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Rheumatic heart disease (RHD) remains a severe public health problem in developing

countries. Atrial fibrillation (AF) is a medical complication of RHD. Although the

understanding of disease pathogenesis has advanced in recent years, the key questions

need to be addressed. Transfer RNA–derived small RNAs (tsRNAs) are a novel type

of short non-coding RNAs with potential regulatory functions in various physiological

and pathological processes. The present study used tsRNAs sequencing to investigate

the relationship between RHD and atrial fibrillation (AF). Three paired cardiac papillary

muscles were taken from six rheumatic RHD patients with AF (3 cases) or without

AF (3 cases) from January 2016 to January 2017 in Xiangya Hospital, Central South

University. A total of 219 precisely matched tsRNAs were identified, and 77 tsRNAs

(fold change > 2.0 and P < 0.05) were differently changed. Three tsRNAs (AS-tDR-

001269, AS-tDR-001363, AS-tDR-006049) were randomly selected and confirmed by

qRT-PCR. The results of qRT-PCR were consistent with tsRNAs sequencing, suggesting

the tsRNAs sequencing was reliable. Subsequently, we predicted the target mRNAs

of the three tsRNAs. Moreover, we verified the functions of tsRNAs targeting mRNAs

in vitro. Finally, bioinformatics analysis indicated that the target genes were abundant in

regulation of transcription, DNA binding, intracellular. Most of the genes were predicted

to interplay with cytokine-cytokine receptor by KEGG analysis. Our findings uncover the

pathological process of AF in RHD through tsRNAs sequencing. This research provides

a new perspective for future research on elucidating the mechanism of AF in RHD and

offers potential new candidates for the treatment and diagnosis.

Keywords: rheumatic heart disease, atrial fibrillation, transfer RNA derived small RNAs, transcriptomics,

biomarker

INTRODUCTION

Rheumatic heart disease (RHD) is a chronic autoimmune valvulitis, resulting from
an autoimmune response to a group A streptococcal infection (1, 2). RHD remains
a neglected disease and is a major cause of morbidity and mortality in many
developing countries (2, 3). It is currently estimated that 40.5 million individuals around
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the world live with RHD (4). There were 306,000 deaths due
to RHD during 2019 worldwide (4). Atrial fibrillation (AF) is
a medical complication of RHD. AF occurs in approximately
one-fifth of patients with RHD (5, 6). However, the pathogenesis
of AF in RHD and the underlying signaling pathways are still
poorly understood.

In recent years, a growing number of evidence indicated
that the small non-coding RNAs play important roles in the
pathophysiological mechanism of AF (7, 8). With the advent
of multiple high-throughput sequencing technologies, numerous
novel classes of small RNA have emerged. New classes of
“non-micro-short” RNAs named transfer-RNA-derived small
RNAs (tsRNAs, <50 nucleotides) attracted our attention (9–
17). tsRNAs are the second abundant class of small non-
coding RNAs (18) and can regulate biological processes, such
as proliferation, apoptosis, and epigenetic inheritance (19, 20).
tsRNAs are abundant small ncRNAs that account for 4–10% of
all cellular RNA (21). Generally, tsRNAs are divided into two
main types, tRNA-derived fragment (tRF)s and tRNA-derived
stress-induced RNA (tiRNA)s, based on their length and cleavage
sites. tsRNAs regulate gene expression by directly inhibiting
protein synthesis (22) or acting as the guide RNA in a miRNA-
fashion (14). Multiple innovative investigations have divulged
that dysregulated tsRNAs are closely related to human diseases,
such as neurological disorders (23), metabolic disorders (24),
and cancer (25). Emerging evidence has proved that tsRNAs are
detected in the heart. The cardiac pathophysiological conditions
could be induced to tsRNAs biogenesis (26). A new study
revealed that tsRNAs were potential therapeutic targets to cure
myocardial ischemic injury (27). However, the expression of
tsRNAs of RHD with AF is never discussed. Therefore, we
intended to unveil the potential pathological mechanism of
AF in RHD via tsRNAs. In addition, tsRNAs will provide
novel approaches in grasping new therapeutic targets and
understanding the underlying mechanisms of AF in RHD.

In the present study, we discovered the distinct difference
in the expression of tsRNAs between RHD with AF and RHD
without AF. Bioinformatics analysis identified potential targets
genes and evaluated the putative biological functions. Our
findings elucidate the molecular mechanism underlying RHD
with AF and advance the knowledge of AF, which is of great
clinical significance.

