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Advances in the field of regenerative medicine and tissue engineering over the past few

decades have paved the path for cell-free therapy. Numerous stem cell types, including

mesenchymal stem cells (MSCs), have been reported to impart therapeutic effects via

paracrine secretion of exosomes. The underlying factors and the associatedmechanisms

contributing to these MSC-derived exosomes’ protective effects are, however, poorly

understood, limiting their application in the clinic. The exosomes exhibit a diversified

repertoire of functional non-coding RNAs (ncRNAs) and have the potential to transfer

these biologically active transcripts to the recipient cells, where they are found to

modulate a diverse array of functions. Altered expression of the ncRNAs in the exosomes

has been linked with the regenerative potential and development of various diseases,

including cardiac, neurological, skeletal, and cancer. Also, modulating the expression

of ncRNAs in these exosomes has been found to improve their therapeutic impact.

Moreover, many of these ncRNAs are expressed explicitly in the MSC-derived exosomes,

making them ideal candidates for regenerative medicine, including tissue engineering

research. In this review, we detail the recent advances in regenerative medicine and

summarize the evidence supporting the altered expression of the ncRNA repertoire

specific to MSCs under different degenerative diseases. We also discuss the therapeutic

role of these ncRNA for the prevention of these various degenerative diseases and their

future in translational medicine.
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INTRODUCTION

Over the past several decades, incidences of damage, failure, dysfunction of multiple tissues and
organs have reached epidemic proportions (1–3). However, scarcity of donors, limited availability
of autologous tissues, risk of chronic tissue rejection, lack of a cost-effective therapeutic strategy,
and the overall financial burden of caring for affected individuals present challenges in developing
advanced therapeutic options (4–9).

The advent of regenerative medicine has provided immense hope to the primary researcher
and clinician to use stem cells with a determined aim of rejuvenating the damaged tissues and
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organs (10–12). Numerous animal models have been used
to test stem cell types (e.g., embryonic, induced, and adult)
over the past years for autologous and allogeneic therapies
(13–16). Although having a relatively limited differentiation
potential in comparison to the embryonic stem cells (ESCs)
and induced pluripotent stem cells (iPSCs), the combination
of factors like autologous cell therapy, reduced possibility
of teratoma formation, immunological intolerance, xenogeneic
contaminations, lack of ethical concern, and the reduced
financial burden have made mesenchymal stem cells (MSCs), an
ideal choice for the regenerative cell therapy (17–21). Despite
the promising therapeutic potential of MSCs in regenerative
medicine, few of the critical questions, such as what are the
precise molecular mechanisms responsible for providing the
host’s immune tolerance against MSCs, is the clinical application
of MSCs safe, and how can we increase the scalability and yield
per batch, remain unanswered and have imposed significant
challenges in their clinical translation, prompting researchers to
explore alternative tissue regeneration approaches.

Recent studies propose that MSCs profoundly manifest their
action by the paracrine secretion of extracellular vesicles (EVs),
particularly exosomes (22–25). The unique potential of these
MSCs-derived exosomes (MSCs-Exos) to recapitulate the stem
cell properties have paved the path for a “cell-free” therapy
in the field of regenerative medicine. Furthermore, in recent
years, it has been substantially demonstrated that MSCs-Exos
cargo is enriched in distinct ncRNAs, specially-microRNAs
(miRNAs), long non-coding RNAs (lncRNAs), circular RNAs
(circRNAs), and Piwi-interacting RNA (piRNAs), mediating
tissue communication, modifying cellular phenotype, regulating
wide range of biological, pathophysiological processes making
them a relevant drug delivery and therapeutic option in the field
of regenerative medicine (26–30).

In the current review article, we aim to summarize the
emerging role of MSCs-Exos-derived ncRNAs (MSCs-Exos
ncRNAs) in regenerative medicine and diseases. We further
emphasize the regulatory mechanisms, therapeutic approaches,
ongoing clinical applications, and the challenges associated with
MSCs-Exos ncRNAs in the field of regenerative medicine and
tissue engineering.

MSC-Exo’S BIOGENESIS

MSCs are stromal, nonhematopoietic cells generally obtained
from different sources including bone marrow, adipose tissue,
umbilical cord, placenta, amniotic fluid, and dental pulp (31–37).
The characterization of the MSCs depends upon the expression
of specific cell surface markers (CD29, CD37, CD73, CD90,
CD102, CD105, and CD166) and their potential to differentiate
into multiple cell types such as osteocytes, chondrocytes, and
adipocytes under appropriate, stimulating culture conditions
(38–43). Recent clinical and preclinical trials have demonstrated
the potential of MSCs to be an excellent autologous cell
source treating numerous diseases including diabetes, myocardial
infarction, osteoarthritis, Alzheimer’s, both in animal models
and patients (44–49). Although MSCs-based therapy has proven

beneficial in treating a wide range of diseases, we still have
incomplete knowledge regarding their mechanism of action.
Emerging studies in recent years have found that MSCs mediate
their action via the paracrine secretion of exosomes (Figure 1),
regulating numerous biological processes (50).

Exosomes are membrane-enclosed spherical or cup shaped
endocytic vesicles with a size ranging from 40 to 150 nm formed
intracellularly in the cellular multivesicular bodies and released
from numerous cell types (51–53).

