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There has been a rise in the prevalence of non-alcohol fatty liver disease (NAFLD) due to

the popularity of western diets and sedentary lifestyles. One quarter of NAFLD patients is

diagnosed with non-alcoholic steatohepatitis (NASH), with histological evidence not only

of fat accumulation in hepatocytes but also of liver cell injury and death due to long-term

inflammation. Severe NASH patients have increased risks of cirrhosis and liver cancer. In

this review, we discuss the pathogenesis and current methods of diagnosis for NASH,

and current status of drug development for this life-threatening liver disease.
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INTRODUCTION

There has been an increased interest in non-alcoholic fatty liver disease (NAFLD), and its advanced
stage, non-alcoholic steatohepatitis (NASH) because of their increasing impact on global health
(1). In the United States, the number of NAFLD cases is rapidly expanding, and is expected to
reach 100.9 million patients in 2030 (∼1/3 of the population) (2). During the past three decades,
the number of patients with NAFLD has increased from 20 to 32% of the United States population
(3). Recently, there is an increasing tendency for young people to be diagnosed with NAFLD due to
being overweight or obese (4). As an increased proportion (∼25% of NAFLD cases) of NAFLD will
lead to NASH, there will be increased number of NASH patients with cirrhosis, leading to elevated
liver transplantation for end-stage cirrhosis (5). Worse still, the risk of hepatocellular carcinoma
(HCC) increases significantly for NAFLD or NASH patients who have cirrhosis (6–8).

NASH is strongly associated with overweight or obesity andmetabolic syndromes (9, 10). Recent
studies have shown that more than 80% of patients with NASH are overweight or obese (11, 12).
NASH is highly associated with type 2 diabetes mellitus (13–15). NAFLD is the general term that
comprises hepatic steatosis and steatohepatitis. Unlike isolated hepatic steatosis, NASH is strongly
associated with fibrosis found in liver biopsy (5). The level of fibrosis varies among different
NASH patients and advanced fibrosis progresses into liver cirrhosis and the eventual scarring
(16). Currently, fibrosis-induced liver cell death and further functional failure is a major cause
of liver transplantation (17). In addition to liver functional failure, cirrhosis and HCC, associated
non-liver adverse outcomes are primarily related to increased cardiovascular diseases (18–21) and
type 2 diabetes mellitus (22). Recently, studies have suggested that NAFLD should be defined as
a disease of global metabolic dysfunction (23), and not just limited to the liver. The metabolic
dysfunctions in fat tissue and muscle, and microbiota variation in the gut contribute to fatty liver
disease progression. Therefore, to more accurately describe NAFLD, scientists suggest renaming it
as “metabolic associated fatty liver disease” or MAFLD (24).
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At present, steady progress in clarifying the pathogenesis of
NASH has been made, leading to the identification of therapeutic
targets for drug development. However, there is currently no
FDA-approved drug that can cure NASH. In addition, the
lack of precise predictive biomarkers limits early diagnosis of
NASH. Liver biopsy remains the gold standard for diagnosis
of NASH. This review focuses on discussing the risks for
NASH pathogenesis, current development of biomarkers, and
therapeutic target identification for drug development.

PATHOGENESIS OF NAFL/NASH

The “two-hit” theory for the development of NASH was first
proposed more than two decades ago (25). The theory assumed
that the setting in of steatosis is the first hit, and that a second hit
from other factors is required for the development of NASH (26),
such as oxidative stress. However, this theory is now considered
outdated. Multiple-hit pathogenesis was proposed, suggesting
that many different factors have been considered to contribute to
NASH progression, such as inherited and environmental factors
(27, 28). Diet-induced obesity is the most common inducer
of NASH development, because the severe accumulation of fat
in liver leads to dysfunction of lipid metabolism. At present,
the accumulation of hepatic free cholesterol and free fatty acid
is considered the primary source of stress to the liver (29–
31). Particularly, hepatic free cholesterol is a major lipotoxic
molecule critical for NASH progression (32). Its metabolites
trigger hepatocellular stress (for example, oxidative stress) and
induce hepatocyte injury and death, leading to fibrosis and
further cirrhosis (Figure 1A).

