflammation by promoting the release
of anti-inflammatory cytokines (33). Paeonol could restrict
atherosclerosis by obviously increasing miR-223 expression in
exosomes from monocytes and inhibiting STAT3 pathway (34).
Exosomes laden with heat shock protein 27 (HSP27) significantly
stimulated NF-κB activation and IL-10 release, suggesting
that exosomes could act as a vector in anti-inflammatory
therapy (35). Mitochondria constituted a major subset of
extracellular vesicles released by LPS-activated monocytes in
vitro, which were associated with type I IFN and TNF

signaling (36). Exosomes from nicotine-stimulated macrophages
could promote atherosclerosis through facilitating VSMC
migration and proliferation by targeting miR-21-3p/PTEN (37).
Moreover, helicobacter pylori-infected gastric epithelial cells-
derived exosomes accelerated macrophage foam cell formation
and promoted atherosclerosis by CagA (38). Insulin resistance
adipocyte-derived exosomes (IRADEs) has been reported to
aggravate the plaque burden, whereas its effect could be
attenuated by silencing sonic hedgehog in IRADEs (12). Besides,
Jiang et al. (13) also reported that steatotic hepatocyte-derived
EVs promoted endothelial inflammation by miR-1 delivery,
KLF4 suppression and the NF-κB pathway activation. And in this
instance, exosome therapy might be the reduction of negative
contents in exosomes such as miR-1 instead of increasing
therapeutic exosomes.

Therapeutic Exosomes in Myocardial
Infarction
Myocardial infarction, which often results in poor clinical
outcomes, still remains the lack of effective treatment, especially
for those without culprit vessel revascularization (14). Therefore,
current clinical treatments are mostly based on easinesss of
symptoms rather than repairing infarcted cardiomyocyte (15).
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TABLE 1 | Relationship between exosomes and CAD.

Disease Exosomal cargo Parent cells Recipient cells Target Biological/clinical relevance Reference

AS miR-223 THP-1 monocyte HUVEC STAT-3 pathway Anti-inflammation (12)

HSP27 THP-1 monocyte – NF-κB, IL-10 Anti-inflammation (13)

Mitochondria Monocyte Endothelial cell IFN, TNF Anti-inflammation (14)

miR-1 Hepatocyte Endothelial cell KLF4, NF-κB Anti-inflammation (15)

miR-21-3p MACROPHAGE VSMC PTEN Promote VSMC proliferation and degradation (16)

– Gastric epithelial cell Macrophage CagA Promote foam cell formation (17)

Sonic hedgehog Adipocyte HUVECs, MAECs TGF-α, IL-1β, IL-6 Reduce plaque vulnerability (18)

MI miR-342-5p Endothelials CMs Caspase9, Jnk2, Akt Anti-apoptsis/proliferation (19)

miR-21 HEK293T cell CMs, HUVECs PDCD4 Anti-apoptosis (20)

miR-125b-5p MSC CMs p53, BAK1 Anti-apoptosis (21)

miR-210 EPC Endothelial cell Mitochondria Anti-apoptosis/promote angiogenic function (22)

miR-24 Serum H9c2 cell Bim Mediate Remote ischemic preconditioning (23)

miR-93-5p Adipose stromal cell CMs Atg7, TLR4 Inhibit autophagy, anti-inflammatory (24)

lncR – Fibroblast, CMs Neat1 Anti-fibrosis (25)

miR-24 MSC CD8+T Bim Anti-fibrosis (26)

miR-130-3p Adipocyte CMs AMPKα1/α2, Birc6, and Ucp3 Anti-apoptosis (diabetic)

Cytotoxic substance Serum HL-1 CMs Compliment C4, ApoE, Apo C-IV Anti-apoptosis (diabetic) (27)

ILK Progenitor CMs NF-κB Enhance myocardial repair (28)

ISR miR-222 M1-macrophages VSMC CDKN1B/CDKN1C Promote VSMC proliferation and degradation (29)

miR-125b MSC VSMC Myosin-1E Promote VSMC proliferation and degradation (30)

miR-21-5p EPC HUVEC THBS1 Promote repair of endothelial cells (31)

AS, atherosclerosis; MI, myocardial infraction; ISR, in stent restenosis; MSC, mesenchymal stem cell; EPC, endothelial progenitor cell; CM, cardiomyocyte; VSMC, vascular smooth

muscle cell; HUVEC, human umbilical vein endothelial cell.

