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Driven by recent innovations and technological progress, the increasing quality and

amount of biomedical data coupled with the advances in computing power allowed

for much progress in artificial intelligence (AI) approaches for health and biomedical

research. In interventional cardiology, the hope is for AI to provide automated analysis

and deeper interpretation of data from electrocardiography, computed tomography,

magnetic resonance imaging, and electronic health records, among others. Furthermore,

high-performance predictive models supporting decision-making hold the potential to

improve safety, diagnostic and prognostic prediction in patients undergoing interventional

cardiology procedures. These applications include robotic-assisted percutaneous

coronary intervention procedures and automatic assessment of coronary stenosis

during diagnostic coronary angiograms. Machine learning (ML) has been used in these

innovations that have improved the field of interventional cardiology, and more recently,

deep Learning (DL) has emerged as one of the most successful branches of ML in many

applications. It remains to be seen if DL approaches will have a major impact on current

and future practice. DL-based predictive systems also have several limitations, including

lack of interpretability and lack of generalizability due to cohort heterogeneity and low

sample sizes. There are also challenges for the clinical implementation of these systems,

such as ethical limits and data privacy. This review is intended to bring the attention of

health practitioners and interventional cardiologists to the broad and helpful applications

of ML and DL algorithms to date in the field. Their implementation challenges in daily

practice and future applications in the field of interventional cardiology are also discussed.
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INTRODUCTION

In recent years, the field of interventional cardiology has
been characterized by innovation and technological progress as
clinicians, in partnership with specialists in molecular biology,
biomedical engineering, biophysics and imaging technology,
have raised interventional cardiology to a vibrant and dynamic
subspecialty in mainstream medical practice. As this field
matures, the range of opportunities and applications continues
to broaden, and there is an increasing need to focus not only
on the effectiveness of treatments but also on safety issues.
Novel advancements in the field of artificial intelligence (AI) can
facilitate, accelerate, and improve this ongoing progress.

Fluoroscopy has been for long the pillar of interventional
cardiology, and recent technological advances shake
interventionists’ habits by proposing multiple novel solutions
to the setbacks of the X ray-based 2-dimensional fluoroscopy
imaging. Human-controlled assistant robots and cardiovascular
image processing are technological advancements applied
to catheterization laboratories and hybrid rooms (1–4).
Additionally, among a large number of percutaneous coronary
intervention (PCI) operators worldwide, there exists an
experiential learning curve for procedural success as it’s
been shown that the adjusted risk of in-hospital mortality
has been higher for PCI procedures performed by low- and
intermediate-volume operators compared with those performed
by high-volume operators (5, 6). While an operator’s success
probability can be formulated as a statistical problem itself,
deep learning assisted augmented reality could help with
improving the learning curve associated with operator PCI
success. Although autonomous and semi-autonomous robots
used in interventional cardiology are probably still a few years
of development and universal deployment away from routine
clinical use, the vision of the operating room of the future,
implementing decision-support algorithms for procedure
planning and operator guidance, progressively takes shape (7).
In structural heart procedures and interventional cardiology
this is in particular of significant importance as, for example,
studies have shown that robotic-assisted PCI (R-PCI) compared
with manual PCI reduces radiation exposure to the cath lab
staff, which could also improve precision (8, 9). The concept
of “surgical data science” has recently been proposed, a data-
driven surgical healthcare approach enhanced by decision
support algorithms, context-aware automated assistants,
and improvement of surgical training by digital assistance
(10). As cardiac disease treatment tends to be transferred
from operating theaters to hybrid rooms and catheterization
laboratories, such concepts could be adapted to the cardiac
interventional community.

The ability to effectively extract and store health data, powered
by increasing computation power and the ability to efficiently
process it yielded an explosion of AI applications aiming at
improving care and reducing costs (11). More recently, deep
learning (DL) has emerged as one of the most successful
branches of machine learning (ML) and artificial intelligence
and implements diverse architectures of deeper neural networks
(DNN) (12). Additionally to electrocardiogram (ECG) data and

image/video processing, automated electronic health records
(EHR), biological or genetic data mining to yield prognostic
estimation of the probability of adverse outcomes, mortality
included, have also been proposed for cardiology and general
healthcare (13–17). And, there are signs that the implementation
of AI into the catheterization laboratory has already started.
For example, modeling in real-time the coronary fractional
flow reverse (FFR) values from CT-angiography of the coronary
vasculature using AI (instead of invasively using the dedicated
wire) is feasible and if applied to coronary angiographies, it
could accelerate the procedure, to reduce irradiation and to avoid
possible complications associated with the wire (18, 19).

Despite the notable improvements in medical care that
can be achieved using cutting edge analytical methods and
algorithms in image and video processing, clinical decision
support, robotic assistance, and advanced clinical database
analysis, the current state of AI in interventional cardiology is
in its very infancy. Yet, if practitioners and cardiologists in the
field are aware and open to embracing these changes positively, it
can foreseeably revolutionize interventional cardiology practice
in the near future. Drawing the attention of researchers
and practitioners in the field to this opportunity is the aim
of this review. We first provide an overview of machine
learning applications in interventional cardiology; subsequently,
we discuss the demand for future improvements considering
machine learning implementation challenges in daily practice
and future applications in the field of interventional cardiology.

MACHINE AND DEEP LEARNING
OVERVIEW

In contrast to traditional static rule-based AI systems which
are equipped with algorithms developed based on fact sheets
and documented and approved clinical research subsequently
validated to produce expected results, data-driven AI utilizes
large datasets and complex statistical methodologies to discover
new relationships between inputs, actions, and outcomes.
These systems are not explicitly programmed to provide pre-
determined outputs, but are heuristic, with the ability to learn
and make judgements to yield improved decision making with
minimal human intervention. Even though there is a large
overlap between statistical modeling and ML techniques, a
common understanding is that statistical models mainly refer to
analysis and reporting over data, while ML is more concerned
with prediction by being able to exploit and possibly improve
data representation for the task of interest. In general, MLmodels
developed for data-driven AI systems can be categorized into
supervised, unsupervised, semi-supervised, or reinforcement
learning (Table 1).

Supervised machine learning uses the independent features or
variables to align and predict the known numerical or categorical
validated outcome in the training dataset. Once properly trained,
these models can then be used to predict outcomes when
evaluating out-of-training samples (e.g., live patient cases). In
the cardiovascular research, for example, supervised learning
algorithms can identify and predict patterns inmassive quantities
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TABLE 1 | Type of learning methods.

Method Mechanism Implementation

Supervised Uses labeled outcome data. The labels are typically assigned

by experts in the field prior to model training (20, 21).

Involves tasks such as regression, classification,

predictive modeling, survival analysis (22, 23).