Fibrosis in the liver and hepatocyte injury and death are the
key features that distinguish NASH from isolated steatosis (5, 33).
It is, however, debatable whether hepatocyte injury causes liver
inflammation or if hepatocyte injury is the consequence of liver
inflammation. Both hepatocyte injury and liver inflammation
are relevant to the pathogenesis of NASH because injured
hepatocytes release factors that promote inflammation, resulting
in a downward spiral as inflammation further triggers hepatocyte
injury (34, 35). This is because inflammation in the liver is
caused by released proinflammatory chemokines and cytokines
(such as TNF-α, IL-6, and CCL2), which further damage the
injured hepatocytes (36). In the liver, Kupffer cells, a kind of
resident macrophage, are localized in the lumen of the liver
sinusoids and play a central role in liver inflammation (37).
The initiation of liver injury stems from the activation of
Kupffer cells resulting in cytokine and chemokine production
(38). Kupffer cells can be divided into classically activated M1
Kupffer cells (proinflammatory M1) and alternatively activated
M2Kupffer cells (wound-healingM2) (39). The activation of pro-
inflammatory M1 Kupffer cells is the critical step that contributes
to the pathogenesis of fibrogenesis during NASH progression. In
contrast, the polarization and activation of anti-inflammatoryM2
Kupffer cells play a protective role against fibrogenesis in NASH
(40). Importantly, M2 Kupffer cells promote the apoptosis of
M1 Kupffer cells, which is protective against NAFL/NASH (41).
Under high fat diet treatment, mice with a high M2:M1 Kupffer

cell ratio are resistant to developing liver lesions, while mice with
a high M1:M2 Kupffer cell ratio are more likely to develop liver
lesions (42).

In addition to resident Kupffer cells in liver, monocyte-
derived macrophages play an important role in the pathogenesis
of NAFL/NASH (40). The infiltrating monocyte-derived
macrophages can be divided into two major subtypes, Ly-6Chi

macrophages and Ly-6Clo macrophages (43), both of which
affect hepatic stellate cells (HSCs), though in differing ways.
HSCs have been identified as the major extracellular matrix
protein (ECM) producing cells in injured liver (44) that play
the central role in the formation of hepatic fibrosis (45). HSCs
have two different states, quiescent and activated states, and the
transdifferentiation from the quiescent into the activated state is
the major cause of fibrosis (44). The proinflammatory Ly-6Chi

macrophages activate HSCs by secreting IL-1β and CCL2 that
enhance the fibrotic process (46), while the pro-restorative
Ly-6Clo macrophages promote apoptosis of HSCs and accelerate
extracellular matrix degradation by upregulation of matrix
metalloproteinase 9 (MMP9), MMP12 and MMP13 (47). The
pro-restorative Ly-6Clo macrophages express chemokine (C-
X3-C motif) receptor 1 (CX3CR1), and because its ligand1
(CX3CL1) is mainly expressed in HSCs, CX3CL1-CX3CR1
interaction negatively regulates inflammatory properties in
macrophages within the liver (48). Chemokine CCL2 production,
working through CCR2, is a major cause of monocyte-derived
macrophage (inflammatory Ly-6Chi macrophages) recruitment
induced by Toll-like receptor 4 (TLR4) signaling (49). The
infiltration of monocytes from blood that rapidly differentiate
into pro-inflammatory macrophages in the liver contributes to
NAFL/NASH progression (46). Extensive studies have reported
that genetic deficiency or pharmacological inhibition of CCR2
decreased monocyte recruitment to the liver and ameliorated
NASH in mice (50–52). In addition to chemokine CCL2,
cytokines like TNF-α and IL-1β released from macrophages
are important drivers of steatosis, inflammation, and fibrosis in
NAFL/NASH (40).

A number of risk factors promote the pathogenesis of NASH,
including inherited and environmental factors (Figure 1B).
Dietary factors are one of the most important environmental
factors that lead to NASH.