Exosomes reveal significant anti-apoptosis of cardiomyocyte
after myocardial infarction. Exercise-derived exosomal miR-342-
5p inhibited cardiomyocyte apoptosis by targeting Caspase9
and Jnk2 after left anterior descending artery occlusion
(16). EVs overexpressing miR-21 could dramatically reduce
PDCD4 expression and alleviate myocardial apoptosis (15).
Hypoxia-conditioned bone marrow-mesenchymal stem cells
(MSCs)-derived exosomes (Hypo-Exo) could also protect
cardiomyocytes from apoptosis by enrichment of miR-125b-
5p and suppressing the expression of genes p53 and BAK1
(17). In addition, miR-210 in endothelial progenitor cell-derived
exosomes (EPC-EXs) possessed antiapoptotic functions onto
hypoxia/reoxygenation-injured human endothelial cells (18).
Remote ischemic preconditioning-induced exosomes (RIPC-
Exo) also could transfer miR-24 into myocardium to inhibit
apoptosis (39).

Exosomes also provide cardioprotection by activating cell
survival signals, inhibiting inflammatory factors, delaying
ventricular remodeling, and reducing myocardial fibrosis after
the occurrence of myocardial infarction. Exercise-derived
exosome (Ex-exo) could carry miR-342-5p to promote Akt
phosphorylation by targeting gene Ppmlf (16). MiR-93-5p in
adipose stromal cell-derived exosomes (ADSC-Exo) inhibited
inflammatory response and prevented myocardial infarction by
targeting Atg7 and TLR4 (20). Kenneweg et al. (19) had reported
that fibroblasts absorbed lncR-EVs and promoted myocardial
fibrosis by targeting Neat1. Moreover, exosomal miR-24, derived

from allogenic human umbilical MSC, could inhibit cardiac
fibrosis (21).

Patients suffering from myocardial infarction often have a
history of diabetes. Gan et al. (22) had demonstrated that
the enrichment of miR-130b-3p from dysfunctional adipocyte
exacerbated myocardial infarction and cardiomyocyte apoptosis.
Serum-exosomes from normoglycemic rats could alleviate the
death of hypoxia/reoxygenation-induced HL-1 cell, however,
which disappears in type-2 diabetes rat model (23).

Exosomes also can serve as an adjuvant therapy. Integrin
Linked Kinase (ILK) acted as a target kinase by which progenitor
cell-derived exosomes attenuated myocardial injury (24). Cheng
et al. (25) have reported that miRNA in EVs contributed to early
detection of CAD by means of point-of care applications.

Therapeutic Exosomes in In-stent
Restenosis
Percutaneous coronary intervention has become a very
important treatment strategy for CAD, but in-stent restenosis is
blamed for the main cause of stent failure in patients with CAD
(26, 40). Several previous studies have shown that the risk of
in-stent restenosis in CAD patients undergoing coronary stent
implantation during 1 year follow-up was ∼5–10% (27). The
underlying mechanisms of in-stent restenosis are quite complex,
and at least exosomes play a crucial role in the development of
in-stent restenosis. For example, miR-222 fromM1macrophages
(M1M)-derived exosomes promoted vascular smooth muscle
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FIGURE 2 | The sources, cargo loading, delivery, and enrichment of therapeutic exosomes. Therapeutic exosomes originate from a variety of cells, including some

derived from cardiovascular cells, stem cells, and others. Next, we introduce the method of carrying endogenous or exogenous goods. It then summarizes the

optimization strategies for exosome delivery, including targeting peptides, novel exosome containers, and injection methods for exosomes. Finally, we analyze the

influencing factors of the enrichment efficiency of exosomes. VSMC, vascular smooth muscle cell; MPS, mononuclear phagocyte system; CPC, cardiac progenitor

cell; CDC, cardiosphere-derived cells; MSC, mesenchymal stem cell; PSC, pluripotent stem cell; Cltc, clathrin heavy chain.

cells (VSMCs) proliferation and migration, which resulted in
restenosis (41). Wang et al. (42) reported that MSC-Exo enriched
miR-125b and inhibited the proliferation and migration of
VSMC by targeting myosin 1E. Moreover, EPC-Exo also were
involved in the prevention of restenosis through delivering
miR-21-5p and inhibiting THBS1 expression (43). Recently,
exosome-eluting stents have been proven to reduce intimal
hyperplasia and accelerate re-endothelialization in the ischemic
injury rat model.

OPTIMIZED TREATMENT STRATEGY

Exosomes appear superiority and irreplaceable biological
functions, and the clinical application of therapeutic exosomes is
full of hope. In the first place, exosomes can avoid phagocytosis
and bypass the engulfment by lysosomes (44) to exhibit a longer
circulation half-life due to the protection of phospholipid bilayer
membrane (28). Secondly, phospholipid bilayer of exosomes
is also beneficial to the fusion with membrane of recipient
cells (29). Thirdly, exosomes derived from animals or patients
have the high homolog and low immune response to avoid
exosomes degradation (30). Finally, exosomal regulation of
“Homing” effect has been reported to target the cell type where
exosomes were produced (31), which can provide a shortcut

for exosomes delivery. In need of optimized treatment strategy,
we summarized the latest research involved of sources, cargo
loading, delivery and enrichment of therapeutic exosomes
(Figure 2).