Unsupervised No labeled outcome data. We observe similarities,

relationships, and if possible causality among groups and

variables (20, 21).

Used for tasks such as dimensionality reduction,

clustering, feature extraction (24).

Semi-supervised The input data contains both labeled and unlabeled outcome

data (20, 21).

Labeled data is used to identify specific groups in data

and their parameters. These data are then inputted to

the algorithm along unlabeled data to explore the

boundaries of the parameters (22, 23).

Reinforcement Based on behavioral psychology. The learning agent interacts

with the environment to maximize a reward, and updates its

parameters based on the feedback it receives from the

choices it makes. The learning stops when the “reward”

criteria are met to handle a decision-making function (25).

Can be used in medical imaging analytics and

personalized prescription selection. Popular in

automated robotics (26).

of records, which are usually labeled by experts, and indicate
the presence or absence of decreased systolic function on an
echocardiogram or atrial fibrillation (AF) on an ECG (27).
Regarding the model training, appropriate data preprocessing is
typically done prior to separating data into distinct partitions
of training, validation, and testing. This separation ensures fair
and scientific evaluation and implementation of the model; while
the validation partition would be employed for hyper-parameter
selection of the model (e.g., numbers of layers in a DL network
or how long model training should go on), test data must be used
for final result reporting only.

Unsupervised learning, on the other hand, analyzes large
amounts of typically unlabeled samples (e.g., EHR) to discover
hidden patterns or innate structure which govern the existence of
that data in order to substantially improve experts’ understanding
of that data including their involved representing features (28).
In cardiology, for example, it has been shown that advanced

unsupervised models such as causal networks can evaluate causal
relationships among variables beyond partial correlations and
thus play a fundamental step in risk prediction of cardiovascular
disease (CVD) (29).

Semi-supervised models work with datasets that are partially
labeled. The labeling process of the unlabeled portion is
done with the available training portion or with the help of
unsupervised methods to do clustering first and then assign
labels based on the characteristics of the recognized clusters
(22). Generally, overfitting occurs when a supervised ML model
approximates the system by available data correctly (Figure 1),
but it is not able to produce proper results for verification or test
data. It is especially a major problem in tasks for which enough
labeled data is not available. Hence, semi-supervised learning can
be a very useful technique for (semi-)automatically annotating
lots of cases, e.g., to create a gold standard outcome label for
all patients, without which it could be very expensive (22).
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FIGURE 1 | Graphical representation of the decision boundary (red line) in an

optimal fitting (A) and overfitting model (B) overfitting describes a state of

model which has poor generalizability due to excessive fitting of noise data

presented in a training dataset.

Closely related to semi-supervised learning, transfer learning
is also another strategy to address overfitting. It is an ML
technique where a model developed for one task is reused as the
starting point for a model on a second task. For proper transfer
learning, however, the studied tasks should be conceptually
related [e.g., catheter segmentation in X-ray fluoroscopy using
synthetic data (30)].

Finally, reinforcement learning algorithms aim at maximizing
a “reward” function (26). Reinforcement learning algorithms
consist of an agent at a particular time interacting with an
environment. An action is selected for each time point according
to some selection policy. Transitions to the next state are then
performed, and a reward is received depending on the result of
the transition. The restricted learning model aims to maximize
the expectation of long-term rewards from each state visited.
In interventional cardiology, reinforcement learning can provide
tools to optimize sequences of decisions for long-term outcomes
such as improving ST-segment elevation myocardial infarction
outcomes or reducing errors in ECG diagnosis. Optimization of

treatment policies, real-time decisions and robot navigation are
some other applications of reinforcement learning (31, 32).

Deep learning is applicable to any of the above-mentionedML
categories. It refers to the use of deep artificial neural networks
to perform learning tasks. These networks are specific types of
ML models where the learning happens in successive layers in
such a way that each layer adds to the knowledge of the previous
layer (33). DL models are capable of selecting and representing
the right features on their own, thus eliminating the need
for human intervention for manual definition of classification
rules. For example, instead of defining that a ST elevation of
≥1mm corresponds to a STEMI, DL models could automatically
identify that the ST segment is the important feature, without
any human input, and use that to predict the STEMI diagnosis.
This revolutionary advancement in learning algorithms not only
saves human time and labor but also minimizes the possibility of
decision errors. For example, DL provided considerable advances
in computer vision, a subfield in ML that matured first around
2012 and became highly popular in health and medicine, as
they provide computers with the ability to learn visual features
automatically from image or video content to produce diagnostic
and prognostic information (34). It allowed automated analysis
and interpretation of images such as computed tomography
(CT), magnetic resonance imaging (MRI), electrocardiogram and
echocardiography (35–38).

For instance, assessment of coronary stenosis during
diagnostic coronary angiograms, one of the most commonly
performed interventional cardiology procedures worldwide, is
typically done using visual assessment. Thus, this method suffers
from high inter-observer variability, operator bias and poor
reproducibility (39–43). This variability in stenosis assessment
has significant clinical implications, and likely contributes to
inappropriate use of coronary artery bypass surgery in 17% of
patients and of stents in 10% patients (40). While quantitative
coronary angiography (QCA) using projection is able to validated
quantitative measurements in coronary angiograms (44, 45),
and is accepted as a gold standard for stenosis assessment, a
study assessing 10 different QCA systems against a phantom
stenosis gold-standard found absolute percentage differences
of −26% to +29% in coronary stenosis assessments between
systems and are semi-automatic, as they allow vessel contour
modification by the human expert, which can bias the results.
Deep learning algorithms can currently perform all tasks
required for automatic interpretation of coronary angiograms,
such as identification of left/right coronary arteries, anatomy
description, vessel segmentation, stenosis localization and
stenosis severity prediction leading to reduced variability and
higher standardization of diagnostic angiograms (46, 47).

MACHINE AND DEEP LEARNING FOR
CARDIOVASCULAR APPLICATIONS

Rather than a comprehensive review of all studies at the
intersection of interventional cardiology and AI, this section
aims at giving practitioners and researchers in interventional
cardiology an overview of the past and recent state-of-the-art
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of ML algorithms and DL architectures, as well as examples of
their cardiovascular applications (Table 2). For an all-embracing
review of ML and DL approaches applied to cardiology, an
avid reader may refer to more exhaustive review papers by
Krittanawong et al. (38), Sardar et al. (7), Savakula et al. (82),
Bizopoulos and Koutsouris (83), Cuocolo et al. (64), Siegersma
et al. (84), Ribeiro et al. (85), and Quer et al. (86).