Exosome biogenesis occurs via three pathways: ESCRT-
dependent, ESCRT independent, or direct budding of the plasma
membrane. In the first two pathways, an early endosome is
formed by the inward budding of the endosomal membrane
to generate intraluminal vesicles (ILVs). These ILVs accumulate
to form multivesicular bodies (MVBs), which fuse with the
plasma membrane (facilitated by Rab GTPases). The ILVs are
then released from cells as exosomes, where they are taken up
by recipient cells via endocytosis, direct binding, or ligand-
receptor binding. The Endosomal Sorting Complexes Required
for Transport (ESCRT) includes four distinct proteins: ESCRT 0,
I, II, and III. Briefly, ESCRT 0 relegates ubiquitinated proteins
within the endosomal membrane and recruits ESCRT I and
II. ESCRT I and II bind near ubiquitinated proteins on the
outer surface of the endosomal membrane, “tagging” them
for recruitment within newly forming intraluminal vesicles
in the MVB. ESCRT III then sequesters MVB proteins,
finalizing the process of exosome formation. Exosome biogenesis
via the ESCRT-independent pathway was discovered recently
after knock-out studies involving the ESCRT complex proteins
showed that the cells could continue the process of exosome
formation and release. This pathway involves lipids such as
sphingolipids and ceramides and proteins such as heat shock
proteins and tetraspanins (54–56). Why these distinct pathways
exist, and which pathway is used in cells is still poorly understood.
Investigators have used different approaches to increase the
angiogenic potential of exosomes released by the stem cells
(57). The release of exosome can be considerably increased in
vitro using stress conditions that mimic organ injuries, such as
hypoxia, irradiation, or drug treatments.

The MSC-Exos have been tested widely on human patients of
ischemic heart injury, cerebrovascular disease, and liver fibrosis
as an alternative to MSCs themselves (58–61). Intriguingly,
numerous advantages over MSCs such as increased viability,
higher uptake, lower immune response, reduced risk of
embolism, and potential to cross the blood-brain barrier have
made MSC-Exos a promising candidate emerging as an effective
“cell-free” therapeutic approach in the field of regenerative
medicine (22, 62–64).

In recent years, considerable amounts of research depict
MSCs-Exos ability to facilitate the exchange of genetic and
epigenetic information intercellularly leading to the modulation
of neighboring and distant cells’ gene expression in both healthy
and disease states (65). Preclinical data further demonstrate that
the acquired repertoire of biological cargo, primarily ncRNAs of
MSC-Exos, has been found to effectively disseminate biological
information between cells and regulate the inflammatory
apoptotic pathways in various and disease states (64, 66).
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FIGURE 1 | MSCs derived exosomes and their interaction with the neighboring cells. The MSCs have the potential to modulate numerous biological processes of

numerous cell types in their vicinity via paracrine secretion of exosomes.

In the next section, we represent the overview of
ncRNAs from the MSC-Exos in context of regenerative
medicine. We also discuss their role as diagnostic
and therapeutic targets for regenerative medicine and
tissue engineering.

OVERVIEW OF MSC-Exo-ncRNA

In the past two decades, advancements in high throughput
sequencing technologies and computational approaches have
successfully captured and annotated the transcriptome revealing
the non-coding transcripts and their functionality in the human
genome (67, 68). The extensive information from these in-
depth analyses demonstrates the genome complexity, with <2%
of the genome encoding than a large percentage (98%) being
transcribed into heterogeneous ncRNAs transcripts (69).

The ncRNAs comprises of a diversified repertoire of
endogenous RNA transcripts including short and long (<200
nucleotides) ncRNAs with no protein-coding potential (70,
71). Initially, the ncRNAs were considered as transcriptional
junk having no biological function; however, in recent years,
numerous studies have depicted the regulatory function of
ncRNAs modulating the expression of genes involved in critical
biological processes (72). Moreover, the dysregulated expression
signatures of ncRNAs are found to be contributing toward
the pathogenesis of various diseases by diverse mechanisms
(Figure 2) (73–77).

The MSCs are active sources of exosomes with enriched
cargo, including lipids, DNA, RNAs (mRNAs,miRNAs, lncRNAs,
circRNAs, and piRNAs) proteins. MSC-Exos are also being

explored as viable biomarker in diseases. Their cargo of non-
coding RNA (ncRNA), including lncRNA and miRNA, is being
studied for their role as potential therapeutic strategies in
regenerative medicine (Table 1).

ROLE OF MSC-Exo-ncRNA IN
REGENERATIVE MEDICINE

Bone Regeneration
The regeneration of bone is a dynamic and complicated
process that requires the coordination of numerous cell types
and biological events such as ossification, osteoinduction, and
osteogenesis. In addition to the above-mentioned biological
events, series of signaling pathways associated with angiogenesis,
proliferation, migration, remodeling, inflammation, and necrosis
further play a critical role at the site of bone injury.
Bone’s inability to regenerate successfully results from the
failure in the orchestration of the above-mentioned biological
processes and signaling pathways. Bone regeneration failure
is one of the significant health problems affecting millions
of people worldwide, requiring immediate approaches to
improve bone healing. In recent years, studies in regenerative
medicine have shown the MSC’s potential in promoting bone
regeneration through paracrine mechanisms, mainly mediated
by exosomes (98–101). The mechanisms governing the beneficial
role of MSC-Exos in context to bone regeneration remain,
however, elusive.