MATERIALS AND METHODS

Patients Population
From January 2016 to January 2017, patients with RHD
undergoing mitral valve replacement surgery (MVR) were
enrolled from Xiangya Hospital, Central South University,
Changsha, China. Written informed consents were acquired
from all patients, and the study was passed by the ethics
committee of the hospital and following the relevant guidelines
and regulations. The number of Ethical Review is 201512546.
Cardiac papillary muscles were obtained from patients who
exhibited clinical characteristics of RHD with AF (n = 3) and
without AF (n = 3). AF group: patients had permanent AF
(documented arrhythmia more than 6 months) with mitral valve

stenosis. The exclusion criteria contained a history of using
anti-arrhythmic medications in the past 6 months, myocardial
infarction, ischemic cardiomyopathy, heart failure, other types
of arrhythmias, chronic hepatic or renal failure, and diabetes.
The cardiac papillary muscles were immediately frozen in
liquid nitrogen after surgical excision and stored at −80◦C
before sequencing.

RNA Extraction
The total RNA was isolated from cardiac papillary muscles.
Briefly, the tissues were homogenized with an electric
homogenizer after adding TRIzol (Invitrogen life technologies).
Then, Chloroform was added and centrifuged at 12,000 × g
for 15min to dissolve the RNA in the aqueous phase. Adding
isopropanol to make RNA precipitated, and the resultant RNA
pellet was then washed with 75% ethanol and dissolved in
RNase-free water. Using NanoDrop ND-1000 identified the
quality and concentration of RNA. The total optical densities at
a 260/280 nm absorbance ratio of all total RNA samples ranged
from 1.8 to 2.0. All RNA solutions were then stored at−80◦C.

tsRNAs Sequencing
The total RNA of the tissues for sequencing was pretreated to
remove some RNA modifications. The following experiments
were carried out to remove some RNA modifications that may
disturb small RNA-sequencing library construction (28, 29): 3′-
aminoacyl (charged) deacylation to 3′-OH (hydroxyl group) for
3′ adaptor ligation, 3′-cP (2′, 3′-cyclic phosphate) removal to
3′-OH for 3′ adaptor ligation, 5′-OH phosphorylation to 5′-
P for 5′-adaptor ligation, and N1-methyladenosine and N3-
methylcytidine demethylation for efficient reverse transcription.
All methods were conducted based on the rtStar tRF&tiRNA
Pretreatment Kit (Arraystar, USA) protocols. The Shanghai
BioChip Company constructed the small RNA library and
carried out the Solexa high-throughput sequencing following
their standard protocols. Briefly, the total RNA of each sample
was sequentially ligated to 3′ and 5′ small RNA adapters. cDNA
was then synthesized and amplified on Illumina’s proprietary
RT primers and amplification primers. Subsequently, ∼135–
160 bp PCR amplified fragments were extracted and purified
from the PAGE gel. The purified libraries were qualified with
the NanoDropTM ND-1000 Fluorometer (Thermofisher, ND-
1000, German) and validated using the Agilent 2100 bioanalyzer
(Agilent, G2938C, USA) to verify the insert size and figure out the
molar concentration. Only the library that passed quality control
was sequenced on an IlluminaNextSeq 500/550 V2 kit (#FC-404–
2005, Illumina, San Diego, CA, USA). Sequencing was carried out
by running fifty cyclings.

Data Processing and Analysis
Sequencing quality was examined by FastQC software, and
trimmed reads (pass Illumina quality filter, trimmed 3′-adaptor
bases by cut adapt) were aligned to mature-tRNA and pre-
tRNA sequences fromGtRNAdb (http://gtrnadb.ucsc.edu/) using
NovoAlign software (v2.07.11). Only exactly matched reads
were selected as tsRNAs. Moreover, tsRNAs expression levels
were calculated and normalized as tag counts per million of
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TABLE 1 | The details of 14 variant tsRNAs in the RHD without AF and RHD with

AF (fold change > 2 and P < 0.05).

tDRs_ID Type Fold change (B/A) P_value

AS-tDR-000123 tRF-1 −4.78 0.020

AS-tDR-007326 tRF-1 −4.46 0.030

AS-tDR-000102 tRF-3 −4.41 0.001

AS-tDR-007245 tRF-1 −4.31 0.018

AS-tDR-007294 tRF-1 −4.27 0.029

AS-tDR-000886 tiRNA-5 −4.11 0.041

AS-tDR-000894 tiRNA-5 −3.80 0.025

AS-tDR-000205 tiRNA-3 −3.72 0.005

AS-tDR-006049 tRF-3 −3.40 0.003

AS-tDR-001363 tiRNA-5 −3.30 0.006

AS-tDR-001297 tiRNA-5 2.10 0.004

AS-tDR-001269 tiRNA-5 2.55 0.048

AS-tDR-001270 tiRNA-5 2.23 0.023

AS-tDR-001289 tiRNA-5 2.28 0.037

tDR, tRNA-derived small RNA; tRF, transfer RNA-derived fragment; tiRNA, tRNA halves;

A, RHD without AF; B, RHD with AF.

total aligned tRNA reads (TPM). The expression profiling and
differential expression analysis of tsRNAs were measured by
the average TPM. The expression profiling and differential
expression of tRNAs were calculated based on fold-change
> 2.0 and P < 0.05 normalized TPM (30). Hierarchical
clustering and volcano plots were conducted in the differentially
expressed tsRNAs in the R environment for statistical computing
and graphics.

