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Myocardial strain analysis from cinematic magnetic resonance imaging (cine-MRI)

data provides a more thorough characterization of cardiac mechanics than volumetric

parameters such as left-ventricular ejection fraction, but sources of variation including

segmentation and motion estimation have limited its wider clinical use. We designed and

validated a fast, fully-automatic deep learning (DL) workflow to generate both volumetric

parameters and strain measures from cine-MRI data consisting of segmentation and

motion estimation convolutional neural networks. The final motion network design,

loss function, and associated hyperparameters are the result of a thorough ad hoc

implementation that we carefully planned specific for strain quantification, tested, and

compared to other potential alternatives. The optimal configuration was trained using

healthy and cardiovascular disease (CVD) subjects (n = 150). DL-based volumetric

parameters were correlated (>0.98) and without significant bias relative to parameters

derived from manual segmentations in 50 healthy and CVD test subjects. Compared to

landmarks manually-tracked on tagging-MRI images from 15 healthy subjects, landmark

deformation using DL-based motion estimates from paired cine-MRI data resulted in

an end-point-error of 2.9 ± 1.5mm. Measures of end-systolic global strain from these

cine-MRI data showed no significant biases relative to a tagging-MRI reference method.

On 10 healthy subjects, intraclass correlation coefficient for intra-scanner repeatability

was good to excellent (>0.75) for all global measures and most polar map segments. In

conclusion, we developed and evaluated the first end-to-end learning-based workflow

for automated strain analysis from cine-MRI data to quantitatively characterize cardiac

mechanics of healthy and CVD subjects.
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INTRODUCTION

Cardiac mechanics reflects the precise interplay between
myocardial architecture and loading conditions that is essential
for sustaining the blood pumping function of the heart. The
ejection fraction (EF) is often used as a left-ventricular (LV)
functional index, but its value is limited when mechanical
impairment occurs without an EF reduction (1). Alternatively,
tissue tracking approaches for strain analysis provide a more
thorough characterization through non-invasive evaluation of
myocardial deformation from echocardiography or cinematic
magnetic resonance imaging (cine-MRI) data (2), and could
be used to identify dysfunction before EF is reduced (3).
Unfortunately, various sources of discrepancies have limited
the wider clinical applicability of these techniques, including
factors related to imaging modality, algorithm, and operator
(4). More accurate measures could be obtained from tagging-
MRI data widely regarded as the reference standard for strain
quantification (5, 6), but use of these data is less common partly
due to lack of available analysis tools, whereas echocardiography
and cine-MRI data are ubiquitously acquired and analyzed in
clinical practice.

Irrespective of algorithm or modality, e.g., speckle tracking
for echocardiography or feature tracking for cine-MRI, the
main challenge is to estimate motion within regions along
the myocardial wall (2). Operator-related discrepancies are
introduced when the myocardial wall borders are delineated
manually, a time-consuming process that requires considerable
expertise and results in significant inter- and intra-observer
variability (7, 8). Automatic delineation approaches have been
implemented within computational pipelines (9), but other
factors related to motion tracking algorithms also influence
strain assessment, including the appropriate selection of
tuneable parameters whose optimal values can differ between
patient cohorts and acquisition protocols [e.g., the size of
the search region in block-matching methods (10)]. Further,
these algorithms often make assumptions about the properties
of the myocardial tissue [e.g., incompressible and elastic (11,
12)], or use registration methods to drive the solution toward
an expected geometry. However, recent evidence has shown
the validity of these assumptions varies between healthy and
diseased myocardium (13, 14), suggesting these approaches
may not accurately reflect the underlying biomechanical
motion. Modality-related image quality could also complicate
interpretation of abnormal strain values since these could reflect
either real dysfunction or artifact-related inaccuracies, leading
to some degree of subjectivity or non-conclusive results (3).

Abbreviations: ACDC, automated cardiac diagnosis challenge; AHA, American

heart association; ARV, abnormal right ventricle; CCN, categorical cross-entropy;

CMAC, cardiac motion analysis challenge; CarMEN, cardiac motion estimation

network; CarSON, cardiac segmentation network; CNN, convolutional neural

network; DCM, dilated cardiomyopathy; DL, deep learning; ED, end-diastole; EF,

ejection fraction; EPE, end-point error; ES, end-systole; ESS, end-systolic strain;

HCM, hypertrophic cardiomyopathy; LV, left-ventricular; LVM, left-ventricular

myocardium; MDC, multi-class Dice coefficient; MI, myocardial infarction; MRI,

magnetic resonance imaging; MRXCAT, magnetic resonance-extended cardiac-

torso; RC, relative change; RV, right-ventricular; SR, strain rate; SRe, early-diastolic

strain rate; SRs, systolic strain rate; VCN, ventricular centering network.

Lastly, although automated segmentation and motion tracking
commercial software is available for cardiac cine imaging,
manual correction of delineated contours used for tracking
is often required, resulting in significant variations in strain
depending on segmentation procedure and type of commercial
software (15).

Deep Learning (DL) methods have demonstrated the
advantage of allowing real-world data guide learning of abstract
representations that can be used to accomplish pre-specified
tasks, and have been shown to be more robust to image artifacts
than non-learning techniques for some applications (16, 17).
DL segmentation methods have been proposed (18–21) and
implemented within strain computational pipelines (22, 23), and
recent studies have shown that cardiac motion estimation can
also be recast as a learnable problem (24–28). These methods
usually consist of an intensity-based loss function and a constrain
term (24, 27), the latter using common machine learning
techniques [e.g., L2 regularization of all learnable parameters
(25)] or direct regularization of the motion estimates [e.g.,
smoothness penalty (24), anatomy-aware (28)]. However, none of
these methods have considered the accuracy of myocardial strain
as a design factor or have been applied to strain analysis.