Current studies have shown that the exosomes from a
different source of MSCsmediate ncRNA transport to the injured
site to regulate successive biological processes enhancing bone
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FIGURE 2 | Role of non-coding RNAs in mesenchymal stem cell-derived exosomes in regenerative therapy. Currently, therapies utilizing mesenchymal stem cells

derived exosomes enriched in microRNAs and long non-coding RNAs have been employed to regenerate the damaged cells or tissues.

reconstruction. For example, Liao et al. (78) investigated the role
of bone marrow MSC (BMSCs)-derived exosomes expressing
miR-122-5p on the femoral head’s osteonecrosis (ONFH). The
authors demonstrated that the expression profile of miR-122-5p
was decreased in ONFH, while exosomes carrying miR-122-5p
overexpression effectively attenuated ONFH by downregulating
SPRY2 via the RTK/Ras/mitogen-activated protein kinase
(MAPK) signaling pathway (78). Another study suggested that
decreased expression of miR-224-3p levels in BMSCs-Exos
can attenuate traumatic ONFH by facilitating angiogenesis by
upregulating focal adhesion kinase family interacting protein
(FIP200) in endothelial cells (79). Similarly, exosomal miR-365a-
5p produced by human umbilical cord-derived MSCs (hum-
MSCs) was found to alleviate glucocorticoid (GC)-induced
osteonecrosis of the femoral head (GIONFH) by promoting
osteogenesis via activation of the Hippo signaling pathway in
rats (80). Moreover, in a hind limb unloading (HLU)-disuse
osteoporosis (DOP) rat models, hum-MSC-Exos miR-1263
effectively ameliorated the apoptosis of BMSCs via modulating
the Mob1/Hippo signaling pathway in the prevention of rat
DOP (81).

Interestingly, research efforts have shown that
preconditioning can influence the regenerative efficacy of
MSC-derived Exos. Using an in vivo model of bone fracture,
the authors illustrate that hypoxia preconditioning of MSCs
enhances exosomal miR-126 by activation of hypoxia-inducible
factor 1 α (HIF-1α) and the SPRED1/Ras/Erk signaling pathway.
Additionally, knockdown of HIF-1α resulted in decreased

expression of MSCs-Exos miR-126, abolishing its protective
effect in bone healing (84).

The effects of age on the MSCs-Exos on osteogenic
differentiation, osteogenesis, and fracture healing have also been
investigated. Bone regeneration is often associated with age,
characterized by decreased bone formation due to reduced
osteogenic differentiation. Notably, a negative correlation was
reported in the expression of miR-128-3p derived from MSCs-
Exos and bone regeneration. This in vitro experiment further
reveals that exosomal miR-128-3p can suppress bone healing
by inhibiting the expression of Smad5. Furthermore, reverting
the effect of miR-128-3p using antagomir was found to enhance
the bone recovery process via the increase in Smad5 (83).
Additionally, BMSCs exosomal miR-186 promoted osteogenesis
via MOB Kinase Activator 1A (Mob1)/Hippo signaling pathway
in the ovariectomized (OVX) rats model of postmenopausal
osteoporosis (PMO) (82).

In conclusion, the above research results substantiate that the
beneficial effect of MSC-Exos is mediated by ncRNAs, making
them a potential therapeutic candidate in bone regeneration.

Cartilage Regeneration
In the recent years, the therapeutic roles of exosomes secreted
from MSCs have also been assessed regarding cartilage
regeneration. Interestingly, the exosomal vesicles derived from
MSCs can regulate proliferation, differentiation, and matrix
synthesis, indicating this strategy’s significance in cartilage
regeneration (102, 103). Exosomes’ therapeutic mechanisms
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TABLE 1 | Mesenchymal stem cell-derived exosomes non-coding RNAs in bone regeneration application.

S. no. Damage/injury Tissue source Exosome ncRNAs Key research finding References

1. ONFH BMSCs miR-122-5p Improved ONFH in osteoblasts by downregulating SPRY2 via

RTK/RAS/MAPK pathway

(78)

2. ONFH BMSCs miR-224-3p Lower level of mir-224-3p enhanced angiogenesis in endothelial cells by

upregulating FIP200

(79)

3. GIONFH HUMSCs miR-365a-5p Upregulated miR-365a-5p enhanced osteogenesis and prevented GIONFH

through activation of Hippo signaling pathways in rats

(80)

4. DOP HUMSCs miR-1263 HUMSCs derived exosome mir-1263 reduces apoptosis of BMSCs in rat

DOP via miR-1263/Mob1/Hippo signaling pathway

(81)

5. PMO BMSCs miR-186 Exosome miR-186 derived from BMSCs promoted osteogenesis via

activation of Mob1/Hippo signaling pathway in the ovariectomized (OVX) rat

models of PMO

(82)

6. BF BMSCs miR-128-3p Improved bone healing by inhibiting the expression of miR-128-3p

enhanced the bone recovery via activation of SMAD5

(83)

7. BF BMSCs miR-126 Hypoxia elicited BMSC-EVs improved bone healing through the enrichment

of miR-126

(84)