Small RNA Real-Time Quantitative PCR
tsRNAs were reverse transcription with specific primers (Table 2)
using rtStarTM First-Strand cDNA Synthesis Kit (3′ and 5′

adaptor; Arraystar) following the manufacturer’s instructions.
Realtime-qPCR (qRT-PCR) amplification was performed using
the ViiA 7 Real-time PCR System (Applied Biosystems) and 2
× PCR master mix (Arraystar). The cycling conditions (95◦C,
incubation, 10min; 95◦C, 40 cycles,10 s; 60◦C, 60 s; and 95◦C,
15 s). U6 was used for normalization. Using the 2−11Ct method
to calculate the relative tsRNA expression levels. qRT-PCR
reactions for all samples were performed in triplicate.

Cell Culture and Transfection
AC16 cells (Zhongqiaoxinzhou Biotech, shanghai, Chian) were
cultured in Dulbecco’s modified Eagle’s medium (DMEM; Gibco,
USA) containing 10% of fetal bovine serum (Gibco, USA) and
incubators at 37◦C. Then AC16 cells were cultured into 12-
well plates for transfection. The AS-tDR-001363 mimic (sense: 5′

GCCCGGCUAGCUCAGUCGGUAGAGCAUGGGACUCU 3′,
antisense: 5′ CGGGCCGAUCGAGUCAGCCAUCUCGUACCC
UGAGA 3′) was obtained from RiboBio (Guangzhou, China).
The final concentration of transfection of mimics and NC
was 100 nM. Using Lipofectamine 3000 (Invitrogen, USA) to
help transfect mimics and NC based on the manufacturer’s
instructions. All experiments were performed in triplicate. The

TABLE 2 | Sequences of primers for qPCR validation.

Name Sequence Product

length (bp)

U6 F:5′ GCTTCGGCAGCACATATACTAAAAT 3′

R:5′ CGCTTCACGAATTTGCGTGTCAT 3′
89

AS-tDR-001363 F:5′ ATCGCCCGGCTAGCTCAGT 3′

R:5′ TTCCGATCTAGAGTCCCATGCTC 3′
47

AS-tDR-006049 F:5′ TTCTACAGTCCGACGATCATCT 3′

R:5′ TCTTCCGATCTTGGAGGTTC 3′
47

AS-tDR-001269 F:5′ACAGTCCGACGATCTCCCATA 3′

R:5′ TCTAAAACCAGGAATCCTAACCG3′
52

GAPDH F: 5′ ACAGCCTCAAGATCATCAGC 3′

R: 5′ GGTCATGAGTCCTTCCACGAT 3′
89

TNFRSF1B F: 5′CGGCTCAGAGAATACTATGACC 3′

R: 5′ACAGAAGACTTTTGCATGTTGG 3′
81

CCL5 F: 5′AGAGCTGCGTTGCACTTGTT 3′

R: 5′GCAGTTTACCAATCGTTTTGGGG 3′
84

TABLE 3 | The general condition of patients between the two groups.

RHD without AF RHD with AF

(n = 3) (n = 3)

Age (year) 48.67 ± 0.58 54.68 ± 15.04

Sex (M/F) 2/1 2/1

LA (mm) 37.33 ± 7.51 45 ± 8.19

RA (mm) 43.33 ± 4.04 48.33 ± 9.50

LV (mm) 42.33 ± 1.53 49.00 ± 3.00

EF (%) 59.67 ± 1.53 55.67 ± 1.34

M,male; F, female; LA, left atrium; RA, Right atrium; LV, left ventricular; EF, ejection fraction.

total RNA was isolated from the transfected cells. The tsRNA-
targeted genes were then measured by qRT-PCR. The specific
primers were listed in Table 2, and the protocols were described
as above.

Target Prediction and Bioinformatics
tsRNAs could target mRNA leading to mRNA degradation in
a microRNA (miRNA) manner. Here we used two common
algorithms to predict tsRNA targets, namely, TargetScan
v6.0 (http://www.targetscan.org) and miRanda (http://www.
microrna.org) (31, 32). The overlapping target genes were applied
to further bioinformatics. The biological process of the target
genes was conducted by Gene Ontology (GO) annotations and
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
analysis, through DAVID Bioinformatics Resources 6.8 (https://
david.ncifcrf.gov) (33). Cytoscape software (version 3.7.2, the
Cytoscape Consortium, San Diego, CA, USA) was used to
construct the network.