We have recently developed a learning-based method for
cardiac motion estimation that produces more accurate estimates
than various techniques, including B-spline, diffeomorphic, and
mass-preserving algorithms (29), and showed these estimates
could potentially be used to detect regional dysfunction.
Thus, incorporating our method within a strain analysis
framework could potentially enable accurate, user-independent,
and quantitative characterization of cardiac mechanics at a both
global and regional level. While this framework could be based
on echocardiography images (30), these data remain limited for
strain mapping tasks by their low reproducibility of acquisition
planes (4) and temporal stability of tracking patterns (31). In
contrast, cine-MRI offers the most accurate and reproducible
assessment of cardiac anatomy and function, thus providing a
more thorough set of data for learning-based motion models.

We propose DeepStrain, a fast, automated workflow that
derives global and regional strain measures from cine-MRI data
by decoupling motion estimation and segmentation tasks. With
decoupling, segmentations are not used for motion estimation
during inference but rather to derive clinical parameters and to
identify a cardiac coordinate system for strain analysis, further
reducing the variability in strain directly related to segmentation.
Although two-dimensional (2D) convolutional neural networks
(CNN) for cardiac motion estimation from cine-MRI have been
proposed (24, 26, 28, 32), DeepStrain is the first end-to-end
learning based workflow for myocardial strain analysis from
cine-MRI. In addition, motion predicted using 2D architectures
could be influenced by out-of-plane motion during the cardiac
cycle, resulting in overestimation of in-planemotion and reduced
reproducibility (33). Instead, this paper describes a carefully
designed strain quantification-specific 3D CNN that handles
challenges associated with the anisotropic resolution of cine-
MRI data. Our loss weighting strategy to find the optimal
balance between motion regularization terms also differs from
previous methods which have traditionally relied on registration
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techniques as indirect measures of motion accuracy (24, 26, 28,
32). Instead, we simulated cine-MRI data with corresponding
ground-truth cardiac motion to identify the hyperparameters
yielding accurate motion and strain estimates. The optimal
trained configuration is online at https://github.com/moralesq/
DeepStrain. Finally, this paper also provides a comprehensive
assessment of the accuracy and repeatability of DeepStrain
measures, a task that has beenmostly ignored in the deep learning
literature but is critical to clinical adoption (4).

METHODS

Myocardial Strain Definitions
Strain represents percent change in myocardial length per unit
length. The 3D analog for MRI is given by the Green-Lagrange
strain tensor

E (t) =
(

∇u (t) + (∇u (t)) T+ (∇u (t))T ∇u (t)
)

/2, (1)

where u (t) denotesmyocardial displacement from a fully-relaxed
end-diastolic (ED) phase at t = 0, to a contracted frame at t >0.
Radial and circumferential strain are the diagonal components
of the tensor E evaluated in cylindrical coordinates. Strain rate
(SR) is the time derivative of (1). The time of acquisition of
each frame was extracted from the DICOM and was used to
interpolate E(t), such that E(t) was defined at every millisecond.
The time derivative was then evaluated using central differences
and reported as change in strain per second with unit s−1.

Global strain is defined as the average of E over the whole
LV myocardium (LVM) volume. Regional strain is defined as the
average of E over the volume of specific LVM segments defined
by the American Heart Association (AHA) polar map (34),
which requires labels of the right ventricle to construct. Specific
parameters based on timing and magnitude are extracted from
the measures evaluated over a whole cardiac cycle: end-systolic
strain (ESS), defined as the global strain value at end-systole (ES);
systolic strain rate (SRs), defined as the peak (i.e., maximum)
absolute value of global SR during systole; early-diastolic strain
rate (SRe), defined as the peak absolute value of global SR during
diastole. Although only radial and circumferential strain were
analyzed in this study, DeepStrain is also capable of generating
shear (Supplementary Section 1). The code used to construct the
AHA polar maps is available in the repo online.

Centering, Segmentation, and Motion
Estimation
DeepStrain (Figure 1) consists of a series of CNNs that
perform three tasks: a ventricular centering network (VCN)
for automated centering and cropping, a cardiac segmentation
network (CarSON) to generate tissue labels, and a cardiac motion
estimation network (CarMEN) to generate u. Estimates of u are
used to calculate myocardial strain, and segmentations are used
to derive volumetric parameters, identify a cardiac coordinate
system for strain analysis, and generate tissue labels used for
anatomical regularization of motion estimates at training time.

All networks have a common encoder-decoder architecture
consisting primarily of convolution, batch normalization (35),

and PReLU (36) layers with residual connections (37). The
specific architecture formulation and losses are discussed below
and Supplementary Section 2.

VCN
Let Vt be a cine-MRI frame at time t defined over a n-D domain
� ⊂ R

n, and let v ∈ �. VCN uses a single-channel array
V with size 256 × 256 × 16 to generate a single-channel
array Gpred of equal size, where Gpred corresponds to a Gaussian
distribution with mean defined as the LVM center of mass.
This approach models the uncertainty associated with the center
location, specially in pathological cases, and enables automated
generation of ground-truth labels when manual segmentation of
uncropped images is available. VCN was trained using the mean
square error (MSE) loss function

LMSE

(

Ggt ,Gpred

)

=
1

|�|

∑

v∈�

(

G(v)− Gpred (v)
)2
, (2)

where Ggt is the ground-truth Gaussian distribution. At
inference, the input volume V is centered and cropped around
the voxel with the highest value in Gpred to generate a new
cropped array of size 128 × 128 × 16, which is then the input
to CarSON and CarMEN.

CarSON
CarSON is a 2D architecture that uses single-channel images
V of size 128 × 128 to generate a 4-channel segmentation
Mpred of equal size, each channel corresponding to a label.
We experimented with two different loss functions Lseg to
train CarSON using the manual segmentations Mms: the pixel-
wise categorical cross-entropy (CCE), and a multi-class Dice
coefficient (MDC) loss function

LMDC

(

Mms,Mpred

)

= −
1

K

3
∑

k=0

2

∣

∣

∣
vkms ∩ vk

pred

∣

∣

∣

∣

∣vkms

∣

∣ +

∣

∣

∣
vk
pred

∣

∣

∣

, (3)

where k ∈ [0, 3] represents each of the tissue labels (i.e.,
background, RV, LVM, and LV), and vk ∈ M denotes all the pixels
with label k.