8. OA hMSCs KLF3-AS1 Promote cartilage repair by sponging miR-206, increasing the expression

GIT-1, further attenuating IL1-β induced apoptosis in chondrocytes

(85)

9. OA IPFP-MSC miR-100-5p Increased cartilage regeneration via application of infrapatellar fat pad MSCs

derived exosomes overexpressing miR-100-5p

(86)

10. OA SMCs-MSC miR-140-5p Administration of human synovial muscle cells mesenchymal stem cell

(SMSCs) exosome overexpressing miR-140-5p increases proliferation and

migration of chondrocytes via Wnt signaling and activation of YAP pathway

(87)

11. OA UMSCs H19 Enhanced chondrocyte migration, matrix secretion, apoptosis suppression,

senescence suppression, through sponging chondrocytes miR-29b-3p,

and upregulating FOXO3 promoting cartilage repair

(88)

12. OA hSMSCs miR-129-5p Improved cartilage regeneration mitigates IL1-β induced inflammation and

apoptosis in chondrocytes via suppression of HMGB1 in chondrocytes

(89)

13. OA hBMSCs miR-26a-5p Enhanced expression of miR-26a-5p alleviates OA pathogenesis via

downregulation of PTGS2 in synovial fibroblasts

(90)

14. MI BMSCs miR-301 Improved cardiac function in post MI rat models mediated by

BMSCs-exosomes expressing miR-301

(91)

15. MI BMSCs miR-185 Administration of miR-185 improved cardiac function, decreased infarct

area via regulating the SOCS2/JAK/STAT signaling pathways

(82)

16. I/R BMSCs miR-125b Administration of exosomes expressing miR-125b decreased inflammation,

apoptosis of myocardial cells by downregulating SIRT7 in myocardial cells

(92)

17. I/R BMSCs miR-125b-5p Hypoxia elicited BMSCs exosomes enriched miR-125b-5p enhanced

cardiac function and infract size in rat model of MI

(93)

18. MI BMSCs NEAT1 The administration of pre-conditioned MSCs derived exosomes having

elevated expression of NEAT lncRNA have cardioprotective effects on

MIF-pretreated exosomes to H2O2-treated cardiomyocytes via modulation

of the NEAT1/miR-142-3p/FOXO1 axis

(94)

19. MCAO/R MSCs miR-133b Administration of miR-133b enriched MSCs exosomes increased neurite

remodeling in the ischemic boundary zone (IBZ)

(95)

20. MCAO/R MSCs miR-542-3p Application of miR542-3p enriched exosomes to MCAO/R mice reduced

the infarct volume, edema, infiltration of inflammatory cells via decreasing

the expression of TLR4 activity

(96)

21. MCAO/R MSCs miR-223-3p The in vivo delivery of ex miR-223-3p decreased production of

proinflammatory cytokines (IL-1β and IL-6) while increasing the production

of the anti-inflammatory cytokine IL-10 and reduced infarct volume

mitigating cerebral injury

(97)

ONFH, Femoral head’s osteonecrosis; GIONFH, Glucocorticoid (GC)-induced osteonecrosis of the femoral head; DOP, Disuse osteoporosis; PMO, Post-menopausal osteoporosis;

BF, Bone fracture; MAPK, Mitogen Activated Protein Kinase; FIP, Family interacting protein; Mob1, Mob Kinase Activator 1; SMAD5, Mothers against decapentaplegic homolog 5;

KLF3-AS1, KLF3 antisense RNA-1; IPFP-MSC, Infrapatellar fat pad-derived mesenchymal stem cell; GIT1, G-protein-coupled receptor kinase interacting protein-1; YAP, Yes-associated

protein; FOXO3, Forkhead box O3; HMGB1, High Mobility Group Box 1; PTGS2, Prostaglandin-endoperoxide synthase 2; MI, Myocardial Infraction; IR, Ischemia Reperfusion; SOCS2,

Suppressor Of Cytokine Signaling 2; JAK, Janus Kinase 1; STAT, signal transducer and activator of transcription; SIRT7, NAD-dependent deacetylase Sirtuin 7; MCAO/R, Middle cerebral

artery occlusion reperfusion.
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through ncRNAs in context to cartilage regeneration have,
however, only more recently begun to be explored. Recent data
suggest that cytokines’ inflammatory effect can be regulated
by the EVs derived from MSCs containing lncRNA. For
instance, the protective effect of exosome lncRNA-KLF3-AS1
derived from hMSCs was investigated in the collagenase-
induced rat model of osteoarthritis (OA) and IL-1β-induced
OA chondrocytes. The lncRNA-KLF3-AS1 could exert a
therapeutic effect by suppressing IL-1β-induced apoptosis
in chondrocytes. In addition, in vivo investigation further
indicated that exosomal KLF3-AS1can promote cartilage repair
and chondrocyte proliferation in a rat model of OA (104).
These outcomes were mediated by sponging the miR-206 and
increasing the expression of G-protein-coupled receptor kinase
interacting protein-1 (GIT1) in the chondrocytes (85).