Statistical Analysis
Data are presented as mean ± standard error. Two-group
difference analysis was used Student’s t-test. The limma package
in R software (version 4.0.4) was applied to determine the
differential expression of tsRNAs and the pheatmap package in
R was used to construct heat map. The ggplot2 built the figure
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FIGURE 1 | Expression profiles of tRFs/tiRNAs sequencing data in RHD with AF and RHD without AF. (A) The correlation coefficient was applied to evaluate the

criterion of reliability, and it is reasonable for the sample selection (RHD without AF: A1, A2, A3; RHD with AF: B1, B2, B3). (B) Venn plot displayed the total number of

identified tsRNAs in RHD with the AF group and RHD without the AF group. (C) Length distributions of tsRNA in the RHD without AF and RHD with AF (TPM: tsRNA

expression levels normalized as tag counts per million of total aligned tRNA reads).

of heat map. Fold change > 2.0 and P < 0.05 were considered to
indicate a statistically significant difference in sequence analysis.

RESULTS

Expression Profiles of tsRNAs
The clinical characteristics of patients were summarized
in Table 3, including age, gender, and color doppler
echocardiography. To explore the involvement of small
RNAs in RHD patients, the cardiac papillary muscles of the
patients were processed for tsRNAs sequencing (tsRNA-seq).
The RNA-seq data have been deposited into GEO (GSE185581).

The correlation analysis was based on the TPM counts of each
sample. The correlation coefficient is a vital evaluation criterion
of the reliability and reasonability of the sample selection
(34, 35). As shown in Figure 1A, the correlation coefficient
of the compared samples in the same group was more than
0.9 and in the different groups was <0.75. That is to say, a
distinguishable tsRNAs expression profiling was found among
the two groups. A total of 219 tsRNAs were identified (211
in RHD without AF, 118 in RHD with AF) (Figure 1B). The
tsRNAs of the tsRNAs’ distributed at the length of 16–21 and
31–37 nt. RHD with AF group compared to RHD without AF
group, the content of tsRNAs with different lengths was changed
(Figure 1C).
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FIGURE 2 | Differences and characterizations of tsRNAs expression profiles between two groups. (A,B) Pie chart of the distribution of subtypes of tsRNAs numbers in

RHD without AF (A) and RHD with AF (B). (C,D) Stacked plot for all subtypes of tsRNAs of each group clustering by the same anticodon of the tRNAs in RHD without

AF (C) and RHD with AF (D).

Changes of tsRNAs Expression
To investigate whether tsRNAs types were altered, we estimated
the subtype numbers of tsRNA transcripts in both RHD
without AF and RHD with AF groups. Over 99% of tsRNAs
were originated from mature tsRNAs (tRF-1, tRF-3, tRF-5, i-
tRF, tiRNA-3, tiRNA-5). Further analysis showed that most
tsRNAs in both groups were tiRNA-5, and the proportion of
RHD without AF and RHD with AF was 27.01 and 49.15%,
respectively (Figures 2A,B). The pie chart demonstrated that
the RHD with AF group mainly increased the expression
of tiRNA-5 and decreased the expression of other tsRNAs
(Figures 2A,B). In addition, the numbers of tsRNAs derived
from the variable anticodon tRNAs are demonstrated in the
stacked plots (Figures 2C,D). All results suggested that the types
of tsRNAs were different in RHD without AF and RHD with
AF groups.

Identification of Related tsRNAs and
qRT-PCR Confirmation
We looked at changes in expression for the individual tsRNAs
using a standard of fold change> 2.0 and P< 0.05 for significant

changes in expression. A total of 77 tsRNAs were differentially
expressed in the RHD with AF group compared to RHD without
AF group. The volcano plot showed six tsRNAs up-regulated
and 71 tsRNAs down-regulated (Figure 3A). Fourteen tsRNAs (4
up-regulated: AS-tDR-001270, AS-tDR-001297, AS-tDR-001269,
and AS-tDR-001289; 10 down-regulated: AS-tDR-000205,
AS-tDR-000123, AS-tDR-007294, AS-tDR-007326, AS-tDR-
007245, AS-tDR-000102, AS-tDR-006049, AS-tDR-001363,
AS-tDR-000886, AS-tDR-000894) were significantly altered
in RHD with the AF group compared with RHD without AF
group (Figure 3B, Table 1). We constructed a hierarchical
clustering map to examine these differentially expressed tsRNAs.
The RHD with the AF group clustered together in one group
were primarily distinct from the RHD without the AF group
(Figure 3B). We used qRT-PCR to confirm the expression
changes for the three tsRNAs (AS-tDR-001269, AS-tDR-001363,
and AS-tDR-006049). The expression level of AS-tDR-001269
(P = 0.0023) was up-regulated with the statistical difference
between RHD with the AF group and RHD without the AF
group. The expression levels of AS-tDR-001363 (P = 0.0292)
and AS-tDR-006049 (P = 0.0076) in RHD with the AF group
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FIGURE 3 | The dysregulated tsRNAs expression profiles and the relative expression of selected tsRNAs were confirmed by qRT-RCR. (A) Volcano maps of

differentially expressed tsRNAs. The volcano plot’s X and Y axes have values of log2 (Fold Change) and –log10 (P_value). With a fold change > 2 and a P < 0.05,

red/blue dots indicate statistically considerable differentially expressed tsRNAs (red depicts elevated expression while blue indicates decreased expression). No

differentially expressed tsRNAs are indicated by gray dots. (B) The hierarchical clustering heat-map for the 14 aberrantly expressed tsRNAs (RHD without AF: A1, A2,