Decision Trees (DT) are interpretable supervised learning
techniques that can be used for classification or regression (87).
They are tree-structured models, where internal nodes represent
the features of a dataset, branches represent the learned decision
rules, and each leaf node represents the outcome. Random
Forests (RF) are an ensemble learning method that operates by
constructing a multitude of decision trees at training time to
correct for overfitting. Other ensembles of trees such as gradient
boosted trees, including LogitBoost (88) and XGBoost (89),
address the same drawback.

Ambale-Venkatesh et al. tested the ability of RF, to predict
several cardiovascular outcomes, including coronary heart
and atherosclerotic cardiovascular diseases, in comparison
to standard cardiovascular risk scores from clinical, ECG,
imaging, and biomarker data (15). They showed the RF
technique performed better than established risk scores with
high prediction accuracy. Mortazavi et al. and Frizzell et al.
worked with clinical data from the index admission, and showed
RF methods improved the prediction of readmission after
hospitalization for heart failure when compared with logistic
regression (LR) and provided the greatest predictive range in
observed readmission rates (49, 50). In another application,
Motwani et al. investigated the feasibility and accuracy
of iterative LogitBoost to predict 5-year all-cause mortality
(ACM) in patients undergoing coronary computed tomographic
angiography (CCTA) and compared the performance to existing
clinical or CCTA metrics (48). They showed combining clinical
and CCTA data was found to predict 5-year ACM significantly
better than existing clinical or CCTA metrics alone.

Risk stratification and prognosis prediction are critical in
identifying high-risk patients and decision making for the
treatment of patients with acute myocardial infarction (AMI).
Long-existing MI risk scoring systems including TIMI (90),
GRACE (91), and ACTION (92) are based on conventional
statistical methods, so there is a possibility of a loss of important
information. Hence, Khera et al. with the help of the XGBoost
model showed an accurate prediction of risk of death following
AMI can guide the triage of care services and shared decision-
making (51). They studied patients in the Cardiology Chest Pain-
MI Registry hospitalized with AMI and discussed contemporary
ML may improve risk prediction by identifying complex
relationships between predictors and outcomes. The employed
registry data included patient demographics, presentation
information, pre-hospital vital signs, selected laboratory data
from the hospital course, procedures, timing of procedures, and
select in-hospital outcomes. Using the XGBoost model also,
Rosendael et al. demonstrated an ML-based risk score that
utilized standard 16 coronary segment stenosis and composition
information derived from detailed CCTA reading had greater
prognostic accuracy than current CCTA integrated risk scores

(52). They suggested ML-based algorithms can improve the
integration of CCTA derived plaque information to improve risk
stratification. Similarly, machine learning has been used in small
datasets to improve in-stent restenosis over conventional risk
scores such as PRESTO-1, PRESTO-2, EVENt and GRACIA-3
(93, 94).

Support Vector Machines (SVM) are popular supervised
learning algorithms, which are used for classification and
regression problems (95). The goal of the SVM algorithm is to
create the best line or decision boundary (or hyperplane) that
can segregate high-dimensional space into classes so that we can
easily put the new data point in the correct category in the future.
SVM chooses the extreme points, i.e., support vectors, that help
in creating the hyperplane. Moghaddasi and Nourian have used
SVM in the context of Mitral Regurgitation (MR), a common
heart disease that does not cause symptoms until its end-stage
(53). Early diagnosis of MR is however of crucial importance in
the treatment process, and their SVMmodel with the radial basis
function (RBF) kernel function can differentiate between the
four groups of Normal, Mild MR, Moderate MR and Severe MR
subjects among echocardiography videos. Transcatheter aortic
valve implantation (TAVI) has become a commonly applied
procedure for high-risk aortic valve stenosis patients. However,
for some patients, this procedure does not result in the expected
benefits. Lopes et al. demonstrated the accuracy of various
traditional ML algorithms, including SVM, RF and XGBoost, in
the prediction of TAVI outcomes (54).

Regularized Regression is a type of linear regression where
the high-magnitude coefficient estimates are penalized (or
regularized) to be small. The regularization methods provide
a mean to control the regression coefficients (or weights) in
datasets containing a large number of features; this can reduce
the variance and decrease the out-of-sample error. Therefore,
by appropriate choice of penalizing weights the model prevents
overfitting to the training data. Two commonly used types
of regularized regression methods are ridge regression (96)
and lasso regression (97). Buccheri et al. developed a lasso-
penalized Cox-proportional hazard regression model to identify
independent predictors of 1-year all-cause mortality, in patients
who undergo MitraClip implantation (55). In another study,
Wang et al. proposed new variable selection methods for
Poisson and naive Bayes regression and used plasma and urine
biomarkers to help with early identification and prediction
of adverse clinical outcomes after pediatric cardiac surgery
(56). They discovered that early postoperative urine biomarkers
independently predict prolonged hospital length of stay (LOS).

K-Means Clustering is an unsupervised learning algorithm
that groups the unlabeled dataset into different clusters (98). A
point is considered to be in a particular cluster if it is closer to
that cluster’s centroid than any other centroid. K-Means finds
the best centroids by alternating between assigning data points
to clusters based on the current centroids and choosing centroids
based on the current assignment of data points to clusters.
Mehta et al. proposed clustering algorithms could be used for the
detection of QRS-complexes, the prominent feature of the ECG
(57). In their study, the K-Means algorithm was used to separate
QRS and non-QRS-region in the ECG signal. The onsets and
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TABLE 2 | Algorithmic overview with prominent examples of implementation in cardiology.

Type of algorithm Functioning Advantages Drawbacks Implementation

SUPERVISED lEARNING

Decision trees, random forest, boosting Decision trees are

flowchart-type algorithms.

Each variable is a

condition on which the

tree splits into branches,

until the outcome “leaf.”

Random forest and

boosting are it’s

derivatives.

Interpretability. Integrated feature

selection. No preprocessing.

Handles non-linear relationships.

Requires less data than

neural networks.

Computationally expensive. Can overfit or

create biased trees in case of unbalanced

outcome classes.

Long-term cardiovascular outcomes prediction

from clinical, ECG, imaging, biomarker data (15)

5-year mortality prediction from clinical and

coronary CT data (48)

30-day readmission after heart failure

hospitalization (49, 50)

In-hospital mortality prediction after acute

myocardial infarction (51)

Long-term death or myocardial infarction

prediction from coronary CT data (52)

Support vector machine Builds a hyperplane in a

high-dimensional space to

separate the data into 2

outcome categories with

the maximum margin.

Can integrate many sparse features,

limits overfitting and is

computationally effective

Needs preprocessing. Limited interpretability Automated echocardiographic assessment of

mitral regurgitation (53)

Mortality prediction of TAVI outcomes (54)

Regularized regression Type of regression where

coefficient estimates are

constrained by penalty

terms (ex: LASSO, ridge)

Familiar interpretations for

association of variables to outcomes

applied to high-dimensional data

Variable pre-selection is often advisable.