Interestingly, the application of infrapatellar fat pad (IPFP)
MSCs-derived exosomes (MSCIPFP-Exos) overexpressing miR-
100-5p were reported to diminish cartilage deterioration via
inhibition of the mTOR-autophagy pathway (86). In a rat
model of OA, administration of human synovial muscle cells
mesenchymal stem cells (SMSCs) exosomes overexpressing miR-
140-5p was found to increase the proliferation and migration
of chondrocytes via Wnt signaling and activation of Yes-
associated protein (YAP) in a rat model of OA (87). Similar
results were reported when the SMSCs exosomes expressingmiR-
155-5p showed an anti-apoptotic response in the osteoarthritic
chondrocytes and further promoted proliferation and migration,
enhanced ECM secretion, and effectively prevented OA in a
mouse model (105).

In a separate study, umbilical cord mesenchymal stem
cells (U-MSCs) exosomes attenuated osteochondral damage
via upregulation of lncRNA H19 (88). Further investigation
of the role of U-MSCs exosomes demonstrated their ability
to transfer the lncRNA H19 to chondrocytes. The exosome-
derived lncRNA H19 was notably successful in promoting
chondrocyte migration, matrix secretion, apoptosis suppression,
as well as senescence suppression, both in vitro and in vivo
by acting as a competing endogenous sponge against miR-29b-
3p upregulating FoxO3 (106). To explore the anti-inflammatory
effect of exosomes in OA, it was revealed that human synovial
mesenchymal stem cells (HS-MSCs) exosomes-derived miR-129-
5p could mitigate interleukin-1β (IL-1β)-induced inflammation
and apoptosis in chondrocytes via suppressing the expression of
high mobility group box protein-1 (HMGB1) (89). In another
study on a rat model hBMSCs-derived exosome overexpressing
miR-26a-5p improved OA pathogenesis via downregulating
prostaglandin-endoperoxide synthase 2 (PTGS2) expression in
synovial fibroblast (90). In another work, the authors recently
demonstrated the anti-inflammatory and chondroprotective
effect of hBMSCs-derived exosome miR-26a-5p attenuating OA
via regulation of syndecan-1 (SDC1) (107).

In short, these findings suggest the therapeutic potential of
MSCs-Exos ncRNAs in cartilage regeneration.

Cardiac Regeneration
Mesenchymal stem cells (MSCs) have been studied in great
depth regarding their potential use in regenerative medicine. The

most notable application is the regeneration of cardiac tissue
after myocardial infarct (MI) (108). Cardiomyocyte regenerative
capacity is markedly limited as these cells are not thought to
enter the cell cycle to undergo division. As a result, injured
tissue generally becomes necrotic, and a non-contractile scar
tissue forms, consequently limiting the contractile ability to
neighbor cells. Due to their limited capacity to regenerate,
cardiomyocytes have been the target of recent advents in
regenerative medicine asMSCs have been shown to direct cardiac
tissue reconstruction following MI (109, 110). Previously, it was
suggested that MSCs differentiate into cardiomyocytes and that
this process was responsible for repairing cardiac tissue (111,
112). This hypothesis turned out not to be feasible. However,
there are some cardiac benefits from treatment with stem cells,
including decreased cardiomyocyte apoptosis, reduced fibrosis,
enhanced neovascularization and improved left ventricular
ejection fraction; due to the exosomes released from the stem
cells in situ. Because of this effect exosome therapy recapitulates
the benefits of stem cell therapy (57), and studies have shown
that the activation of cardioprotective pathways obtained by
stem cell therapy can be recapitulated by the administration of
exosomes obtained from the stem cells (113). Moreover, some
studies have demonstrated that exosomes released from cardiac
progenitor cells can improve cardiac function in the damaged
heart (114, 115).

Recent evidence points to MSC-derived exosomal cargo,
including lncRNA and miRNA, which impart these regenerative
effects via paracrine action on nearby cardiomyocytes (27,
116, 117). Following this observation, exosomes have become
desirable therapeutic avenues in regenerative medicine due
to their low immunogenicity, low toxicity, stability, and
cargo durability.

Li et al. (91) discovered that bone marrow-derived MSC
(BM-MSC) exosomes expressing miR-301 protected rat
cardiomyocytes from autophagy following MI and improved
cardiac function in post-MI rat models. Compared to sham rats,
exosome miR-301-treated rats showed higher left ventricular
ejection fractions (LVEF) and left ventricular fractional
shortening (LVFS) as well as decreased left ventricular end
diastolic diameter (LVEDD) and left ventricular end systolic
diameter (LVESD) following myocardial infarct. These variables
are commonly assessed to measure cardiac function. The LC3-
II/LC3-I ratio decreased in exosome miR-301 rat models post
myocardial infarct and p62 expression increased, indicating a
lower level of autophagy compared to sham models (91).

In another study, administration of BM-MSCs exosomes
harboring miR-185 inhibited SOCS2, a member of the SOCS
family, which function as repressors of JAK/STAT signaling.
SOCS2 is a feedback suppressor of the growth hormone/insulin-
like growth factor axis. In mouse models, increased miR-185
decreased the expression of SOCS2 and exosome derived miR-
185 delivered to mice post-MI improved cardiac function,
decreased collagen I and III, and decreased fibronectin while also
decreasing infarct area. Overexpression of SOCS2 reversed the
regenerative effects of miR-185. miR-185 decelerated the rate of
apoptosis in cardiac tissue post-MI with an observed decrease in
BAX expression and increase in Bcl-2 expression (118).
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Similar to the effects seen in miR-301 expressing exosomes,
Chen et al. observed that exosomes harboring miR-125b
increased viability and decreased inflammation and apoptosis of
ischemia/reperfusion injury (I/R) rat model myocardial cells by
downregulating SIRT7 (92). SIRT7 is in the sirtuin family and
functions as a deacetylase to preserve the repressive action of
heterochromatin (119). SIRT7 has also been implicated as an
apoptosis regulator by hyperacetylating p53 in vivo (120).