A3; RHD with AF: B1, B2, B3). (C) The qRT-PCR results were consistent with the RNA-Seq data. AS-tDR-001269 (P = 0.0023), AS-tDR-001363 (P = 0.0292),

AS-tDR-006049 (P = 0.0076) were statistically different between RHD with the AF group and RHD without the AF group. Data were present as mean ± SEM (n = 3

for each group). *P < 0.05 represent RHD with AF compared to RHD without AF; **P < 0.01 indicated RHD with AF compared to RHD without AF. qRT-PCR,

quantitative real-time PCR; RNA-Seq, RNA sequencing.

were down-regulated (P < 0.05), compared to RHD without AF
group (Figure 3C). The qRT-PCR results of AS-tDR-001269,
AS-tDR-001363, and AS-tDR-006049 were consistent with the
RNA-seq, indicating that the results had higher reliability.

Prediction of Target Genes of tsRNAs and
Validation of Target Genes
A growing number of evidence has revealed that tsRNAs
contain some seed sequences that might match the seed
regions of mRNA by antisense pairing, regulating the expression
level of the target mRNA (16, 23, 36). Although different
algorithms can get possible seed sequences and targets for
tsRNAs, each methodology for tsRNA target prediction is

referenced to miRNA target predictors (23). Therefore, the
sequences of altered three tsRNAs were loaded to TargetScan
and miRanda to acquire the targets genes. According to the
above theory, miRanda and Targetscan, two algorithms were
used for predicting the target genes. In total, 3,123 mRNA
targets were predicted simultaneously for the three validated
tsRNAs (Supplementary Figure 1). The target genes of AS-tDR-
001269, AS-tDR-001363, and AS-tDR-006049 were 1,861, 1,179,
and 336, respectively. In the current study, AS-tDR-001363 was
reduced in the RHD with the AF group. The qRT-PCR was
used to verify the relationship between tsRNAs and their relative
mRNAs. The two mRNA genes (TNFRSF1B and CCL5)-the
target genes of AS-tDR-001363-were selected. The binding site
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FIGURE 4 | Target genes validation. (A) The binding region and seed sequence of AS-tDR-001363 randomly selected mRNA transcripts (TNFRSF1B and CCL5). (B)

The relative mRNAs levels detected by qRT-PCR in AC16 cells transfected with tsRNAs mimics. The qRT-PCR results of TNFRSF1B and CCL5 level in AC16 cells

transfected with AS-tDR-001363. The data are exhibited as the mean ± SEM (n = 3). **P < 0.01 presented tsRNAs mimics compared to the NC group.

and seed sequence of these tsRNAs and their target mRNAs are
displayed in Figure 4A. To confirm the relationship between the
target genes and tsRNAs, we overexpressed AS-tDR-001363 in
AC16 cells to identify the corresponding alterations in tsRNA
target genes. After transfection with AS-tDR-001363 mimics,
the expression of TNFRSF1B and CCL5 were predominantly
downregulated (Figure 4B). The qRT-PCR results of in vitro
experiments explain the relationship between tsRNAs and target
mRNAs. Therefore, the forecasted targets could be applied to
further analysis.

Biological Function Analysis
We performed a bioinformatics analysis of the target genes
with a context <−0.4. GO biological processes and KEGG
pathway enrichment analysis was executed to explore the
functions of 278 target genes by using the DAVID online
analysis tool (Figure 5B). GO analysis included molecular

function (MF), biological processes (BP), and cell composition
(CC). The primary biological processes observed by GO were
regulation of transcription (BP; GO: 00060355; 61 genes),
DNA binding (MF; GO: 0003677, 53 genes), intracellular (CC;
GO: 0005622, 40 genes), etc (Figure 5A, Table 4). According
to KEGG enrichment analysis, cytokine-cytokine receptor
interaction (hsa04060; 8 genes) and proteoglycans in cancer
(has05205; 7 genes) were significantly detected (Figure 5A,
Table 4).