Genetic and Epigenetic Factors
Genome-wide association studies (GWAS) suggest that
polymorphisms in patatin-like phospholipase domain-
containing 3 (PNPLA3) and transmembrane 6 superfamily,
member 2 (TM6SF2) promote the development of NASH (53).
Particularly, PNPLA3 polymorphisms (I148M) are strongly
associated with hepatic steatosis caused by accumulation
of PNPLA3 on hepatic lipid droplets (54–56). TM6SF2
polymorphism reduces very-low density lipoprotein (VLDL)
secretion that is associated with NASH and fibrosis (57, 58). The
polymorphism of several other genes, including glucokinase
regulator (GCKR), membrane bound O-acyltransferase domain-
containing 7 (MBOAT7) and hydroxysteroid 17β-dehydrogenase
(HSD17B13), are closely associated with susceptibility to NAFL
and progression of NASH (53).
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FIGURE 1 | The progression of fatty liver disease and risk factors for NAFL/NASH progression. (A) the spectrum of fatty liver disease; (B) risk factors for NAFL/NASH

progression.

Epigeneticmechanisms are special genetic regulations without
any change in gene sequence in the genome but with different
modifications, such as DNA methylation, histone modification,
and non-coding RNAs (59). By analysis of liver samples from
NAFLD patients, the heavy methylation of NAFLD associated
genes, such as PNPLA3 (60) and PPARG (61), increases the
severity of NAFLD. Recently studies have indicated that non-
coding RNAs could regulate NAFLD progression, including
miR-122 and miR-125b, which show significantly decreased
expression in NAFLD patients (62, 63). Moreover, hepatic-
specific deletion of miR-21 prevents steatosis, and thus may
be a potential therapeutic target for NAFLD (64). In addition,
changes in hepatic lncRNA expression patterns are associated
with NAFLD. For example, a strong increase in hepatic lncRNA
un.372 is detected in NAFLD patients (65), while hepatic lncRNA
lnc18q22.2 is reported to correlate with the severity of NASH
(66). A list of microRNAs and long non-coding RNAs that
are involved in NAFL/NASH progression are summarized in
Table 1. Furthermore, studies in rodents have demonstrated
the existence of epigenetic factors that regulate fibrogenic liver
cell development to cirrhosis (124). A similar phenomenon is
observed in NASH patients. Therefore, epigenetic mechanisms
may be related to susceptibility for NASH.

Dietary Factors
Consumption of a high-calorie diet with high fat and high
sugar (western diet) results in weight gain and is the initial
event for the development of fatty liver (125–127). Particular
types of lipids and carbohydrates play important roles in the
progression of NASH. For dietary lipids, polyunsaturated fatty
acids (PUFAs) induce inflammation and fibrosis formation
in NASH (128). For dietary carbohydrates, over-consumption

of carbohydrates extensively promotes the development of
NAFLD (129), especially fructose, a highly lipogenic sugar and a
common component in almost all major sweet foods (130, 131).
Extensive experimental studies support the association between
the increasing rates of obesity and the progression of NAFLD
(132–134). Obese individuals who have an excessive body mass
index (BMI) and visceral obesity are at a high risk for developing
NAFLD (135). Studies have reported that more than 95% people
that had severe obesity have NAFLD (136). Type 2 diabetes
mellitus (T2DM) patients have higher risks for NAFLD due to
insulin resistance, and T2DM and NAFLD can be developed
simultaneously (137). In addition, people who have dyslipidemia
and hypertension are also at high risk for NAFLD (138).

Microbiota Dysbiosis
The relationship between intestinal microbiota and NAFL/NASH
has been proposed for decades. Intestinal microbiota is altered
in genetically obese mice that have metabolic syndrome and
fatty liver (139). Studies indicate that microbiota dysbiosis is
associated with inflammatory signaling, which promotes hepatic
steatosis and NASH (140, 141). Recently, extensive studies on the
gut-liver axis have suggested that intestinal microbiota influenced
host susceptibility to obesity, hepatic steatosis, and NASH (142–
144). The homeostasis of intestinal microbiota is essential to
maintaining proper function of the intestinal barrier, and recent
studies have shown that intestinal microbiota dysbiosis triggers
intestinal inflammation and further impairs the intestinal barrier.
Microbial products released can reach the liver and induce
hepatic inflammation and further lead to NAFL/NASH (145).
This intestinal barrier is hepatoprotective, andmicrobiota-driven
gut-vascular barrier disruption is a prerequisite for NASH
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TABLE 1 | microRNAs and long non-coding RNAs that are involved in NAFLD pathogenesis.