CarMEN
CarMEN estimates the motion ut of the heart from V0 to Vt , i.e.,
for each voxel v ∈ �, ut (v) is an approximation of themyocardial
displacement during contraction such that V0(v) and (ut ◦Vt)(v)
correspond to similar cardiac regions. The operator ◦ refers to
application of a spatial transform to Vt using ut via trilinear
interpolation (38). Thus, CarMEN uses a 2-channel input volume
consisting of two concatenated arrays with size 128 × 128 ×

16 to generate a 3-channel array u of equal size, each channel
representing the x, y, and z components of motion.

Although the current formulation of CarMEN shares some
similarities with our previous work, we have made several design
modifications that were specific for accurate strain quantification.
Here a combination of three loss functions was used for
training: first, we used an unsupervised loss function Lintensity
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FIGURE 1 | Overview of proposed DeepStrain workflow. VCN centers and crops the input pair of cine-MRI frames. Tissue labels generated by CarSON are used to

build an anatomical model. Motion estimates derived from CarMEN are used to calculate strain measures, and these estimates are combined with the anatomical

model to enable global and regional strain analyses.

that trains CarMEN using the input volumes and generated
motion estimates

Lintensity (V0,Vt , ut) =
1

|�|

∑

v∈�

∣

∣

(

V0 (v) − (ut ◦ Vt

)

(v)
∣

∣ . (4)

Second, we used a supervised function Lanatomical that leverages
segmentations of the input volumes at training time to impose an
anatomical constrain on the estimates

Lanatomical (M0, Mt , ut) = Lseg (M0, ut ◦Mt) . (5)

Third, smooth estimates were encouraged by using a
diffusion regularizer

Lsmoothness(ut) =
∑

v∈�

∥

∥∇ut (v) · dr
∥

∥

2
(6)

where dr is the spatial resolution of V . Thus, the loss function for
CarMEN is a linear combination of (4), (5), and (6), weighted by
λi, λa, λs, accordingly.

Some design variations were exclusive to estimation of motion
from 3D cine-MRI frames. Convolution, pooling, and upscaling
was implemented with 3 × 3 × kz operations, where kz could
be set to either 1 or 3. For kz = 1, operations were carried
out only in the x-y-plane to account for the low and varying z-
resolution, different from 3D architectures for segmentation with
3× 3× 3 convolutions and in-plane-only pooling and upscaling
(39). Thus, context in the z-dimension is aggregated through

trilinear interpolation of Vt and Mt volumes in (4) and (5), and
through application of 3D spatial gradients to u in (6). The spatial
gradient in (6) also includes an additional term dr to account
for differences between in-plane and slice resolution which was
not used in (40). Lastly, we experimented with CCE and MDC
implementations as anatomical constrains in (5).

At inference, the entire cycle of a single subject can be analyzed
using sequential inputs

{(V0, Vt)}{t=0,1,...,T} to derive {ut}{t= 0,1,...,T} .

EXPERIMENTS

Datasets
For development we used the Automated Cardiac Diagnosis
Challenge (ACDC) dataset (41), consisting of cine-MRI data from
150 subjects evenly divided into five groups: healthy and patients
with hypertrophic cardiomyopathy (HCM), abnormal right
ventricle (ARV), myocardial infarction with reduced ejection
fraction (MI), and dilated cardiomyopathy (DCM). These data
were publicly available as train (n = 100) and test (n =

50) sets, with manual segmentations included for the train
set only. For validation of motion and strain measures we
used the Cardiac Motion Analysis Challenge (CMAC) dataset
(42), consisting of paired tagging- and cine-MRI data from
15 healthy subjects. To assess intra-scanner repeatability, 10
healthy volunteers were recruited to undergo repeated scans
on a 3T MRI scanner (Supplementary Section 3). All cine-MRI
frames and corresponding segmentations were resampled to a
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FIGURE 2 | Effect of anatomical regularization of motion estimates on strain on the ADCD dataset. Regularization with multiclass dice coefficient (MDC) and

categorical crossentropy (CCE) functions result in different strain values in healthy subjects, shown as mean and standard deviation.

256× 256× 16 volume grid with 1.25mm × 1.25mm in-plane
resolution and variable slice thickness (4–7 mm).

DeepStrain Implementation
For optimization experiments and final model training,
all networks were trained in TensorFlow ver. 2.0 with
Adam optimizer parameters beta 1, 2 = 0.9, 0.999,
random initialization, batchsize = 80 (5 for CarMEN), and
learning rate= 1e-4.

Design of a Strain Quantification-Specific CNN
Reported normal ranges of strain in healthy individuals
using non-learning methods vary largely between the different
deformation methodologies, limiting the clinical utility of strain
measures (4). We used this concept as a heuristic in updating
CarMEN, i.e., a useful design should minimize the variation
in strain values in healthy individuals. To assess the impact of
design choices on this heuristic, we separated the ACDC training
set into two group-balanced train and test subsets, each with
50 subjects. We trained CarMEN for 300 epochs using two
different layer operation sizes (i.e., 3 × 3 × kz with kz ∈ {1, 3}),
and two different implementations of (5) (i.e., MDC and CCE).
With kz = 3, comparison of losses showed that CCE leads to
increased standard deviation in radial ESS in healthy train (n
= 10) and test (n = 10) subjects, and large differences in the
average radial ESS between training and testing sets (Figure 2).
Multiple experiments with different regularization parameters
showed similar results, and showed that setting kz = 1 reduces
deviations in healthy strain (Supplementary Table 1). Thus, the
new CarMEN design used 3 × 3 × 1 operations and was
regularized using the MDC function.