DISCUSSION

In this study, we revealed the tsRNAs transcriptional profiles
in RHD with AF. We identified 77 markedly dysregulated
tsRNAs (6 up-regulated and 71 down-regulated) in RHD with
AF compared with RHD without AF. Bioinformatics analysis
uncovered the altered biological functions, including regulation
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FIGURE 5 | Biological annotation of targets to reveal the function of altered tsRNAs. (A) The top 19 enriched terms were shown ranked by P_value. (B) The

interaction networks of tsRNA-mRNA-pathway.
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TABLE 4 | The significant enriched GO and KEGG pathways of target genes.

ID Term Count Genes P_value

GO:0006355 Regulation of transcription,

DNA-templated

61 RALY, ZNF781, ZNF674, PTTG2, ZNF253, ZNF14, CRX, ZNF304, ZNF181, ZNF182,

ZNF878, ZNF302, PSIP1, ZNF732, SAP30L, ZNF180, CCAR2, CSDC2, ZNF546,

ZNF594, ZNF282, ZNF440, ZFP30, EMX2, ZNF814, ZNF883, ZNF439, CDK11A,

ZNF717, ZNF711, CDK11B, SUPT6H, ZNF844, KMT2D, ZNF559, NR3C2, VENTX,

ZNF514, ZNF780B, ZNF780A, ZNF175, ZNF846, LIMD1, ZNF605, ZNF700, HIP1,

ZNF563, ZNF624, LZTR1, ZNF705A, ZNF569, SPTY2D1, ZNF705D, ZNF705E,

NEUROG3, ATXN3, ZNF362, ZNF763, MAFA, ZNF385A, ZBTB8A

3.93481E-13

GO:0006351 Transcription,

DNA-templated

62 RALY, JDP2, ZNF781, FASLG, TP63, ZNF674, ZNF253, ZNF14, ZNF304, ZNF181,

ZNF182, ZNF878, ZNF302, PSIP1, ZNF732, SAP30L, ZNF180, CCAR2, ZNF546,

ZNF594, ZNF282, ZNF440, ZFP30, ZHX2, ZHX3, GZF1, ZNF883, ZNF439, PIAS4,

ZNF717, ZNF711, SUPT6H, ZNF844, KMT2D, ZMYND11, ZNF559, NR3C2,

ZNF514, ZNF780B, ZNF780A, ZNF175, ZNF846, LIMD1, ZNF700, ZNF605, HIP1,

ZNF563, ZNF624, ZNF705A, ZNF569, SPTY2D1, ZNF705D, LMCD1, ZNF705E,

SIRT2, ATXN3, ZNF362, ZNF763, MAFA, PBX2, ZNF385A, ZBTB8A

5.91126E-09

GO:0003677 DNA binding 53 RAD51D, ZNF781, TP63, ZNF674, CRX, ZNF14, FBXL19, ZNF181, APP, ZNF182,

ZNF302, H2AFX, SAP30L, ZNF180, CSDC2, ZNF546, ZNF594, ZNF282, ZNF440,

ZFP30, GMEB1, ZHX2, ZHX3, ZNF883, ZNF439, PIAS4, ZNF717, ZNF711, SUPT6H,

KMT2D, ZNF844, ZNF559, ZNF514, ZNF780B, ZNF780A, ZNF175, ZNF846,

ZNF700, ZNF605, ZNF563, ZNF624, ZNF705A, SETBP1, ZNF569, SPTY2D1,

ZNF705D, ZNF705E, ZNF362, IRF1, ZNF763, MAFA, ZNF385A, ZBTB8A

1.04414E-07

GO:0046872 Metal ion binding 58 ZNF781, TP63, ZNF674, ZNF253, ZNF14, DMPK, ZNF304, POMT2, ZNF181,

ZNF182, ZNF878, ZNF302, ZNF732, SAP30L, ZNF180, ZNF546, ZNF594, ZNF282,

ZNF440, ZFP30, GMEB1, ZNF814, ZHX2, ADIPOR2, ZHX3, PGM2L1, GZF1,

ZNF883, PPM1G, PGM3, ZNF439, ZNF717, ZNF711, PRNP, ZNF844, MGAT5B,

ZNF559, USP4, ZNF514, ZNF780B, ZNF780A, ZNF175, ZNF846, ZNF700, ZNF605,

ALKBH7, ZNF563, ZNF624, ZNF705A, ZNF569, NOX1, ZNF705D, ZNF705E,

RNF114, ZNF362, ZNF763, ZNF385A, ZBTB8A

1.22463E-06

GO:0003676 Nucleic acid binding 34 RALY, ZNF844, ZNF559, TRA2B, ZNF781, ZNF674, ZNF780B, ZNF253, ZNF514,

ZNF780A, ZNF175, ZNF846, ZNF304, ZNF181, ZNF878, ZNF302, ZNF732, ZNF180,

ZNF700, ZNF546, ZNF563, ZNF594, ZNF624, ZNF282, ZNF705A, ZNF440, ZFP30,

ZNF569, ZNF814, ZNF439, ZNF717, ZNF763, ZNF385A, ZBTB8A

6.76917E-06

GO:0005622 Intracellular 40 ZNF844, ZNF559, FGF14, RAB40C, ZNF674, ZNF780B, ZNF514, ZNF780A,