miRNAs Expression in NAFL/NASH References lncRNAs Expression in NAFL/NASH References

miR-15b Upregulated (67) ApoA4-AS Upregulated (68)

miR-16 Upregulated (69) APTR Upregulated (70)

miR-19 Upregulated (71) FLRL2 Downregulated (72)

miR-21 Upregulated (73) Gm15622 Upregulated (74)

miR-22 Upregulated (75) HOTAIR Upregulated (76)

miR-26a Downregulated (77) HULC Upregulated (78)

miR-27a/b Upregulated (79) lncARSR Upregulated (80)

miR-29a Downregulated (81) AK012226 Upregulated (82)

miR-30c Downregulated (83) lnc-HC Downregulated (84)

miR-33a/b Upregulated (85) lncHR1 Downregulated (86)

miR-34a Upregulated (87) Inc-H19 Upregulated (88)

miR-99a Downregulated (89) lnc-JAM2-6 rs2829145 A/G (90)

miR-122 Upregulated (62) lncLSTR Downregulated (91)

miR-125b Upregulated (63) lncRNA Blnc1 Upregulated (92)

miR-130a Downregulated (93) lncSHGL Downregulated (94)

miR-135a Downregulated (95) lnc18q22.2 Upregulated (66)

miR-146a Downregulated (96) LFAR1 Upregulated (97)

miR-155 Downregulated (98) MALAT1 Upregulated (99)

miR-181b Upregulated (100) MEG3 Downregulated (101)

miR-190b Upregulated (102) Mirt2 Downregulated (103)

miR-192 Upregulated (104) MRAK052686 Downregulated (105)

miR-194 Upregulated (106) NEAT1 Upregulated (107)

miR-197 downregulated (89) NONMMUG027912 downregulated (108)

miR-199a Upregulated (109) NONMMUT010685 Downregulated (110)

miR-200a/b Upregulated (111) NONMMUT050689 Downregulated (110)

miR-205 Upregulated (112) NR002155.1 Downregulated (113)

miR-221/222 Upregulated (114) PVT1 Upregulated (115)

miR-223 Upregulated (116) RP11-128N14.5 Upregulated (117)

miR-335 Upregulated (118) Runx1 Upregulated (119)

miR-375 upregulated (120) SRA upregulated (121)

miR-378 Upregulated (122) TGFB2-OT1 Upregulated (117)

miR-451a Downregulated (123) uc.372 Upregulated (65)

development (146). This barrier disruption is caused by diet-
induced dysbiosis (147). Patients with NAFL and NASH usually
show dysbiosis in the gut microbiota (148). Overall, patients with
NAFL and NASH have lower microbiota diversity than healthy
people and have different microbiota species abundance patterns
(149). For example, patients with NASH have an increased
abundance of Escherichia, where patients with advanced fibrotic
NASH or cirrhosis have dramatically increased proportions of
Bacteroides and Ruminococcus (150).

DIAGNOSIS OF NAFL/NASH

At present, liver biopsy remains the gold standard for diagnosis
of (151), since invasive liver biopsy for assessing different
fibrosis stages is the most accurate method for NASH diagnosis
(Figure 2A) (152). However, liver biopsy is painful for patients,
and has sampling error limitations (153). Therefore, new

developments in non-invasive biomarkers for early diagnosis and
treatment of NAFL and NASH are urgently needed. Current
progression on developing non-invasive biomarkers is mainly
based on the detection of hepatic steatosis (154). There are
several indices and scores for the evaluation of hepatic steatosis.
Testing of blood biomarkers, determining the fatty liver index
(FLI) and determining the hepatic steatosis index (HSI) are the
most popular methods to evaluate the risks of NAFLD (155).
Fatty liver index, BMI, and serum level of triglycerides also
have moderate accuracy for fatty liver diagnosis (156). Hepatic
steatosis index can be evaluated by the ratio between serum
aspartate aminotransferase (AST) and alanine aminotransferase
(ALT) and has moderate accuracy for the detection of fatty liver
(156). The limitation of both FLI and HSI is insensitive to mild
steatosis since they are designed to target indirectly on blood fat
rather than liver fat.