Performance stalls for very

high-dimensional data

1-year mortality predictors after MitraClip

implantation (55)

Identification and prediction of adverse clinical

outcomes after pediatric cardiac surgery (56)

(Continued)
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TABLE 2 | Continued

Type of algorithm Functioning Advantages Drawbacks Implementation

UNSUPERVISED LEARNING

K-mean clustering Assigns each data point

to a cluster (group; with k

the number of groups)

based on its distance from

the other points

Easy to implementent.

Computationally fast.

Number of groups must be known or

assigned.

Separate QRS and non-QRS-region in the ECG

signal (57)

Principal component analysis Uses orthogonal

transformation to convert

possibly correlated

variables into a set of

linearly uncorrelated

principal components.

Can be used for dimensionality

reduction.

Only captures linear relationships. Limited

interpretability

MACE prediction from clinical and biomarker

data representing metabolic syndrome (58)

Evaluating 3D aortic shape and

hemodynamics (59)

SHALLOW NEURAL NETWORKS AND DEEP LEARNING (MAINLY USED FOR SUPERVISED LEARNING)

Shallow neural networks A set of nodes (“neurons”)

is arranged in layers

connected by edges

(weights). The network

connects input data to the

outcome to predict

through a paralleled set of

parameterized non-

linear transformations.

Can explore non-linear relationships

(often encountered in real-life

datasets) as well as linear ones. NN

can handle heteroskedasticity, have

been praised for the generalizability

of the trained models, and are

computationally effective. Flexible.

Variable pre-selection is often advisable.

Needs variable pre-processing.

Diagnosis of coronary artery disease from

myocardial perfusion scintigraphy (60)

(Continued)
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TABLE 2 | Continued

Type of algorithm Functioning Advantages Drawbacks Implementation

Deep fully connected neural network An extension of the

shallow NN architecture,

but that uses many hidden

layers (layers between

input and output). Weights

and biases of the NN are

trained via

back-propagation.

Performance increases with the

quantity of data. Surpass other

machine learning methods for very

high-dimensional data. Flexible

architecture and basis of CNN, RNN

Requires a high quantity of data. Can easily

overfit. Low interpretability Sensible to

changes in input data.

Mortality, readmission, LOS and diagnosis

prediction from EHR (13)

Mid-term mortality prediction from EHR (14)

Computation of Fractional Flow Reserve (FFR)

from Coronary Computed Tomography (18, 19)

Risk stratification for mortality of AMI patients (61)

Convolutional neural network Type of NN which learns

multiple levels of feature

sets at different levels of

abstraction.

One of the most popular deep

learning architectures. Flexible.

Optimal for image classification.

Requires a high quantity of data. Can easily

overfit. Low interpretability

3D aortic valve annulus planimetry in TAVI (62)

TTE view identification from images (63)

Popular for automated heart chamber

segmentation and measurement (64)

Early Detection of STEMI (65)

Recurrent neural network Type of NN which

encodes sequential data

by capturing context into

memory.

Adapted for natural language

processing, text or video, genetic

sequences or any other temporal

data (66–69).

Computationally expensive. Limited quantity

of encodable data.

EHR text data extraction for mortality prediction

in congenital heart disease (70)

Diabetes, high cholesterol, high BP, and sleep

apnoea prediction using sensor data (71)

Automated selection of myocardial inversion

time (72)

UNSUPERVISED DEEP LEARNING

Autoencoder Encodes the most

valuable unlabeled inputs

into short codes, then

uses those to reconstruct

the original input as

output.

Dimensionality reduction. Optimal for

denoising filtering, image

segmentation (73).

Low interpretability MRI-extracted cardiac motion model denoising

for survival prediction (74)

U-Net for the segmentation of major vessels in

X-ray coronary angiography (75)

(Continued)
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TABLE 2 | Continued

Type of algorithm Functioning Advantages Drawbacks Implementation

Deep generative models Model a distribution that is

as similar as possible to

the true data distribution

with the help of GANs or

VAEs

Data augmentation and preserving

data privacy with the help of

synthetic data samples. Domain

translation and domain adaptation.

Content and style matching using

adversarial inference (76, 77).

Could be computationally expensive. The

models are still in the stage of getting mature

for high-fidelity data sample generation. Lack

of stability at training time.

Noise reduction in low-dose CT (78)

GANs for multiphase coronary CT angiography

(25)

Synthetic electrocardiogram generation (79)

REINFORCEMENT LEARNING

Deep reinforcement learning RL learns how to

maximize a reward

function by exploring the

actions available from

certain states. A deep RL

agent tests an action to

see what reward will be

returned by the

environment in which it

acts.

Besides robotic assistance, potential

applications include: microbots that

can travel through blood vessels to

deliver medications; interventional

training simulator and

tele-intervention (7).

Still in the state of infancy. Complexity and

cost. Not preferable to use for solving simple

problems. Huge training data demand.

The control of an electrophysiology catheter by

robots (32)

Robotic-PCI reducing contact with COVID-19

patients undergoing PCI (80, 81)

AMI, acute myocardial infarction; EHR, electronic healthcare records; LASSO, least absolute shrinkage and selection operator; MACE, major adverse cardiovascular event; NN, neural network; CV, cardiovascular; MRI, magnetic

resonance imaging; ECG, electrocardiogram; BP, blood pressure; CT, computed tomography; TAVI, transcatheter aortic valve implantation; PCI, percutaneous coronary intervention; VAE, variational autoencoders; GAN, generative

adversarial networks; RL, reinforcement learning; STEMI, ST-segment elevation myocardial infarction.
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offsets of the detected QRS-complexes were found well within the
tolerance limits.

Principal Component Analysis (PCA) is another popular
unsupervised learning algorithm that is used for dimensionality
reduction, exploratory data analysis and predictive modeling
(99). Agarwal et al. used PCA to derive a continuous measure
of metabolic syndrome-based on the multiple interrelated risk
factors (58). This metabolic syndrome score was a better
predictor of CVD events in multiethnic cohorts than the
National Cholesterol Education Program (NCEP) definition,
derived predominantly from populations of European ancestry.
Quail et al. in their studies evaluated 3D aortic shape and
hemodynamics using principal PCA, proposed as an important
determinant of adverse hemodynamics following coarctation
repair (59). They concluded that shape is not the major
determinant of vascular load following coarctation repair, and
that caliber is more important than curvature.

Artificial neural networks are ML models that consist of
an architecture of intertwined nodes (“neurons”) and edges
regrouped in hidden layers connecting the input data and
the outputted prediction. Whenever several hidden layers of
neurons are used, the model can be described as a deep neural
network (DNN), in which millions of connections can be trained
in parallel. These algorithms can learn complex non-linear
functions to minimize the classification error. We will detail the
different DNNmodel architectures below.