Novel Loss Weighting Strategy for Accurate Motion

and Strain Estimation
Most proposed networks to-date have used registration terms
such as (4) and (5) to indirectly assess the accuracy of ut on
validation or test datasets. However, this approach is prone to

errors since inaccurate and even unrealistic ut solutions can
minimize these terms. To find an optimal balance between loss
terms, we simulated 10 cardiac cine-MRI frames at ED and
ES with known ground-truth motion using the MR-extended
cardiac-torso (MRXCAT) (43, 44), a software phantom used
extensively in imaging studies (45). The motion of the software
phantom was modeled using gated patient 4D tagging data,
producing highly realistic contracting and twisting motion of the
normal heart that can be parameterized to generate population-
wide characteristics, as previously described by us (29). We
trained CarMEN with various regularization parameters for 300
epochs using 100 subjects from the ACDC training set, and
tested the models on the MRXCAT data by evaluating the
end-point error between ground-truth and predicted motion
estimates within the LVM (Figure 3). Setting λs = 0 leads
to highly irregular motion vectors (e.g., off by more than 90
degrees) relative to ground-truth. Setting the smoothness and
anatomical weights to λs = λa = 0.1 leads to smoother
and better aligned vectors, albeit with a slightly decreased
magnitude. Increasing the anatomical weight to λa = 0.5
further improves the estimates by generating vectors with similar
magnitude and orientation to the ground-truth. Quantitative
measures of motion accuracy showed similar results across
various regularization values, and these changes in motion
estimation accuracy were reflected as bias changes in strain values
(Figure 4). We found the optimal parameters to be λi = 0.01,
λa = 0.5, λs = 0.1, which in addition resulted in low strain
deviation in healthy subjects as described in the previous section
(Supplementary Table 1). Thus, the optimal architecture and
hyperparameters were selected based on both the ACDC (i.e.,
to assess strain deviation in healthy subjects) and XCAT (i.e., to
assess motion and strain accuracy).

Final Model Training
Ground-truth distributions for VCN were created using the
manual segmentations. VCN and CarSONwere trained using the
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FIGURE 3 | Qualitative effects of smoothing and anatomical regularization on the accuracy of motion estimates on the MRXCAT dataset. First row shows the

predicted (black) motion estimates when the anatomical regularization is set to 0.5 and smoothing is set to 0. Relative to the ground-truth (red), these estimates are

highly irregular. Increasing (third column) the smoothness to 0.1 and setting anatomical to 0.1 improves the direction of the estimates, but the magnitude is reduced.

This is corrected by increasing anatomical regularization to 0.5 (fourth column).

ED and ES frames of the train set, as only these included ground-
truth segmentations. This provided 200 training samples for
VCN and 3200 for CarSON, the latter having more samples since
it is a 2D architecture and all frames were resampled to a volume
with 16 slices. VCN was tested by five-fold cross-validation,
whereas the accuracy of CarSON was assessed by submitting
the results to the challenge website. Once CarSON was trained,
we generated segmentations of the test set to train CarMEN
using the entire ACDC dataset, i.e., 100 subjects from the train
set with manual segmentations and 50 from the test set with
CarSON-predicted segmentations. Only the ED-ED and ED-ES
pairs were used for training. The former pair is useful for the
network to learn the identity transformation. Data augmentation
included random rotations and translations, random mirroring
along the x and y axes, and gamma contrast correction. All data
augmentation was performed only in the x-y plane.

Evaluation Metrics
Segmentation and Motion Estimation
The CarSON-predicted and manual segmentations were
compared using the Hausdorff distance (HD) and Dice Similarity

Coefficient (DSC) metrics at both ED and ES. Accuracy of LV
volumetric measures derived from segmentations, including ED
volume (EDV), EF, and LVM, was assessed using the correlation,
bias, and standard deviation metrics. The mean absolute error
(MAE) for the LV EDV and LVM were also computed for
comparison against the intra- and inter-observer variability
reported by (41). RV labels were not analyzed since they were not
used to assess cardiac function but rather to define the direction
of the septal wall, which is needed to construct the LV strain
polar maps with a normalize orientation between subjects. We
compared our results to top-3 ranked methods published for
the ACDC test set as these appear in the leader-board of the
challenge (18, 20, 21, 39).

CMAC organizers defined 12 landmarks at intersections of
gridded lines on tagging images at ED, one landmark p0 per
wall (septal, inferior, lateral, interior) per ventricular level (basal,
mid, septal). These landmarks were manually-tracked on tagging
images by two observers over the cardiac cycle, and each position
was transformed from tagging to cine coordinates using DICOM
header information. We used the CarMEN motion estimates ut
to automatically deform the landmarks at ED, and the accuracy
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FIGURE 4 | Quantitative effects of regularization on the accuracy of motion and myocardial strain. (A,B) End-point-error on MRXCAT test data with ground-truth

motion for CarMEN with varied (A) anatomical and (B) smoothing regularization parameters. (C,D) Bland-Altman plots of radial and circumferential end-systolic strain

for two different anatomical regularization parameters, and smoothing set to 0.1.

was assessed using the in-plane end-point error (EPE) between
deformed pt

′ = ut ◦ p0 and manually-tracked pt landmarks,
defined by

EPE
(

p, p′
)

=

√

(

px − px′
)2

+
(

py − py′
)2
. (7)

Due to temporal misalignment between the tagging and cine
acquisitions, EPE was evaluated only at ES (t = tES). Specifically,
let pij(t) denote the manually-tracked landmarks of subject i at
frame t by observer j. The accuracy of CarMEN was assessed
using the average EPE

AEPE =
1

2n

n
∑

i=1

2
∑

j=1

EPE(pij (tES) , ui(tES) ◦ p0). (8)

Our results were compared to those reported by the four groups
that responded to the challenge (42), MEVIS (46), IUCL (9), UPF
(11), and INRIA (12, 47). All groups submitted tagging-based
motion estimates, but only UPF and INRIA provided estimates
based on cine-MRI.

Strain Validation and Intra-Scanner Repeatability
The tagging-MRImethod with the lowest AEPE at ES was used as
the reference for strain analysis. The tagging-MRI-based motion
estimates were registered and resampled to the cine-MRI space.

Global strain and SR values throughout the entire cardiac cycle
were derived from the resampled estimates as described in (48).
Global- and regional-based analyses were performed to assess the
repeatability of measures from two acquisitions. Relative changes
(RC) and absolute relative changes (aRC) were calculated, taking
the first acquisition as the reference. ESS and SR were calculated
for the global-based analysis, and for region-based analyses, ESS
values were normalized using the AHA polar map, and both
RC and aRC were evaluated for each of the segments in the
polar map.