At the forefront of exosome therapeutic efficacy lie barriers
to mimic the exact clinical condition and specific delivery to
the affected tissue, limiting the therapeutic efficacy and clinical
translation. The pre-conditioning in environments and further
conjugating the exosomes to targeted proteins provides another
route of establishing desirable qualities exosomes which can be
delivered specifically (121, 122).

Recently, Zhu et al. demonstrated a novel mechanism
of conjugating CSTSMLKAC peptide [derived from ischemic
myocardium-targeted (IMT) peptide], interacting with cardiac
troponin 1- to hypoxia-conditioned mouse BM-MSCs (Hypo-
exo). The IMT-conjugated exosomes were specifically targeted to
myocardial tissue and retained in the ischemic left ventricle vs
non-ischemic right ventricle as observed 24 h post-MI. The BM-
MSCs (Hypo-exo) were enriched in anti-apoptotic miR-125b-
5p. Intramyocardial delivery of Hypo-exo reduced infarct size,
improved cardiac function, and significantly decreased apoptosis
in mice with permanent-condition MI. Exosome miR-125b-5p
treated rats showed increased cardiac function and decreased
infarct size compared to control-exosome-treated rats. The
pre-conditioning in environments mimicking cardiac ischemia
as opposed to exogenously incorporating non-coding RNAs
provides another route of establishing desirable qualities inMSC-
derived exosomes (93).

Beyond miRNA cargo, lncRNAs such as NEAT1 have been
implicated in cardio protection as upregulation of NEAT1 has
shown cytoprotective effects in doxorubicin-induced cardiac
injury (94). Interestingly one of the studies reported that NEAT1
sponges miR-142-3p, known to regulate FOXO1 expression in
an inhibitory manner. FOXO1 belongs to the FOXO family
of transcription factors that function to ameliorate oxidative
stress and inflammation and increase expression of antioxidant
enzymes such as superoxide dismutase (SOD) and catalase in
many cell types including cardiac tissue (123).

In another study preconditioning of MSC-derived exosomes
with macrophage migration inhibitory factor (MIF), known
to be upregulated in cardiac tissue following MI, led to
increased levels of NEAT1 lncRNA in pre-conditioned exosomes.
Cardioprotective effects were seen following administration of
MIF-pretreated exosomes to H2O2-treated cardiomyocytes via
modulation of the lncRNA NEAT1/miR-142-3p/FOXO1 axis as
seen with decreased levels of caspases 3/7 and 8, decreased
reactive oxygen species (ROS) production and lipid peroxidation,
and increased SOD expression (124).

Research continues to delve into MSC-derived exosomes’
intricacies as both in vitro and in vivo studies have shown
the cytoprotective affects and regenerative capabilities associated
with exosome-derived ncRNA cargo. There is much to be
learned regarding interactions of exosome-derived ncRNA and

host targets. Importantly, discerning the risks associated with
delivering anti-apoptotic ncRNA and the potential risk of
tumorigenesis of host tissue remains elusive. Targeted exosome
delivery to affected organs continues to be explored as this
remains a barrier to transitioning exosome-derived therapeutics
to clinical settings. It would be interesting to conduct more
randomized controlled trials on larger animals other than
rats/mice. Taken together all the above findings indicates the role
of MSCs-Exos ncRNAs in cardiac regeneration.

NEURODEGENERATIVE DISEASES

Neurodegeneration is a persistent barrier to the effective
recovery of patients following a cerebrovascular accident (CVA)
with ischemic stroke (IS). According to the American Heart
Association, IS has become the fifth leading cause of death
in the United States (125). A blockage in the cerebral arteries
characterizes ischemic stroke, predominantly occurring in the
middle cerebral artery (MCA), which subsequently prevents
blood flow to the brain. Thrombolytic therapies are the first-
line interventions administered following an ischemic stroke,
but their effectiveness decreases as the time from stroke to
hospital admission increases (126). Lack of oxygen following
blockage of the cerebral artery causes downstream cerebral
tissue hypoxia and cell death, leading to irreversible damage to
brain tissue and accompanying neurocognitive disabilities (127).
Researchers have been working to regenerate injured brain tissue
following IS using mesenchymal stem cell-derived exosomes
as increasing evidence has pointed to the therapeutic role of
miRNAs in attenuating cell damage and inflammation following
brain injury (128–131).

A primary goal in treating ischemic stroke is decreasing
compensatory injury to nerve cells deprived of oxygen
downstream of the vascular blockage. Rapid reperfusion is
performed to reinstate oxygen to the affected tissue to rescue
cells from hypoxia-induced damage, though only a limited time
window is allotted for effective reperfusion. Various miRNAs
are involved in the mitigation of ischemic stroke, whereby
their exogenous introduction to tissues via exosomes has
been shown to remediate damages associated with CVAs. Xin
et al. (95) observed that MCAO/R rats exhibited improved
functional outcomes and increased neurite remodeling in the
ischemic boundary zone (IBZ) following administration of
miR-133b-enriched MSC exosomes.