Source of Therapeutic Exosomes
It has been reported that the sources of CAD related therapeutic
exosomes were commonly cardiovascular-derived endothelial
cells, smooth muscle cells, macrophages and cardiac fibroblasts
(45). In recent years, several studies have highlighted the value
of MSC-Exo therapy in cardiac protection (46, 47), and MSC
could secret the highest amount of exosomes (48). Moreover,
other studies found that circulating-Exo, adipocyte-EVs (12),
hepatocyte-EVs (13), accompanied with different degrees of
heterogeneity, all existed therapeutically effect upon CAD.

Loading Therapeutic Cargo in Exosomes
Although many therapeutic cargoes are inherent in parent cells
previously, some therapeutic cargoes could only be loaded into
exosomes by artificial means. Normally, cargoes could be loaded
through fusion with liposomes, adsorption of molecules to
the surface of exosomes and the insertion of lipids (49). It
has been reported that a few procedures, such as incubation,
electroporation (33), sonication (50), and so on (51), could
promote cargo loading. When choosing the loading method of
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cargoes, we should consider the loading efficiency (52), and
whether this loading method will change the physical and
chemical characteristics of exosomes (53). Besides, membrane
protein Lamp2a could increase the loading of miRNA into
EVs (54). Moreover, drug-inducible dimerization (55), reversible
light cleavable protein (56), and several advanced means
of engineering exosomes also contribute to the loading of
endogenous cargoes.

Delivery Method
Normally, therapeutic exosomes were injected intravenously and
act on the cardiovascular diseases through the circulatory system
as an essential treatment. However, most of these exosomes are
taken up by liver or spleen (57). Loading homing peptides has
become a popular way to optimize delivery of exosomes (58).
In cardiovascular field, several homing peptides in connection
with atherosclerosis (59, 60), and ischemia/reperfusion–injured
cardiomyocytes (61) have been identified and applied in
therapeutic regimen. For example, Wang et al. (62) have
demonstrated that engineered exosomes fused with ischemic
myocardium-targeting peptide (IMTP) increasingly accumulated
in ischemic heart area. Furthermore, it has been reported that
exosomes conjugated with cardiac homing peptide (CHP) has
higher retention in infarcted heart (63).

Besides, Song et al. (15) have reported that localized
injection of EVs attenuated the apoptosis of cardiomyocytes
and endothelial cells in a preclinical myocardial infarction (MI)
animal model. To reduce losses during transportation, Lv et al.
(64) have reported that sEVs, incorporated in alginate hydrogel,
act as a new regimen of therapy. An off-the-shelf therapeutic
cardiac patch, composed of extracellular matrix and cardiac
stromal cells (CSC), has been confirmed in the model of MI (65).
The examples above demonstrate the superiority of local delivery
of exosomes and improve the retention rate of exosomes.

Enrichment Efficiency
The enrichment efficiency of exosomes is affected by physical
and chemical stimuli. The physical stimulation of exosomes
mainly includes shear stress, osmotic stretch, PH and others
(66). More importantly, the change of blood flow shear force,
as the initiating factor of coronary artery disease, has also
become a difficult problem for exosome delivery. Here, we
focus on the shear stress in vessel where exosomes were
regulated. While shear stress remain within 1–70 dynes/cm2

in normal blood vessels, severely narrowed blood vessels
can produce over 1,000 dynes/cm2 (67). High shear stress,
occurring in atherosclerotic arteries, could accelerate the release

of circulating-EVs gradually (68). The mechanisms of shear
stress on EVs secretion relate to the response of membrane
tension (69). Besides, calcium could enhance exosomes secretion
from a microenvironment perspective (70), whereas arterial
hypertension was also associated with the increase of shear stress
from a macro perspective (71). Evidence proved that exercise
training could increase EVs release under high shear stress,
and decrease the risk of thrombosis correspond to stenotic
arteries (72). Exosomes could also be affected by chemical trigger,
including cytochalasin B and ethanol (46).

CONCLUSION AND FUTURE
PERSPECTIVE

In recent years, the therapeutic effect of exosomes on heart
diseases has been gradually discovered. We have summarized
the progress in studying exosomes as drug delivery vehicles.
Before entering the clinical transformation, a perfect therapeutic
concept of exosomes is essential (3), and pioneering in the
field of exosomes is tumor-related studies. We can draw on
tumor-related studies to optimize treatment regimens. Certainly,
CAD-targeted treatment options also need to take notice of the
cardiovascular lineage specificity.

Exosomes, as natural drug delivery vehicles, have excellent
biocompatibility and targeting properties. We have discovered
the potential of exosomes in the treatment of CAD based on
existing research. However, exosomes still face huge resistance in
clinical transformation. Moreover, we hope that the optimization
of therapeutic exosomes is getting better and enter the clinical
application stage as soon as possible.
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