Shallow Neural Networks are predecessors of DL. In contrast
to deep neural networks, shallow neural networks generally
use predefined features, a characteristic that they share with
traditional ML algorithms. A study by Guner et al. developed
and analyzed an open-source artificial intelligence program built
on shallow artificial neural networks that can participate in and
support the decision making of nuclear medicine physicians
in detecting coronary artery disease (CAD) from myocardial
perfusion SPECT (MPS) (60).

Deep Fully Connected Neural Networks (FNN) are networks
that consist of multiple perceptrons (i.e., linear binary classifiers)
stacked in width and depth. In FNN, every unit in each layer
is connected to every unit in the layers immediately before and
after. Rajkomar et al. proposed a representation of patients’ entire
raw EHR records based on the Fast Healthcare Interoperability
Resources (FHIR) format (13). They demonstrated that FNN
models using this EHR representation were capable of accurately
predicting multiple medical events frommultiple centers without
site-specific data harmonization. Their models achieved high
accuracy for tasks such as predicting in-hospital mortality, 30-day
unplanned readmission, LOS, and all of a patient’s final discharge
diagnoses. In the context of palliative care services, Avati et al.
proposed an interpretable FNN model trained on the EHR data
from previous years, to predict all-cause 3–12 month mortality of
patients, as a proxy for patients that could benefit from palliative
care (14). Their predictions enabled a palliative care team to take
a proactive approach in reaching out to such patients, rather
than relying on referrals from treating physicians or conducting
time-consuming chart reviews of all patients.

Recently, physics-based models such as computational fluid
dynamics (CFD) have shown great promise in being able to

non-invasively estimate FFR from patient-specific anatomical
information, e.g., obtained from computed tomography scans of
the heart and the coronary arteries (100, 101). However, these
models have high computational demand, limiting their clinical
adoption. Itu et al. developed a FNN for predicting FFR, speeding
up physics-based approaches (18). Themodel is trained on a large
database of synthetically generated coronary anatomies, using the
physics-based model. They showed that the correlation between
ML and physics-based predictions was significant and without
systematic bias. Coronary computed tomographic angiography
is another reliable modality to detect coronary artery disease.
In their study, Coenen et al. showed that on-site CT-fractional
flow reserve (CT-FFR) improves the performance of CCTA by
correctly reclassifying hemodynamically nonsignificant stenosis
(19). Their DNN model performs equally well as computational
fluid dynamics-based CT-FFR. Kwon et al. developed an FNN
risk stratification model that predicted the in-hospital mortality
and 12-month mortality of AMI patients more accurately than
the existing risk scores and other ML methods including RF
(61). In their model, they used the demographic information and
laboratory data of AMI patients as the predictor variables. Such
models could be improved by adding more modalities to the
input data (e.g., text in EHR and images of CT) as discussed in
a study by Myers et al. (102).

Convolutional Neural Networks (CNN), widely used in
computer vision, consist of a convolutional and pooling part,
where hierarchical feature extraction takes place, and a fully
connected part for classification or regression. The models can
recognize low-level features, such as edges and corners, and high-
level features such as parts of objects thanks to convolutional
layers that are much better feature optimizers, while fully
connected layers are good classifiers. In TAVI procedures, the
sizing of devices is done from ECG-gated CT angiographic
image volumes. The most crucial step of the analysis is the
determination of the aortic valve annular plane. Theriault-
Lauzier et al. developed an expert-level CNN to infer the
location and orientation of the aortic valve annular plane
(62). Madani et al. investigated the application of CNNs to
echocardiography view classification that classified 15 major
transthoracic echocardiograms (TTE) views with expert-level
quality (63). They used a training set that reflected a wide
range of clinical and physiological variations, demonstrating
applicability to real-world data. They found that the model
used some of the same features in echocardiograms that human
experts use to make their decisions. CNNs were also used to fully
interpret echocardiograms and diagnose certain diseases with a
high level of accuracies such as hypertrophic cardiomyopathy or
pulmonary hypertension. Thesemodels usually use a single frame
to predict the corresponding view or measurement. Recently,
video-based AI was used for analyzing a whole echocardiogram
video to better predict cardiac function (103). CNNs were also
employed for the segmentation of the heart chamber in a work by
Cuocolo et al. (64). Segmentation of heart regions in advance can
help the subsequent problems in hand. For example, as discussed
in their study, segmentation of the epicardium and endocardium
from the left ventricle can be important for the assessment of
the cardiovascular system function (e.g., hypertrophy vs. normal
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cases). Most importantly, CNNs can also be used to predict new
diseases that were previously not possible. Recently, a CNN was
used to derive a digital biomarker that can detect diabetes using
a photoplethysmography signal, which is traditionally used for
pulse oximetry or for heart rate measurements (104). Such novel
digital biomarkers could be derived using data readily available
in interventional cardiology, such as coronary angiograms, to
predict device failures or certain conditions such as spontaneous
coronary artery dissection.

Recurrent Neural Networks (RNN) are ideal for time-series
or sequential data. These networks consist of feedback loops, so
they can use their internal state to process the input. To estimate
prognosis in a large cohort of patients with adult congenital
heart disease (ACHD) or pulmonary hypertension, Diller et al.
designed an RNNs model that categorized diagnosis and disease
stages with high accuracies (70). Ballinger et al., proposed a semi-
supervised sequence learning for cardiovascular risk prediction,
the DeepHeart model (71). They demonstrated their multi-task
RNN model outperforms hand-engineered biomarkers from the
medical literature.Working with off-the-shelf wearable heart rate
sensors, they suggested that methods such as theirs could help
with patient risk stratification based on cardiovascular risk scores
derived from popular wearables such as Fitbit, Apple Watch, or
Android Wear.

Delayed myocardial enhancement imaging is an essential
component of cardiac MRI, which is used widely for the
evaluation of myocardial scar and viability (105). The selection
of optimal inversion time or null point to suppress the
background myocardial signal is required. In their study,
Bahrami et al. showed that merging the spatial and temporal
characteristics of CNN and LSTM was capable of automated
prediction of myocardial inversion time from an inversion-
recovery experiment (72). In clinical practice, early ST-segment
elevation myocardial infarction (STEMI) detection is of great
clinical significance because the very early stages of STEMI are
the most vulnerable periods during which most sudden cardiac
deaths occur (106); hence, an accurate and efficient warning
system based on an ECG can help with patient delay. Zhao
et al. proposed a CNN trained on 12-lead ECG that outperforms
clinicians in early detection of STEMI (65). They also argue ML-
based algorithms have the potential to empower a wide range
of physicians to more accurately diagnose STEMI on ECG and
reduce the inappropriate activation of catheter labs.