ZNF175, ZNF846, ZNF304, TRIM5, ZNF181, RNF166, ZNF302, ZNF732, RAPGEF3,

ZNF180, ZNF700, ZNF546, ZNF563, ZNF624, CAPN5, PIRT, IL2RA, ZNF282,

RABL6, ZNF705A, ZNF440, ZFP30, ZNF569, ZNF814, RNF114, ZNF439, CCR6,

ARF3, ZNF717, ZNF763, NYAP1, TRIM77

9.71511E-06

GO:0005634 Nucleus 109 RAD51D, RALY, JDP2, PLXNA1, FGF14, PRR11, SNRPD1, ZNF781, PTTG2,

ZNF253, ZNF304, ZNF181, ZNF182, ZNF302, PSIP1, H2AFX, SAP30L, ZNF180,

CCAR2, ZNF594, ZNF440, EMX2, ZHX2, ZHX3, RAD1, DCAF6, ZNF439, GLUL,

PIAS4, DST, SUPT6H, ZNF844, GRB2, VENTX, ZNF514, ZNF846, SPC24, CDYL2,

TEF, HIP1, ZNF624, MAFB, LPP, BECN1, LMCD1, NEUROG3, PTTG1IP, MAFA,

BACH2, FIGNL1, TP63, FASLG, CTCF, ZNF674, CRX, ZNF14, TRIM5, SBDS,

ZNF878, ZNF732, CSDC2, ZNF546, GSC, ZNF282, RABL6, ZFP30, GMEB1, GZF1,

ZNF883, PPM1G, CDK11A, ZNF717, ZNF711, MTAP, CDK11B, PRNP, CAMK1D,

ZMYND11, KMT2D, ZNF559, TRA2B, USP4, NR3C2, KIAA0101, WBP11, ZNF780B,

ZNF780A, TNFRSF1B, SAPCD2, LIMD1, ZNF700, ZNF605, BCL9, ZNF563,

ZNF705A, SETBP1, ZNF569, ZNF705D, ZNF705E, SIRT2, PHAX, HSP90B1,

RNF114, ATXN3, ZNF362, IRF1, ZNF763, PBX2, ZBTB8A

1.31622E-05

GO:0003700 Transcription factor activity,

sequence-specific DNA

binding

28 JDP2, BACH2, NR3C2, TP63, CTCF, ZNF780B, ZNF514, ZNF780A, ZNF175, CRX,

ZNF304, ZNF182, ZNF302, ZNF605, ZNF546, ZNF624, LZTR1, ZFP30, ZHX2,

ZNF814, ZHX3, ZNF883, ZNF717, IRF1, ZNF711, MAFA, PBX2, SUPT6H

8.31122E-04

GO:0051726 Regulation of cell cycle 8 RAD51D, FIGNL1, CDK11A, PRR11, KIAA0101, IRF1, CDK11B, SIRT2 2.34309E-03

GO:0050684 Regulation of mRNA

processing

3 CDK11A, CDK11B, SUPT6H 7.19008E-03

GO:0006342 Chromatin silencing 4 KMT2D, H2AFX, SIRT2, SUPT6H 2.80589E-02

GO:0070889 Platelet alpha granule

organization

2 VPS33B, ZNF385A 2.90859E-02

GO:0045892 Negative regulation of

transcription,

DNA-templated

14 ZNF282, ZHX2, TP63, ZHX3, CTCF, ZNF253, LGR4, SIRT2, GAS6, GZF1, PIAS4,

IRF1, LIMD1, CCAR2

3.26644E-02

(Continued)
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TABLE 4 | Continued

ID Term Count Genes P_Value

GO:0000978 RNA polymerase II core

promoter proximal region

sequence-specific DNA

binding

11 JDP2, MAFB, GMEB1, IRF1, ZNF732, CTCF, NEUROG3, MAFA, ZNF253, GZF1,

CRX

3.56281E-02

hsa04060 Cytokine-cytokine receptor

interaction

8 IL18R1, TNFRSF1B, CCR6, IL2RA, FASLG, TNFRSF14, EDAR, CCL5 3.92933E-02

GO:0048388 Endosomal lumen

acidification

2 CLCN3, FASLG 4.33113E-02

GO:0034112 Positive regulation of

homotypic cell-cell adhesion

2 ANK3, CCL5 4.33113E-02

GO:0008283 Cell proliferation 11 TUSC2, ZMYND11, GLUL, SBDS, SLC29A2, IL2RA, GAB1, CDK11B, PIM2,

RAPGEF3, GAS6

4.39472E-02

hsa05205 Proteoglycans in cancer 7 WNT2, CTTN, GRB2, ANK3, GAB1, HBEGF, FASLG 4.65064E-02

of transcription, DNA binding, intracellular, and cytokine-
cytokine receptor interaction. These results aimed to explore the
regulatory role of tsRNAs in RHD with AF, which drew more
attention from other researchers toward conducting a further
experiment on tsRNAs.