A more sensitive and accurate method is to measure liver
fat directly. The development of imaging biomarkers has

Frontiers in Cardiovascular Medicine | www.frontiersin.org 4 September 2021 | Volume 8 | Article 742382

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Zhu et al. NASH Pathogenesis, Diagnosis, and Treatment

FIGURE 2 | Current approaches for the diagnosis of NAFL/NASH and options for treatment. (A) Methods for NAFL/NASH diagnosis; (B) Options for NAFL/NASH

treatment.

dramatically improved the progress of NAFLD diagnosis (157).
Ultrasonography is the most common method for detection
of hepatic steatosis and can accurately identify moderate to
severe steatosis (158). However, it is less sensitive when detecting
steatosis in NASH patients who have advanced fibrosis (159).
Computed tomography (CT), although sensitive in detecting
moderate and severe steatosis with mild histological fibrosis
(159), has not been shown to have improved sensitivity in mild
steatosis (160). Both controlled attenuation parameter (CAP)
and magnetic resonance imaging-proton density fat fraction
(MRI-PDFF) can address sensitivity issues in mild steatosis (161,
162). Controlled attenuation parameter is a method for grading
steatosis that measures the degree of ultrasound attenuation
by hepatic fat using a process based on simultaneous transient
elastography, which is more sensitive and accurate than previous
imagingmarkers (163).MRI-PDFFmaps can be generated within
seconds and detection of hepatic fat is more accurate than CAP
for detecting all grades of steatosis in patients with NAFLD (164).
Magnetic resonance imaging (MRI) approaches 100% sensitivity
in the detection of hepatic steatosis, even at low steatosis levels
(165). At present, MRI is the best method for detecting hepatic
steatosis accurately and efficiently due to its high sensitivity.

The current progress on non-invasive biomarkers
development for fibrosis diagnosis has advanced. Several
potential non-invasive biomarkers have been reported for
NASH diagnosis. Studies indicate that serum hyaluronic acid
(HA) is a non-invasive marker of liver fibrosis (166), and
serum YKL-40 can also be a marker of liver fibrosis in patients
with NAFLD (167). In addition, the expression of tissue

inhibitor of matrix metalloproteinase 1 (TIMP-1) is increased in
human and rat models of liver fibrosis (168), and its degree of
expression correlates with the extent of fibrosis in human liver
(169). Although functional studies indicate TIMP-1 promotes
hepatic fibrogenesis, TIMP-1 deficiency does not prevent
carbon tetrachloride (CCl4)-induced hepatic fibrogenesis (170).
Terminal peptide of procollagen III (PIIINP) is released during
the synthesis and deposition of type III collagen (171). At
present, PIIINP has been validated to be effective in the detection
of fibrosis, and is particularly effective in the detection of severe
fibrosis (172). PIIINP is elevated in patients with advanced
fibrosis (172). Therefore, serum PIIINP is potentially a good
non-invasive marker of liver fibrosis.

TREATMENT OF NAFL/NASH

Most NASH patients are obese. The first and simplest
management against NAFLD or NASH is to make lifestyle
modifications (173). Through sustained weight loss (such as
through a calorie-restricted diet) and increased physical activity
(exercise), hepatic steatosis caused by western-style diet and
sedentary lifestyle can be reduced significantly (174). A modest
weight loss of about 3% may reduce hepatic steatosis, however,
up to 10% or more is required for the resolution of NAFLD
and the regression of fibrosis in NASH (175). Thus, resolution
of steatosis in NAFLD and even fibrosis reversal in NASH
can be achieved after significant weight loss through lifestyle
modifications. Therefore, as a non-pharmaco-therapeutic option,
transitioning from a high-calorie diet and a sedentary lifestyle
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into a restricted calorie diet with increased physical activity is the
healthiest treatment for NAFL and early stage of NASH.

In addition to lifestyle modifications, there are several
therapeutic targets that are under clinical trials (Figure 2B).
The most promising pharmaco-therapeutic candidates will
be discussed.