Inflammatory processes in hypoxic tissue pose another hurdle
to effective recovery of patients following IS as persistent
activation of inflammatory mediators results in tissue edema
and prolonged recruitment of leukocytes to the affected
area (132). Cytokines released from injured neural tissue
activate inflammatory pathways, of importance being the NF-
kB pathway, known for producing proinflammatory cytokines
such as IL-1, IL-2, IL-12, and TNF-α, among others. Toll-like
receptor 4 (TLR4) is a PRR located on the cell surface of
microglia and other macrophages and is involved in intracellular
signaling via the NF-kB pathway (133). Cai et al. (96) showed that
decreasing the expression of TLR4 via delivery of miR-542-3p
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enriched MSC-exosomes to MCAO/R mice reduced infarct
volume, edema, and infiltration of inflammatory cells.

Augmenting the inflammatory response through controlling
microglial polarization is an attractive route for mitigating
cerebral injury following IS. Microglia are macrophages that
are key players during the inflammatory process during and
after IS and are responsible for both innate and adaptive
immunity in the brain. Their polarization into either the M1
or M2 phenotype is characterized by pro-inflammatory or
anti-inflammatory cytokine production, respectively (134). Zhao
et al. were able to induce M1 to M2 microglial polarization in
BV2 mouse microglial cells via the introduction of miR-223-
3p-enriched MSC-exosomes (ex miR-223-3p). miR-223-3p was
found to decrease cysteinyl leukotriene receptor 2 (CysLT2R),
which may play a role in the induction of the M1 macrophage
phenotype. Treatment with ex miR-223-3p on BV2 cells induced
their conversion from the M1 to the M2 phenotype while
in vivo delivery of ex miR-223-3p decreased production of
pro-inflammatory cytokines (IL-1β and IL-6) while increasing
the production of the anti-inflammatory cytokine IL-10 and
reduced infarct volume in conjunction with improving the
functional recovery of rats, including activity, learning, and
memory (97).

Neurodegeneration remains an imminent barrier to the
recovery of patients following IS. Exosome-derived non-coding
RNAs serve many biological processes and are critical mediators
in the regeneration and protection of nerve tissue following
IS-induced brain injury.

CANCER THERAPEUTICS

MSC-derived exosomes are currently being explored as viable
biomarkers in disease and their cargo of non-coding RNA
(ncRNA), including lncRNA and miRNA, are being studied
for their role as potent therapeutic strategies in regenerative
medicine. This RNA cargo is also being explored in the context of
cancer therapeutics while the exosomal skeleton is being looked
at as a possible vehicle for delivery of chemotherapeutic agents.
The role of MSC-derived exosomes in cancer is quite a contested
subject, as numerous reports have provided evidence that various
MSC-exosomal lncRNA and miRNA can either inhibit cancer
cell proliferation/induce apoptosis or induce metastasis/cancer
progression (135–140).

In the recent years, KRAS targeting has emerged to be an
efficient therapeutic efficacy in context to lung and pancreatic
cancer as KRAS mutations are found in 30% of lung and
90% of pancreatic carcinomas. Yet, KRAS has been denoted
an “undruggable” target (in part due to its high affinity for
GTP/GDP, smooth surface with limited binding pockets, lack
of allosteric binding sites, and extensive post-transcriptional
modifications. H3K27me3 methylation is associated with the
downregulation of nearby genes, of importance being K-
Ras (involved in the Ras/MAPK pathway) (141–143). Xu
et al. (135) demonstrated that miR-124 from bone marrow-
derived mesenchymal stem cells (BM-MSCs) directly inhibited
expression of EZH2, which suppressed proliferation, migration,

and epithelial mesenchymal transmission (EMT) while inducing
apoptosis in pancreatic cancer cells (Aspc-1 and PANC-1).

Xu and colleagues found that MSC-derived exosomal miR-
133b inhibited proliferation, migration, and invasion of U87
glioma cells by decreasing EZH2 expression in vitro and
inhibited tumor growth in vivo via modulating the Wnt/β-
catenin signaling pathway by inhibiting the expression of EZH2
(136). In another study, miR-133b was shown to suppress
glioblastoma invasion and cell migration via downregulation of
metalloproteinase 14 (MMP14) in U87 and U251 glioma cells,
while miR-133b was also shown to impede proliferation and
invasion of glioma due to Sirt1 downregulation (144, 145).

Pakravan et al. found that MSC-derived miR-100 suppressed
angiogenesis in breast cancer cells by altering the mTOR/HIF-
1α/VEGF signaling axis. mTOR is a protein kinase involved in the
PI3K/AKT pathway and is known to drive HIF-1α accumulation,
which acts as a transcription factor by binding to promoter
regions in genes known as hypoxia-response elements (HREs).
HIF-1α binds to the HRE located within the vascular endothelial
growth factor (VEGF) promoter to increase expression of VEGF
and drive angiogenesis. miR-100 derived from MSCs was shown
to decrease expression and protein levels of mTOR, HIF-1α,
and VEGF in MDA-MB-231 and MCF-7 breast cancer cell lines
(known to overexpress VEGF) when co-cultured with MSCs
containing miR-100 (146).