Statistics
For validation, Bland-Altman analysis was used to quantify
agreement between predicted and tagging strain measures. We
used the term bias to denote the mean difference and the term
precision to denote the standard deviation of the differences,
the latter computed with 1-degree of freedom. Differences were
also assessed using a paired t-test with Bonferroni correction for
multiple comparisons. For global- and regional-based analyses
of strain intra-scanner repeatability, ICC estimates and their
95% confidence intervals (CI) were calculated based on a single-
rating, absolute agreement, 2-way mixed-effects model. Analyses
were performed on Python v3.4 with the statistical pingouin
module (49).
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TABLE 1 | State-of-the-art methods for left-ventricular segmentation shown at end-diastole (ED) and end-systole (ES) on the ACDC test set compared to proposed

approach.

Left-ventricle label Dice similarity

coefficient

Hausdorff distance Ejection fraction End-diastolic volume

ED ES ED ES Corr. bias ± std Corr. bias ± std

val. val. mm mm val. % % val. mL mL

* CarSON 0.967 0.929 5.656 7.676 0.990 0.252 3.183 0.996 0.762 6.672

1 Dong et al. (17) 0.967 0.928 6.366 7.573 0.993 −0.360 2.689 0.998 2.032 4.611

2 Simantiris and Tziritas (18) 0.967 0.928 5.476 6.921 0.991 0.490 2.965 0.997 1.530 5.736

3 Isensee et al. (19) 0.964 0.912 6.180 8.386 0.990 −0.476 3.114 0.997 3.746 5.146

Myocardium label Dice similarity

coefficient

Hausdorff distance Left-ventricular mass End-systolic volume

ED ES ED ES Corr. bias ± std Corr. bias ± std

val. val. mm mm val. g g val. mL mL

* CarSON 0.898 0.913 8.128 9.189 0.981 1.405 10.32 0.985 1.152 9.391

1 Dong et al. (17) 0.904 0.923 7.014 7.328 0.987 −2.547 8.28 0.988 −1.984 8.335

2 Simantiris and Tziritas (18) 0.891 0.904 8.264 9.575 0.992 −2.904 6.46 0.983 −2.134 10.11

3 Zotti et al. (20) 0.873 0.895 8.197 8.318 0.989 −2.1 7.91 0.988 −1.79 8.575

Red are the best results for each metric. *Proposed segmentation method.

RESULTS

Segmentation and Motion Estimation
Centering, segmentation, and motion estimation for an entire
cardiac cycle (∼25 frames) was accomplished in<13 s on a 12GB
GPU and <2.2min on a 32 GB RAM CPU. VCN located the LV
center of mass with a median error of 1.3 mm.

Training with a MDC loss function resulted in
slightly more accurate segmentations compared to CCE
(Supplementary Table 2), therefore the MDC-trained model
was used for all remaining analyses. With this model, correlation
of CarSON and manual LV volumetric measures was >0.98
across all measures (Table 1), and biases in EF (+0.25 ± 3.2%),
ED (+0.76 ± 6.7mL), and ES (+0.19 ± 5.8mL) volumes, and
mass (+1.4 ± 10.3 g) were not significant. Further, these biases
were smaller than those obtained with other methods, which
were positive for LV EDV (1.5–3.7mL), negative for LVM (−2.1
to −2.9 g), and close to zero (±0.5%) for EF. Simantiris et al.
(18) obtained the best precision for LV EF (2.7 vs. 3.2% variance
with CarSON), EDV (4.6 vs. 6.7mm), and LVM (6.5 vs. 10.3 g).
Isensee et al. (39) obtained the best results on geometric metrics,
i.e., lower HD for the LV (ED 5.5 vs. 5.7mm; ES 6.9 vs. 7.7mm)
and LVM (7.0 vs. 8.1mm; 7.3 vs. 9.2mm), and higher DSC for
the LVM (0.904 vs. 0.898; 0.923 vs. 0.913). The DSC for the LV
was similar for all methods (∼0.967, ∼0.929). MAE for the LV
EDV and LVM were 5.3± 4.1mL and 6.8± 6.5 g.

Figure 5A illustrates a representative example of the tagging
and cine images from a CMAC subject. Landmarks defined
at ED were deformed to ES using the CarMEN estimates
and compared to manual tracking. Banding artifacts on
cine images showed no clear effect on derived motion
estimates or landmark deformation, as shown in ES (Figure 5A,

yellow arrow) or throughout the whole cardiac cycle (see
Supplementary Video 1). The manual tracking inter-observer
variability was 0.86mm (Figure 5B, dotted line). Within cine-
based techniques, CarMEN (2.89 ± 1.52mm) and UPF (2.94 ±

1.64mm) had lower (p < 0.001) AEPE relative to INRIA (3.78
± 2.08mm), but there was no significant difference between
CarMEN and UPF. All tagging-based methods had lower AEPE
compared to cine approaches, particularly MEVIS (1.58 ±

1.45mm). Finally, we evaluated the AEPE of the motion vectors
in 10 synthetic datasets to compare our results against our
previous CarMEN implementation. The AEPE was 1.6± 0.1mm
(1.1 ± 0.4 pixels) at ED, 2.1 ± 0.1mm (1.33 ± 0.03 pixels) at ES,
and 1.8± 0.2mm (1.20± 0.2 pixels) combined.

Strain Analysis
Table 2 shows the normal ranges (mean [95% CI]) of strain
derived from cine-MRI data for all healthy subjects, including
subjects from the training, validation, and repeatability cohorts.
Across datasets, DeepStrain generated values with narrow CI
of ESS (circumferential: 1.1%, radial: 2.5%), SRs (0.13 s−1, 0.19
s−1), and SRe (0.14 s−1, 0.26 s−1). Specifically, circumferential
and radial values across datasets were: −16.9% [−17.4 −16.3]
and 23.2% [22 24.4] for ESS, −1.1 s−1 [−1.2 −1.1] and
1.4 s−1 [1.3 1.5] for SRs, and 0.80 s−1 [0.73 0.86] and
−1.5 s−1 [−1.6 −1.3] for SRe, accordingly. These values
were similar to tagging-based ones, although circumferential
SRe from cine-MRI data was lower, mostly in the train
set (0.7± 0.2 s−1).