Autoencoders (AE) are neural networks that are trained
with the objective to reconstruct the output from the input by
encoding useful properties of the data. It usually consists of an
encoding part that downsamples the input down to a linear
feature and a decoding part that up-samples this representation
back to the original dimensions. In a human survival prediction
study, Bello et al. used image sequences of the heart acquired
using cardiac MRI, to create time-resolved three-dimensional
segmentation using a network trained on anatomical shape priors
(74). This dense motion model formed the input to a supervised
denoising autoencoder, a special AE that randomly turns some
input values to zero to prevent overfitting.

U-Net is a modification of the convolutional autoencoders,
i.e., encoder-decoder, architecture, first introduced by

Ronneberger et al. for medical image segmentation (107).
U-Net incorporates additional links between the encoder layers
and the decoder layers of the network, resulting in a U-shape
structure (107). Although quantitative coronary angiography
(QCA) provides morphological information of coronary arteries
with objective quantitative measures, considerable training is
required to identify the target vessels and understand the tree
structure of coronary arteries. Yang et al. proposed a robust
method for major vessel segmentation using an adjusted U-Net
network (75). Even though the model is evaluated intrinsically
with the help of segmentation labels, the same model could
be extrinsically used and evaluated by replacing traditional
segmentation methods in coronary catheterization for prediction
of FFR in intermediate coronary artery lesions (108).

Deep Reinforcement Learning (DRL) uses deep learning and
reinforcement learning principles to create efficient algorithms
applied to areas such as robotics, natural language processing,
computer vision and healthcare. Implementing deep learning
architectures with reinforcement learning algorithms is capable
of scaling to previously unsolvable problems (25). In a recent
work by You et al., a robot was developed to reduce the
radiation exposure of personnel during an interventional
procedure for arrhythmia (32). Experiments on the control of
an electrophysiology catheter by robots were conducted. Using
the DRL, they showed that such a robot learned to manipulate
a catheter to reach a target in a simulated environment and
subsequently control a catheter in an actual environment.
Additionally, several studies evaluated the feasibility and
technical success of reinforcement learning-based R-PCI for the
treatment of CAD in clinical practice when compared with
manual PCI (8, 109). As a vivid recent example, to minimize
the risk of exposure to severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) and reduce personal protective
equipment needed by the procedural team during the COVID-
19 pandemic, studies by Tabaza et al. and Virk et al. showed
R-PCI could help to reduce contact with COVID-19 patients
undergoing PCI (80, 81).

Deep Generative Models (DGM) are powerful ways of
learning any kind of data distribution using unsupervised
learning. Since it is not always possible to learn the exact
distribution of the data, DGMs try to model a distribution that
is as similar as possible to the true data distribution. Two of
the most commonly used and relatively efficient approaches
are Variational Autoencoders (110) (VAE) and Generative
Adversarial Networks (111) (GAN). Considering that advanced
image reconstruction from low-dose CT data is needed to
improve the diagnostic performance, which is a challenging
problem due to its ill-posed nature, Wolterink et al. used a
GAN to transform low-dose cardiac CT images into routine-
dose CT images (78). In another study, Kang et al. trained a
GAN to reduce noise in CCTA images (112). Their proposed
unsupervised network learns the image distributions from the
routine-dose cardiac phases by eliminating the need to exactly
matched low- and routine- dose CT images. A hybrid DL
architecture developed by Zhu et al. showed that an LSTM-
CNN GAN could generate ECG data with high morphological
similarity to real ECG recordings (79). This is of interest, as
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such an approach could be used to generate a large dataset of
ST segment elevation ECGs for training an algorithm that would
identified STEMIs due to obstructive CAD vs. non-obstructive
disease (pericarditis, for example).

IMPLEMENTATION OF MACHINE
LEARNING AND ITS CHALLENGES

AI in the Real World
Since data-driven AI is different from traditional rule-based
systems and medical devices it demands adequate control to
ensure its safety and effectiveness. Also, because these differences
will not be the same for the full range of systems, it is important
to identify what aspects of AI are of concern (113). The
safety and effectiveness of medical devices entering the market
today are governed by regulations and private-sector consensus
standards.Whereas, inmost cases, they were developed alongside
current technologies and are based on an extensive, shared
understanding of how and howwell they work.With an emergent
technology like AI, real-world experience is limited, which can
hinder regulators and practitioners’ ability to fully assess its
effectiveness. Similarly, a lack of real-world experience with AI
limits the understanding of its associated risks. AI-related risks
are harder to quantify and mitigate as there may be unforeseeable
and unpredictable hazards arising from the unique nature or
function of AI. This is particularly important in raw health
data that generally lack maintenance and validation and raise
important interoperability problems (113, 114). AI may became
untrustworthy also because data was not representative or not
fit for the task to which it was applied. The availability of data
is essential as a source of information for training AI systems,
but it is also a source of noise, especially when data quality is
poor, labeling is inconsistent, or sampling is biased. Iterative
preprocessing of data must be done before it is considered to
be of adequate quality for downstream ML tasks, such that
quality management of data is understood as an important
issue by AI practitioners. Recently, there is a push toward a
more data-centric approach to ML to increase accuracy based
on improving the datasets (115), in contrast to the widespread
model-centric approach that focuses on changing the model to
improve performance. Improving the quality of a dataset does
not necessarily mean increasing dataset size, it can be achieved by
fixing incorrect labels, adding examples that represent edge cases,
or apply data augmentation.

Furthermore, the nature of the application either rule-based,
data-driven locked (i.e., non-adaptive through time), or data-
driven while continuously learning (i.e., life-long learning), as
well as the context of application which can be informative
or provide decision support with or without a human in the
loop play major roles (113). Given that AI or data has the
ability to change over time, the processes of verification and
validation cannot be a onetime premarket activity, but instead
must continue over the life cycle of an AI system from the
initial design and clinical substantiation, across its post market
use, until decommissioning. Such life cycle consists of data
quality assurance, pre-market risk management and assurance

of effectiveness, pre-specification and algorithm change, and
real-word performance monitoring. Continual assurance of the
AI-based device’s safety and performance across its life cycle
will help regulators, clinicians, and patients gain trust in data-
driven AI. To this end, a recent initiative by a group of
medical device regulators from several countries, including Food
and Drug Administration (FDA) from USA, has established
International Medical Device Regulators Forum (IMDRF) to
harmonize the regulatory requirements for medical products
under a notion named Software as a Medical Device (SaMD)
(116). The FDA’s Center for Devices and Radiological Health
(CDRH) is also considering a total product life-cycle-based
regulatory framework for these technologies that would allow
for modifications to be made from real-world learning and
adaptation, while ensuring that the safety and effectiveness of the
software as a medical device are maintained (117). As further
advancements are made in AI technology, regulators will need
to consider additional approaches for addressing the safety and
effectiveness of AI in healthcare, including how international
standards and other best practices are currently used to support
the regulation of medical software, along with differences and
gaps that will need to be addressed for AI solutions. One
key aspect will be the need to generate real-world clinical
evidence for AI systems throughout their life cycles, and the
potential for additional clinical evidence to support adaptive
systems. Next to AI systems themselves, regulators must also
consider that there are ethical, social and political challenges
comprising issues regarding trust, liability, privacy and risk
(118). These complexities of applications of AI require further
reflection, proof of their medical utility, economic valuing,
and development of interdisciplinary strategies for their wider
application (119).