An opposing conclusion was made regarding the therapeutic
use of MSC-derived exosomal ncRNA and cancer, whereby
expression of various lncRNAs (AGAP2-AS1 and HCP5)
promoted stemness and drug resistance in breast cancer and
gastric cancer, respectively. Han et al. (140) found that AGAP2-
AS1 lncRNA was upregulated in trastuzumab-resistant breast
cancer cells co-cultured with MSCs harboring lncRNA AGAP2-
AS1. AGAP2-AS1 was shown to interact directly with HuR
(known to stabilize CPT1 mRNA) and increase fatty acid
oxidation (FAO) to promote stemness and drug resistance.
Wu et al. found that MSC-derived HCP5 lncRNA increased
FAO in gastric cancer cell lines via sponging to miR-3619-5p
(found to inhibit expression of CPT1) by affecting the AMPK
pathway via PPARGC1A and PGC1α, leading to stemness and
chemo-resistance. Overexpression of miR-3619-5p significantly
decreased expression of PPARGC1A, which decreased PGC1α
(product of AMPK pathway), a transcriptional co-activator of
FAO genes (137).

The regulation of cancer progression and inhibition via
modulation of oncogenic pathways using MCS-derived ncRNA
is an area that must be studied in greater depth. A solid
understanding of ncRNA targets is needed to come to a consensus
about the potential use, safety, and benefits of using exosome-
derived ncRNAs in cancer therapy.

OTHER DISEASES

In the retina, the exosomes derived from human U-MSCs
(huc-MSCs) expressing miR-126 demonstrated remarkable
therapeutic effects by decreasing hyperglycemia associated with
retinal inflammation by downregulating the high-mobility group
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box 1 expression (HMGB1) in diabetic rats and human
retinal endothelial cells (HREC) (147). In a murine subretinal
fibrosis model, huc-MSCs exosomes containing miR-27b-3p
could mitigate subretinal fibrosis by reversing the process
of epithelial-mesenchymal transition (EMT) induced by TGF-
β2 via inhibiting homeobox protein Hox-C6 (HOXC6) (148).
The exosomal lncRNA H19 contributed to wound healing by
preventing the apoptosis and inflammation of fibroblasts by
impairing miR-152-3p-mediated PTEN inhibition in diabetes
and foot ulcer disease (DFU) (149). A study of huc-MSCs in an
experimental rat model of acute lung injury (ALI) revealed that
exosomal miR-22-3p suppressed pathological changes, apoptosis,
and NF-κB expression in LPS-treated rats (150).

In summary, MSCs improve the regenerative potential
in the above-mentioned diseases by transporting the
exosomes enriched ncRNAs having anti-apoptotic, and
anti-inflammatory effect.

POTENTIAL CHALLENGES AND
PROSPECTS ASSOCIATED WITH
MSC-Exo-ncRNA

The MSCs exosomes impart the regenerative effect on the target
cells via ncRNAs, possibly making them a promising candidate in
the tissue engineering field. However, the mechanisms associated
with the ncRNAs packaging, uptake, release, and the underlying
regulatory mechanisms are still in their infancy.

Many autoimmune diseases are characterized by an activated
inflammatory state resulting in infiltration of the autoreactive
immune cells damaging the tissues. Interestingly, MSCs-Exos in
many autoimmune diseases have successfully induced immune
polarization from an inflammatory to an anti-inflammatory state,
mitigating the disease pathogenesis. Much of this might be
mediated by the ncRNA repertoire in the exosomes. So, first, it’s
essential to determine the driving mechanism behind packaging
the altered ncRNAs into the exosomes under a specific disease
state. Secondly, it would be important to decipher the feedback
mechanisms by which specific immune cells can control the
exosome release as priming the MSCs to release the exosome
more efficiently and enhance the therapeutic efficacy under
disease conditions.

In addition to the challenges mentioned above, the low yield
of exosomes/MSCs, their purification, storage, optimized dose to

be administered would need further development. Therefore, the
clinical application must scale up the production of MSCs-Exos
without compromising their purity and stability. The concerns
raised above impose significant challenges before bringingMSCs-
Exos into clinical practice. Nevertheless, working on few of these
domains might improve their regenerative potential.

CONCLUSION

The potential of the exosomes to recapitulate the therapeutic
properties of the stem cells has paved the path toward cell-free
alternative therapy, allowing researchers to use them in amultiple
diseases and disorders. The underlying factors and the associated
mechanisms contributing to the exosomes’ regenerative effects
have been an area of interest in the past few years. The recent
studies depict that the regenerative effects of the exosomes can
be ascribed to their ncRNA repertoire. Moreover, modulating
the expression of the ncRNAs in the exosomes has allowed
researchers to extensively evaluate the protective effects in
tissue repair and regenerative medicine. It will be interesting
to investigate how the modification in the intracellular and
extracellular conditions of the MSCs itself would change the
ncRNA repertoire. In addition to that, it would be important to
investigate if these changes could eventually generate exosomes
having a homogenous expression of the ncRNAs and could be
used safely in the clinics.
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