Vitamin E, Pioglitazone, and Statins
Oxidative stress plays an essential role in the development
from isolated steatosis to NASH (176). Anti-oxidation treats
NAFL/NASH by removing excessive reactive oxygen species
(ROS) (177). Extensive studies have indicated that vitamin E
reduced steatosis and ameliorated fibrosis (178–180). However,
for NASH patients with diabetes, vitamin E alone does not
significantly improve histological outcomes (181). Considering
NAFL/NASH is a metabolic syndrome, and thus is usually
accompanied by other metabolic diseases, such as diabetes and
CVD, drugs for the treatment of diabetes and CVD are used
for treating NAFL/NASH, particularly pioglitazone and statins
(182, 183). Pioglitazone is used for treatment of type 2 diabetes
mellitus, and has been reported to significantly reduce fibrosis
in NASH patients (184). The safety and efficacy of low-dose
pioglitazone (NCT04501406) has been tested (185). In addition,
statins, a class of drugs used for reducing cardiovascular disease
risk, has been tested onNAFL/NASH patients who then displayed
substantial improvement on steatosis and fibrosis (186, 187).
While piloglitazone and statins have already been in the market
for a while for treating other conditions, they also represent new
potential therapies for NAFL/NASH.

GLP-1 Ligand and Receptor Agonists
Glucagon-like peptide 1 (GLP-1) is essential for glucose
homeostasis (188). GLP-1 and its receptor agonists (GLP-1 RAs)
can treat type 2 diabetesmellitus (189), which is closely associated
with NAFLD (13). Evidence supports that GLP-1 secretion is
impaired in patients with NAFL and NASH (190), indicating
that GLP-1 agonists may be potential treatment candidates for
NAFLD. GLP-1 agonists and GLP-1 RAs, including liraglutide
(NCT01237119), exenatide (NCT00650546) and semaglutide
(NCT02970942), have been tested for improving liver histology
in NASH patients (191–193), and are currently under phase II
clinical trials for NASH.

PPAR Agonists
Peroxisome proliferator-activator receptors (PPARs) are a group
of nuclear receptors that play a critical role in intracellular lipid
metabolism (194). Extensive studies indicate the dual PPAR alpha
and delta agonist, elafibranor, is effective against NASH (195).
Taking elafibranor at a dose of 120 mg/day has been shown
to cause significant regression of fibrosis in NASH patients. In
addition, other metabolic parameters, such as liver enzymes, are
also greatly improved by elafibranor. Elafibranor is now under
phase III clinical trials (NCT02704403).

FXR Agonists
Farnesoid X receptor (FXR) is a master regulator of hepatic
triglyceride and glucose homeostasis (196). Obeticholic acid

(OCA), a FXR agonist, has been recently studied and shown
to improve histology and fibrosis scores (197). OCA is highly
promising for NASH treatment and is under phase III clinical
trials (NCT02548351). In addition to OCA, other FXR agonists
are also under clinical trials for treating NASH. Another FXR
agonist, MET-409, significantly reduces liver fat after 12 weeks
of treatment in NASH patients (198). MET-409 is under phase
II clinical trials for NASH (NCT04702490). EDP-305, a potent
FXR agonist, reduces liver fat and is a potent inhibitor of
fibrosis (199). EDP-305 is under phase II clinical trials for
NASH (NCT03421413).

CCR2/5 Antagonists
NASH is a disease with inflammation and fibrosis. Chemokine
receptor 2/5 (CCR2 and CCR5) are commonly increased in
the liver from NASH patients. Cenicriviroc (CVC), a C-
C motif chemokine receptor 2/5 (CCR2/5) antagonist, was
developed to target inflammation (200). In NASH patients, liver
fibrosis is caused by the accumulation of extracellular matrix
proteins, mainly composed of collagen (201). CCR5 antagonist
can inhibit collagen production by HSCs by impairing the
migration, activation, and proliferation of HSCs (202). CVC has
been shown to have antifibrotic function and has significantly
improved fibrosis in NASH patients after 1 year of treatment
(203). CVC is currently under phase III clinical evaluation for
NASH (NCT03028740).

Galectin-3 Antagonist
Galectin-3 protein expression is essential for the development
of hepatic fibrosis, which is significantly increased in NASH
liver (204). In mice models, GR-MD-02, a galectin-3 inhibitor,
markedly ameliorates liver fibrosis through inhibition of collagen
deposition (205). GR-MD-02 has been shown to be safe
and efficient for patients with NASH cirrhosis with portal
hypertension (165). The safety and efficacy of GR-MD-02 for
the treatment of liver fibrosis is under phase II clinical trials
(NCT02462967) (206).