Comparison of tagging- and cine-based strain measures with
matched subjects showed an overall agreement in timing and
magnitude of strain and SR throughout the cardiac cycle,
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FIGURE 5 | Validation of motion and strain using the CMAC dataset. (A) Landmarks at end-diastole (unfilled green) are manually-tracked (green) and deformed with

CarMEN to end systole (red). Yellow arrow indicates a banding artifact. (B) Average end-point-error (AEPE) at end-systole between manual and CarMEN-deformed

landmarks was assessed and compared to other methods. (C) MEVIS- (green) and DeepStrain-based (red) strain (top) and strain rate (SR, bottom) measures are

compared.

TABLE 2 | Normal ranges of strain with DeepStrain in healthy subjects.

ACDC (n = 20) CMAC (n = 15) MARTINOS (n = 10) COMBINED (n = 45)

Cine Tagging vs. Cine Cine ACQ 1 vs. ACQ 2 Cine

End-systolic strain (%)

Circumferential −17.8 (1.6) −14.2 (2.2) −15.3 (1.5) −17.3 (0.7) −17.5 (0.9) −16.9 [−17.4 −16.3]

Radial 24.5 (2.9) 18.4 (5.1) 19.7 (3.4) 25.9 (3.4) 25.7 (4.1) 23.2 [22.0 24.4]

Systolic strain rate (s−1)

Circumferential −1.1 (0.2) −0.9 (0.1) −1.2 (0.2) −1.0 (0.2) −1.0 (0.2) −1.1 [−1.2 −1.1]

Radial 1.3 (0.4) 1.0 (0.2) 1.3 (0.2) 1.7 (0.3) 1.6 (0.3) 1.4 [1.3 1.5]

Early-diastolic strain rate (s−1)

Circumferential 0.7 (0.2) 1.2 (0.2) 0.8 (0.1) 1.0 (0.2) 1.0 (0.2) 0.80 [0.73 0.86]

Radial −1.4 (0.5) −1.2 (0.5) −1.4 (0.3) −1.8 (0.3) −1.7 (0.4) −1.5 [−1.6 −1.3]

Tagging-based measures are shown for the CMAC cohort. DeepStrain repeatability is shown for two acquisitions (ACQ). MEVIS was used to calculate tagging measures. Data are

presented as mean (standard deviation), and as mean [95% confidence interval] for all three datasets combined.

although there were visual differences in peak SR parameters
(Figure 5C). Visual inspection of image artifacts on cine
data showed no evidence that these artifacts affected strain
values derived with DeepStrain (Supplementary Figure 1).
Quantitative comparisons of tagging- and cine-based measures
showed biases in circumferential ESS (−14.2 ± 2.2 vs. −15.3
± 1.5%; bias −1.17 ± 2.93%), radial ESS (18.4 ± 5.1 vs. 19.7
± 3.4%; +1.26 ± 5.37%), and SRe (−1.2 ± 0.5 vs. −1.4 ±

0.3; −0.21 ± 0.52 s−1) were not significantly different from
zero (Supplementary Figure 2). However, there were larger
differences (p < 0.01) in radial SRs (1.0 ± 0.2 vs. 1.3 ± 0.2 s−1;

0.32 ± 0.34 s−1), and circumferential SRs (−0.9 ± 0.1 vs. −1.2
± 0.2 s−1; 0.30 ± 0.22 s−1) and SRe (1.2 ± 0.2 vs. 0.8 ± 0.1 s−1;
0.40± 0.23 s−1).

Global strain time series derived from repeated acquisitions
are shown in Figure 6A. The overall bias in circumferential
and radial ESS were 0.17 and −0.16%, accordantly. Average
RC between parameters was less than ±1% for ESS and less
than ±5% for peak SR (Table 3). Average aRC was ∼5% for
ESS (circumferential: 3.0 ± 2.0%; radial: 5.1 ± 5.8%), ∼8% for
SRs (8.0 ± 6.8%; 7.7 ± 4.0%), and ∼10% for SRe (10.2 ±

7.8%; 9.2 ± 8.6%). Mean ICC values showed repeatability was
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FIGURE 6 | Intra-scanner repeatability of global and regional myocardial strain measures on the MARTINOS dataset. (A) Circumferential (CIRC) and radial (RAD) strain

and strain rate (SR) curves across time derived from two different acquisitions (ACQ). Four representative healthy subjects are shown, including the correspond cine

images used for analyses. (B) Polar maps for all subjects were used to evaluate the relative change and absolute relative change across polar map segments. Circles

represent peak systolic and early-diastolic strain values. Stars represent peak late-diastolic strain values.

TABLE 3 | Intra-scanner repeatability of global circumferential and radial

end-systolic strain (ESS) measures.

Measure RC (%) aRC (%) ICC [95% CI] LoA

Circumferential ESS 1.0 (3.6) 3.0 (2.0) 0.75 [0.22–0.92] [−1.36 1.02%]

Radial ESS −0.9 (7.9) 5.1 (5.8) 0.90 [0.64–0.97] [−3.03 3.36%]

Circumferential SRs 0.8 (10.8) 8.0 (6.8) 0.77 [0.31–0.94] [−0.23 0.22 s−1]

Radial SRs −4.9 (7.4) 7.7 (4.0) 0.91 [0.67–0.98] [−0.15 0.34 s−1]

Circumferential SRe 2.5 (13.0) 10.2 (7.8) 0.83 [0.47–0.96] [−0.26 0.22 s−1]

Radial SRe −2.5 (12.7) 9.2 (8.6) 0.84 [0.50–0.96] [−0.32 0.41 s−1]

good to excellent for ESS (0.75; 0.90), SRs (0.77, 0.91), and SRe
(0.83, 0.84). The limits-of-agreement (LoA), which defines the
interval where to find the expected differences in 95% of the
cases assuming normally distributed data, were ∼2 and ∼6% for
circumferential and radial ESS, and ∼0.5 s−1 for SR measures.
Average RC and aRC across regional segments were within ±2%
for circumferential and ±5% for radial ESS, except in anterior
segments (±8%) radially (Figure 6B). Regional mean ICC values
showed good to excellent repeatability across all segments, except
circumferentially near inferoseptal, inferior, and inferolateral
walls were repeatability was moderate (Supplementary Table 3).
LoAs showed that 95% of differences occurred within ∼5 and
∼10% intervals for circumferential and radial ESS.