Identifying the non-coding RNAs changes profiles of serum
(37), atrial appendages (38), atrium samples (39), and aortic
valve (40) in RHD with AF has been well-documented in recent
years. In this article, we chose the cardiac papillary muscle as the
experimental sample. Because resection of this tissue can cause
no damage to the surrounding structure during MVR surgery.
Meanwhile, RHD can cause mitral pathologic change due to
thickening of the papillarymuscles (41, 42). Therefore, the altered
non-coding RNAs profiles of papillarymusclemight elucidate the
pathological process of RHD.

Currently, high-throughput sequencing and bioinformatics
analysis, which may put a deep insight into disease occurrence
at the molecular level, are frequently used by scientists. Many
studies have discovered that non-coding RNAs are dysregulated
in RHD with AF (37–40, 43, 44). Previous research focused
on the aberrant non-coding RNAs in disease due to their
disease-specific expression profiles (38, 45). tsRNAs are abundant
small non-coding RNA, constituting 4–10% of all cellular RNA
(21). They are the fundamental components of the translation
machinery. They deliver amino acids to the ribosome to
translate the genetic information in an mRNA template into
a corresponding polypeptide chain. Although the regulation of
tsRNAs is similar to miRNAs regarding the related physiological
and pathological processes, the higher stability and expression
levels of tsRNAs place them as ideal biomarkers for diagnosing
and prognosis in diseases (46). Recently, correlations between
dysregulated tsRNAs expression and disease development have
been reported (46). One of the principal drivers of the current
tsRNA research is the discovery of abundant tsRNAs and tsRNA
in mice and humans (47, 48). Additionally, their capabilities
as a potential biomarker for disease diagnosis and prognosis
have been revealed in clinical studies (46). Thus, it is worth
identifying the dysregulation of tsRNAs in RHD with AF. In

this study, we explored the tsRNAs expression profiles between
RHD with AF and RHD without AF. The results indicated
the length of tsRNAs was from 16 to 21 and 31 to 37
nucleotides (Figure 1C). The figures illustrated that the number,
expression level, and type of tsRNAs have changed in the
AF group (Figures 1, 2). All the results suggested the tsRNAs
may be potential candidates for the pathophysiological process
of AF.

Based on bioinformatics analysis, prior research demonstrated
dilated cardiomyopathy, hypertrophic cardiomyopathy (38), and
metabolic pathway (37) are the most important biological
process of RHD with AF. In our research, one crucial
pathway was enriched: cytokine-cytokine receptor interaction
from KEGG pathway analysis. Cytokines and their receptor
networks are an essential component of the body’s signal
transduction system (49). Cytokines can be widely involved
in almost all physiological and pathological states of the
body, affecting gene expression, cell membrane permeability,
biological enzyme activity, and cytoskeletal protein function,
leading to various physical effects on cells. In our study,
eight target genes were enriched in cytokine-cytokine receptor
interaction involving IL18R1, TNFRSF1B, CCR6, IL2RA, FASLG,
TNFRSF14, EDAR, CCL5. CCL5 has been shown to orchestrate
the recruitment to inflammatory sites of several inflammatory
cell subsets, such as monocytes, neutrophils, dendritic cells, and
lymphocytes through the binding to CCR1, CCR3, or CCR5
(50). CCL5 is increased in atherosclerosis (51), Myocardial
infarction (50), and RHD (52). Treatment with anti-CCL5
mAb exerted cardioprotective effects (50). Nevertheless, no
documents have addressed the relationship between CCL5 and
AF. In the present research, CCL5 is a target gene of AS-
tDR-001363, which is down-regulated in RHD with AF group.
We overexpressed AS-tDR-001363 in AC16 cells to identify
the corresponding alterations in tsRNA target genes. Although
the tsRNAs mimics could not represent the actual tsRNAs, at
present, mimics are usually used to explore the impact of tsRNAs
on target genes (23, 27, 53). After transfection with AS-tDR-
001363 mimics, the expression of CCL5 was predominantly
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downregulated (Figure 4B). Therefore, our study may provide a
novel perspective to treat RHD with AF.

Overall, the research firstly shows the altered expression
patterns of tsRNAs in RHD with AF. Given the pathogenesis and
prognosis of diseases, we chose myocardial papilla to reveal more
regulator function of tsRNAs in RHD with AF. What’s more, the
validation of tsRNAs function is still primarily needed by future
researchers and the future studies with larger sample sizes will be
needed to confirm our present results.
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