Last but not least, the capacity of complex decision-making
in interventional cardiology or in performing a procedure
independently would be very challenging for current AI and ML
algorithms. Understandably, by considering the speed of progress
and development, AI technologies could not completely replace
human interventional cardiologists in the foreseeable future. It
can be easily anticipated, however, that AI will widely assist
rather than replace the human operator in the catheterization
laboratory. Hence, the reception and integration of AI in a
specialty which needs quick decision-making by the operator
should be discussed and practiced prior to the actual deployment
of innovations brought by ML and DL models.

Domain Expertise
Beyond AI algorithm development, several additional issues
should be tackled before implementing AI into clinical
practice (86). First, domain-experts, such as cardiologists should
collaborate with data scientists an AI engineers in order to jointly
develop AI algorithms that is as bias free as possible, respects
the regulatory framework for development and addresses a
clinically relevant need (86, 120). By addressing accurate and
reliable implementation of ML and DL algorithms in cardiology,
the Proposed Requirements for Cardiovascular Imaging-Related
Machine Learning Evaluation (PRIME) checklist provided by
Sengupta et al. lays down seven items to be reported for reducing
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algorithmic errors and biases aiming to standardize reporting
on model design, data, selection, assessment, evaluation,
replicability, and limitations (121). Next, clinical trials need to
be conducted to demonstrate that such algorithms are positively
influencing morbidity, mortality or healthcare delivery. The
SPIRIT-AI and CONSORT-AI working groups have put forward
guidelines for clinical trials for interventions involving AI and
represent a framework by which to conduct and report such
trials (122, 123). It is crucial to perform extensive external
validation on multiple datasets to demonstrate the algorithm’s
robustness. Finally, once the algorithm is found to positively
influence healthcare, further real-world quality control must be
conducted to assure that the algorithm is providing accurate
predictions and that its performance does not deteriorate over
time. This could be done by routinely collecting feedback on
the predictions from the domain-experts. Further, continuous
learning of AI Algorithms, post-commercialization, to improve
predictions on reported errors and to adapt to new data, remains
an area of active research.

Large electronic healthcare databases (LEHD) are being
built from electronic health records and already used by
several countries to implement AI in healthcare (124, 125).
Some prominent examples of such databases are the UK
Biobank (UK), Million Veterans Initiative (USA), NIH precision
medicine initiative (USA), large Scandinavian national registries
in Denmark, Sweden, and Norway. If dispersed big data
are to disrupt current research models then there is a need
for searchable catalogs of data, metadata, feasibility counts
(and ideally sample data) and access arrangements. The
creation of public, standards-driven metadata and data portals
can assist researchers in locating the right dataset for their
research question and obtaining up to date details on data
availability and accessibility. Moreover, contemporary LEHD
often contain multi-omics data (transcriptomics, genomics,
proteomics, metabolomics, microbiomics, radiomics) intended
for deep phenotyping of patients (126, 127). However, the size
does not always ensure the precision of the model built, nor
that the intent of improving care for all people is met. What
is more, further progress in automation of data harvesting and
inter-database harmonization (e.g., EHR and national statistical
organisms which record vital status) would facilitate the
construction of high-quality high-dimensional databases (128).

Underspecification
As stated above, the quality of the training samples provided
to an ML algorithm is of central importance in data-driven
AI. This is because ML models often exhibit unexpectedly
poor behavior when they are deployed in real-world domains
due to underspecification (129). An ML or DL pipeline
could be underspecified when it returns many predictors (e.g.,
several predictive models with distinct and dissimilar weights)
with equivalently strong held-out performance in the training
domain yet these models perform significantly different when
generalized, therefore questioning the credibility of the predictors
in practice. For many medical applications, a key challenge
is the robustness of the ML model under the distribution
shift of data in the deployment domain, and as a result,

several studies confirm the need for explicitly testing and
monitoring ML models in settings that accurately represent the
deployment domain (122, 123, 130). In addition, heterogeneity
in the representation of different ethnicities, gender inequalities,
socioeconomic status, geography in datasets could generate
biased estimations and automate inequalities (131). Therefore,
to address underspecification, next to improving the training
and testing process, and also considering multiple ML models
as alternatives at deployment time, limiting model complexity
as well as designing stress tests to probe stratified performance
evaluations, shifted evaluations, and contrastive evaluations
should be considered (129).

Despite their performance, expecting to achieve perfect
prediction with DL models is probably vain. The chaos theory
states that even with a deterministic (non-random) process, even
simple non-linear systems cannot be precisely predicted into the
distant future (11, 132). Conventional statistical approaches often
use a standardized stepwise approach. After univariate feature
analysis, a model is selected and uses cohorts with manually
entered structured databases. This differs from the machine
learning approach which tends to avoid model selection and uses
“fuzzier” emerging sources of data that are more prone to contain
some quantity of bias (11, 70). Without appropriate oversight,
ML models can easily overfit in noisy datasets, impairing their
capacity to generalize to new data due to over-interpretation
of noise (Figure 1). This is particularly true when the number
of examples (patients) are limited compared to the number of
variables measured for each patient or when the outcome of
interest is of rare occurrence, which is often the case in some
present-day medical applications. Besides, building predictive
models is inherently based on past events, and the future will not
necessarily resemble the past, nor will they necessarily perform
well on a population different from the one represented in
the training cohort (11). Numerous teams have successfully
applied DL algorithms to yield high-performance predictive
models through the mining of EHR with the idea of assisting
doctors through decision-support algorithms by combining all
the available information, irrespective of their time of occurrence
(11, 13, 14, 35). However, for decision-support algorithms to
be implemented in clinical practice, we would expect them to
be accurate and pertinent at the time the decision is taken,
without assuming to know everything in advance (Figure 2) as
developed by Diller et al. to guide therapy in adult congenital
heart disease (70).