Evaluation in Patients With Cardiovascular
Disease
Regional measures of ESS averaged over patient population
(Supplementary Figure 3), as well as global values of strain and
SR across the cardiac cycle (Figure 7) for all 100 subjects in
the ACDC train set showed progressive decline in strain values

starting with HCM, followed by ARV, MI, and DCM. Specifically,
relative to the healthy group, radial ESS was reduced in all
patient populations. Radial systolic and early-diastolic SR were
also reduced in all patient groups, except for systolic SR in HCM.
Figure 8 shows both the cine-MRI image and the circumferential
ESS polar map of a healthy subject and two patients with MI.
Strain values in the healthy polar map have a homogeneous
distribution. In contrast, in one MI patient the map indicates
a diffused reduction, and inspection of the myocardium on the
cine-MRI image shows an anteroseptal infarct that coincides
in location with segments with more prominent decreases in
strain. In a different MI patient with an infarct located in a
similar septal region, strain changes are focal and localized to the
anteroseptal wall.

DISCUSSION

In this study we developed a fast DL framework for strain
analysis based on cine-MRI data that does not make assumptions
about the underlying physiology, and we benchmarked its
segmentation, motion, and strain estimation components against
the state-of-the-art. We compared our segmentations to other
DL methods, motion estimates to other non-learning techniques,
and strain measures to a reference tagging-MRI technique. We
also presented the intra-scanner repeatability of DeepStrain-
based global and regional strain measures, and showed that these
measures were robust to image artifacts in some cases. Global
and regional applications were also presented to demonstrate the
potential clinical utilization of our approach. Our work is the first
to report within a single study the characterization, validation,
and repeatability of a learning-based method for strain analysis.
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FIGURE 7 | Strain measures on the ACDC train set. Radial strain (Left) and strain rate (Right) across time is shown for healthy subjects and patients with

hypertrophic cardiomyopathy (HCM), abnormal right ventricle (ARV), myocardial infarction (MI), and dilated cardiomyopathy (DCM).

FIGURE 8 | Regional Strain: Diffused vs. focal abnormalities. Anatomical (top) and regional (bottom) circumferential end-systolic strain (ESS) for healthy and MI

subjects. (A) Healthy strain is homogenously distributed. (B) MI subject shows diffused strain reduction with an MI in the anteroseptal region. (C) Different MI subject

shows a focal decrease in the anteroseptal region co-localized with the infarcted region (red arrows). MI, myocardial infarction.

Volumetric Measures
Segmentation from MRI data is a task particularly well-suited
for CNNs given the excellent soft-tissue contrast, thus all top

performing methods on the ACDC test set were based on
DL approaches. Isensee et al. (39) had remarkable success
on geometric metrics, but this and other approaches result
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in a systematic overestimation of the LV EDV and thus
underestimation of LVM. In contrast, CarSON generated less
biased measures of LV volumes and mass, which were not
significant. Although Simantiris and Tziritas (18) obtained the
most precise measures, possibly due to their extensive use
of augmentation using image intensity transformations, across
methods the precision of EF was within the ∼3–5% (50) needed
when it is used as an index of LV function in clinical trials (51).
Lastly, we showed that the error in our measures of LV EDV
and LVM was almost half the inter-observer (∼10.6mL, 12.0 g),
and comparable to the intra-observer (∼4.6mL, 6.2 g) MAE
reported in (41), but further investigations are required to assess
the performance on more heterogeneous populations. Lastly,
CarSON tends to perform better on DSC metrics compared to
HD. This is mainly due to inclusion or exclusion of myocardium
labels in most basal slides as described by Bernard et al. (41).
However, the smoothing penalty used to train CarMEN reduces
the impact on strain estimates by promoting smooth motion
values across the myocardial tissue.

Strain Validation
The application of myocardial strain to quantify abnormal
deformation in disease requires accurate definition of normal
ranges. However, previously reported normal ranges vary largely
between modalities and techniques, particularly for radial ESS
(4). In this study we showed DeepStrain generated strain
measures with narrow CI in healthy subjects from across
three different datasets. Although direct comparison with the
literature is difficult due to differences in the datasets, overall our
strain measures agreed with several reported results. Specifically,
circumferential strain is in agreement with studies in healthy
participants based on tagging (−16.6%, n = 129) and speckle
tracking echocardiography (−18%, n = 265) datasets (52, 53), as
well a recently proposed (−16.7% basal, n = 386) tagging-based
DL method (48). Our radial strain values are in agreement with
some tagging-based studies (26.5%, n = 129; 23.8% basal, n =

386) (48, 52), but are lower than most reported values (4). This
is a result of smoothing regularization used during training to
prevent overfitting. However, lowering the regularization without
increasing the size of the training set would lead to increased EPE
and wider CI. SR measures derived with DeepStrain were also in
good agreement with previous tagging-based studies (52).