Overfitting and Interpretability
Despite ML models being theoretically superior to usual
statistical models in terms of predictive power (15, 133), their
practical use must also be rigorous along with its reporting and
reviewing (134). Furthermore, the computationally demanding
DL algorithms also require efficient programming libraries (such
as PyTorch and TensorFlow), and specific hardware (such as
Graphics or Tensor Processing Unit instead of the usual Central
Processing Unit). Additionally, all ML and DL models may
suffer from overfitting if data is limited and/or algorithms are
complex. Indeed, in clinical studies, DL provided similar results
to statistical models (e.g., logistic regression) (38). Transfer
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FIGURE 2 | Domains of implementation of machine learning tools to cardiology.

learning, data augmentation with the help of deep generative
models, as well as integration of different data sources can
be solutions to overfitting problems, but in some cases the
curse of dimensionality will prevent some types of analyses on
small datasets. Future studies may integrate DL with statistical
classification. Furthermore, doctors and patients would also need
to understand the exact reasons that led to a medical decision.
However, evaluating ML model decisions can be a very difficult
task. Once a model is trained, it requires additional approaches
to understand the reason behind a particular prediction to a set
of data inputs (135). In particular, the numerous intertwined
relationships captured by the layers of a DNN are only partially
understood, leading to being frequently labeled as “black boxes,”
and the observed trade-off between accuracy and interpretability
of machine learning models (136). Explaining single predictions
or the entire model behavior of DNNs is important to correct
their malfunctions, bias, and susceptibility to slight modifications
of analyzed data (137). Interpretability may be enabled by
capsule based networks or strategies that systematically censor
inputs to define those that most affect classification. Meta-
analyses of several DL algorithms applied to the same data may
increase confidence in results. A number of techniques may
enable “model-agnostic” metrics for interpretability of complex
models (138). Marblestone et al. (139) hypothesized analogies
between DL and human cognitive functioning, proposing that
integrating heterogeneous “cost functions” over time may

simplify learning. Thus, speculatively, insights into human
cognition may ultimately provide insights to interpret DL
models. Encouragingly, much research is ongoing aiming at
improving our understanding of ML and DL models (140).

Missing Data
Similar to statistical tasks, the performance of DL can be highly
sensitive to missing data as well. Missing data is a common
problem in routine medical records, hence, measures of data
management and pre-processing should be addressed in line
with the extra complexity they impose on the robustness ML
(141, 142). Decisions on how to treat missing data can be made
by evaluating if the presence or absence of specific elements
correlates with desired outcomes or predictors. Those data that
are correlated are “non-ignorable,” those that are not correlated
may be “ignorable” (i.e., no relationship to any variables) (143).
Additionally, instead of omitting patients with missing data, it
is ideal to impute missing data points to obtain more patients
for training process and ML analysis. Using k-nearest neighbor
(k-NN) to fill in missing values of a data point with the closest
known ones, or simply relying on mean or most frequent
values of variables to fill in missing positions are standard
approaches. Another popular method for imputing missing
values is called “multiple imputation using chained equations”
(MICE) (144). MICE statistically measures the uncertainty of
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the missing values and is able to impute different variable
types (i.e., continuous, unordered and ordered categorical, etc.)
that may reside in the medical records while each variable is
imputed by its own model. Another frequently used imputation
technique in mixed data is the “factor analysis of mixed data”
(FAMD) algorithm (145). FAMD is a principal component
method which balances the influence of all the variables that
are continuous and categorical in the construction phase of the
dimensions. MICE and FAMD, however, are computationally
intensive making them suboptimal for pre-processing steps in
DL models. Hence, designing strategies, developing imputation
algorithms, and their suitable evaluation for realistic settings of
medical domain are of great importance. While still an active
area of research, many studies have already shown desirable
imputation results obtained by autoencoders models such as
denoising autoencoders (146, 147).

ETHICAL ISSUES: PATIENT DATA MISUSE
MUST BE AVOIDED

A current worrying tendency to exploit patient data for
financial purposes must be acknowledged, discussed, and
acted upon. A Dutch startup CathSuite aims to automatically
extract patient information from various catheterization
laboratory report sources and hospitals, and store it in
a standardized form, notably on mobile phones. Among
their intended purposes of data use is research, but also
monetization through contracts with insurance companies
(148). It is appropriate that patient data is extracted with
their consent for research purposes that will aim at improving
healthcare. However, it is hardly conceivable that patient
data could be exploited for private company financial gains,
at the detriment of the patient, by sharing their data with
insurance companies or other private actors that could use it
against patients.

Data privacy has been the subject of the European General
Data Protection Regulation (149). A legislative context is lacking
for the specific context of patient data protection, although
protecting patient data could be even more important than the
data of healthy individuals. De-identification should not be seen
as inviolable protection since the power of ML algorithms could
allow the data extraction and storing of the path to be reversed
and traced back to the patient. Reports of EHR data breaches are
not infrequent (150). The Hippocratic Oath states “Whatever I
see or hear in the lives of my patients, whether in connection with
my professional practice or not, which ought not to be spoken of
outside, I will keep secret, as considering all such things to be
private.” Information and Technology (IT) professionals, private
companies wishing to exploit patient data, let alone insurance
companies, do not abide by the medical secret, the main guardian
of the patient-physician relationship of care. More than ever,
physicians must protect their patients’ data, verify that its use is
intended at improving care, and guard against monetization at
the detriment of patients. Regulators and international medical

associations must address the gap in the guidelines of patient data
exploitation and provide limitations of possible applications to
research. Companies and researchers must be held responsible
for the data they are entrusted with, their use of it and the tools
they create to exploit it, including data misuse.

Furthermore, letting private industry companies shaping the
future of AI is not the only path toward progress in medicine
through technology. An industrial profit-maximizing approach
is likely to diverge from public interest (23). Independent
quality research is important. Hospitals should employ data
scientists and IT professionals under hospital authority to ensure
patient data protection and appropriate exploitation directed at
improving healthcare. An upgrade of cyber protection of hospital
informatics systems storing EHRs should be considered.

Final Comments
Once the hype of AI is passed, a backlash against this very
promising field of research remains possible. Reticence from
patients toward the use of their data, and physicians’ reluctance
to the use of technology as an intermediate between them
and patients could fuel discontent. Patient misuse must not
be tolerated. Recent progress in the field of AI interpretability
suggests that this setback can be overcome (136) and the
focus should be on developing approaches that are human-
interpretable, to allow reliable strategies to be deployed to
assist clinicians in their medical practice. Several trials are
ongoing to develop algorithms predicting procedural success,
in-hospital mortality, and 1-year mortality after transcatheter
aortic valve replacement. This is of big interest, especially
in the era of expanding indications to lower risk and
younger population, to help heart teams in the decision-
making process and in the selection of optimal candidates
and devices.
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