The CMAC dataset enabled us to compare our results to non-
learning methods using a common dataset. We found that AEPE
at ES was lower with tagging-based techniques, reflecting the
advantage of estimating cardiac motion from a grid of intrinsic
tissue markers (i.e., grid tagging lines). Further, the tagging
techniques also benefited from the fact that landmarks were
placed near the center of the myocardial wall borders, whereas
motion estimation from tagging data at the myocardial walls
and in thin-walled regions of the LV is less accurate due to the
spatial resolution of the tagging grid (4). In addition, some of
the tagging-MRI images did not enclose the whole myocardium
and some contained imaging artifacts, which resulted in strain
artifacts toward the end of the cardiac cycle. Nevertheless,
MEVIS-based motion estimates achieved the lowest AEPE at ES
and thus represent a reliable reference for end-systolic strain

measures. This performance could be a result of their image
term (4) that penalizes phase shifts in the Fourier domain
instead of intensity values, an approach that is less affected
by desaturation. The UPF approach also achieved a low AEPE
using multimodal integration and 4D tracking to leverage the
strengths of both modalities and improve temporal consistency
(11). Specific differences in motion and strain measures between
MEVIS and other techniques were thoroughly discussed by
Tobon-Gomez et al. (42).

Using MEVIS as the tagging reference standard, we found no
significant differences in measures of circumferential of radial
and ESS. Validation studies have shown similar [±1%, (54–56)]
or worse [±11% for radial, (55)] biases between cine feature
tracking and tagging strain. However, these methods required
manual contouring by an expert, whereas our method is fully-
automatic. We found significant differences in SR measures
between the two techniques that could be due to drift errors
in the MEVIS implementation, i.e., errors that accumulate in
sequential implementations in which motion is estimated frame-
by-frame (42).

The AEPE on the synthetic dataset of 1.20 pixels was lower
than our previously reported 1.7 pixels, which is expected as
our previous implementation was not anatomically constrained.
Although we did not observe considerable improvements in
AEPE compared to tagging- and cine-based methods, an
important advantage of our learning-based approach is the
reduced computational complexity (∼13 s in GPU) relative to
the proposed MEVIS (1–2 h), IUCL (3–6 h), UPF (6 h), and
INRIA (5 h) approaches (42). Specifically, because once trained
our network does not optimize for a specific test subject (i.e.,
it does not iterate on the cine-data to generate the desired
output), centering, segmentation, and motion estimation for the
entire cardiac cycle can be accomplished much faster (<2min in
CPU). In addition, DeepStrain was trained on a relatively small
dataset and was evaluated on data from different institutions and
vendors, therefore its accuracy relative to non-learning methods
could substantially improve through training with larger cohorts
or application of data shift correction strategies. Furthermore, a
joint optimization of segmentation andmotion estimation CNNs
could potentially improve the robustness of the workflow to
undersampled data (24).

Strain Repeatability
In this study we also evaluated the intra-scanner repeatability
of strain measures in 10 healthy subjects, an important aspect
to consider when assessing the potential clinical utility of
DeepStrain. Confidence intervals in circumferential and radial
ESS were 0 ± 1% and 0 ± 3%, better than the intra-observer
variability reported using feature tracking in 10 healthy adults
(57). A more recent study in 100 healthy individuals reported
intra- and inter-observer repeatability for circumferential (ICC
intra: 0.88, ICC inter: 0.88) and radial ESS (0.82, 0.79), which
were comparable to our results for circumferential ESS (0.75) and
radial ESS (0.90) using only 10 subjects. Finally, our repeatability
of SR measures was good to excellent, similar to that reported for
healthy (n = 20) and patient (n = 60) populations (58). Thus,
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without requiring expert operators, DeepStrain achieved better
or equal repeatability compared to feature tracking methods.

Potential Clinical Applications
DeepStrain could be applied in a wide range of clinical
applications, e.g., automated extraction of imaging phenotypes
from large-scale databases (59). Such phenotypes include global
and regional strain, which are important measures in the
setting of existing dysfunction with preserved EF (3). DeepStrain
generatedmeasures of global strain and SR over the entire cardiac
cycle from a cohort of 100 subjects in <2min. These results
showed that radial SRe was reduced in patients with HCM and
ARV, despite having a normal or increased LV EF. Decreased
SRe with normal EF is suggestive of subclinical LV diastolic
dysfunction, which is in agreement with previous findings (60,
61). Our results also showed DeepStrain-based maps could be
used to characterize regional differences between groups.

At an individual level, we showed that in MI patients,
polar segments with decreased circumferential strain matched
myocardial regions with infarcted tissue. Further, we showed that
the changes in regional strain due to MI can be both diffuse
and focal. These abnormalities could be used to discriminate
dysfunctional from functional myocardium (62), or as inputs
for downstream classification algorithms (63). More generally,
DeepStrain could be used to extract interpretable features
(e.g., strain and SR) for DL diagnostic algorithms (64), which
would make understanding of the pathophysiological basis of
classification more attainable (65).

Study Limitations
A limitation of our study was the absence of important
patient information (e.g., age), which would be needed for a
more complete interpretation of our strain analysis results, for
example to assess the differences in strain values found between
the healthy subjects from the ACDC and CMAC datasets.
Nevertheless, using publicly available data enables the scientific
community to more easily reproduce our findings, and compare
our results to other techniques. Another limitation was the
absence of longitudinal analyses, i.e., longitudinal strain was
not reported because it is normally derived from long-axis
cine-MRI data not available in the training dataset. The size
of the datasets is another potential limitation. The number of
patients used for training is much smaller than the number
of trainable parameters, potentially resulting in some degree of
overfitting. To correct this, the training set for motion estimation
could be expanded by validating the proposed segmentation
network on more heterogeneous populations. The use of strain
minimization deviation as a training heuristic also serves as
a learning constrain but has not been validated, and could
potentially prevent identification of subtle disease due to loss
of sensitivity to abnormal strain. While our repeatability results
were promising despite testing in only a small number of
subjects, repeatability in patient populations was not shown.
Further, reproducibility across sites and vendors was not assessed.
In addition, the accuracy of the motion estimates on patient
populations with regional dysfunction was not assessed, and we

did not quantify the effect of dataset shift errors that might occur
when applying our method to new datasets.

Conclusion
We developed an end-to-end learning-based workflow for
strain analysis that is fast, operator-independent, and leverages
real-world data instead of making explicit assumptions about
myocardial tissue properties or geometry. This approach enabled
us to derive strain measures from new data that were repeatable,
and comparable to those derive from dedicated tagging data.
These technical and practical attributes position DeepStrain as
an excellent candidate for use in routine clinical studies or data-
driven research.
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