ASK-1 Antagonist
To improve inflammation and fibrosis in NASH, many
therapeutic targets have been tested. The inhibitors of apoptosis
signal-regulating kinase 1 (ASK1), a serine/threonine kinase,
have been shown to significantly improve fibrosis in NASH
animal models (207). Selonsertib (aka GS-4997), a selective
inhibitor of ASK1, can reduce hepatic steatosis and fibrosis
in NASH animal models fed with high fat and sugar. In
phase II clinical trials, patients treated with selonsertib showed
huge improvements in fibrosis through reduction of hepatic
collagen content (208). However, a recent study has indicated
that selonsertib neither leads to fibrosis regression nor reduces
NASH progression (209). At present, selonsertib is undergoing
phase III clinical evaluation and being studied for its efficacy on
NASH (NCT03053050).

Gut and Microbiome Related Therapies
Studies between microbiome and NAFL/NASH are relatively
nascent, but the consensus is that dysbiosis leads to increased
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intestinal permeability, which may increase NAFL/NASH
progression (210). Thus, disturbed gut-liver barrier integrity
is essential in the pathogenesis of both NAFL and NASH
since the release of bacterial products from the gut into blood
circulation may cause a massive inflammatory response from
the liver (211). Orlistat, an FDA-approved lipase inhibitor for
treating obesity, reduces absorption of dietary fat (212) and
may have beneficial effects on body weight through modification
of the composition of gut microbiota (213), however, the
efficacy of orlistat on NASH has not been clearly demonstrated.
Other drugs targeting the microbiome include solithromycin.
Solithromycin is an antibiotic in clinical trials for the treatment
of bacterial infection. Studies in a mouse model of NASH have
displayed that solithromycin had beneficial effects by reducing
hepatocyte ballooning and inflammation (214). Solithromycin
is currently in a phase II trial (NCT02510599) for NASH. All
six patients with NASH it was tested on showed reduction in
NASH parameters after 90 days of treatment (215). Notably,
solithromycin may not impair the gut microenvironment since
its mechanism of action against NASH may not be related to its
antibacterial activity, as it is not active against gut Gram-negative
bacteria (214).

Although many potential candidates for the treatment of
NASH are under phase II and III clinical trials as discussed
above, no drug has yet been approved by the FDA. In
addition to the discovery of novel promising targets for
clinical testing, existing drugs like piloglitazone and statins
used for the treatment of diabetes and CVD diseases can also
be viable therapeutic options for NAFL/NASH. Furthermore,
antioxidant vitamin E can be a beneficial supplement for
NAFL/NASH patients.

FUTURE PERSPECTIVES

Considering NAFLD is closely associated with metabolic
dysfunction, metabolic dysfunction-associated fatty liver disease
(MAFLD) may better describe the disease than NAFLD
(216). The lack of appropriate NASH animal models is the
bottleneck for NASH investigation. Although a methionine-
choline-deficient (MCD) diet is a widely used model for NASH
study, the body weight loss and increased insulin sensitivity
of this model are not features of NASH (217). Recently,
high fat, high fructose, high cholesterol diets and use of
chemical inducers (such as carbon tetrachloride, CCl4) have
been extensively applied as NASH models, though the feeding
or induction cycle is very long (218). Despite its long-term
feeding cycle, this animal model may become more popular
in the future since it can accurately mimic the features
of NASH.

Non-invasive diagnosis approaches can primarily detect
hepatic steatosis sensitively but struggle to detect fibrosis,
meaning the diagnosis of NASH still requires invasive
liver biopsy. Development of non-invasive methods that
can sensitively and accurately diagnose NASH is currently

ongoing and such methods may be available in the future. At
present, because of the absence of any existing FDA-approved
medication for the treatment of NASH, an effective clinical
pharmacotherapy is urgently needed for advanced NASH.
For mild NASH, the most healthy and effective treatment
is through management of diet and lifestyle. NASH fibrosis
regression can occur with 10% weight loss, but such weight
loss is difficult to achieve. In addition, NASH is commonly
associated with diabetes, meaning drugs that target diabetes may
have potential for treating NASH. In addition, the development
of drug targets on gut microbiota may be a novel direction
in the coming decades, because accumulating evidence shows
microbiota dysbiosis is one of the critical causes of NASH
through the gut-liver axis. Alternatively, the development of
pharmacological interventions targeting the polarization of M2
Kupffer cells during the early stages of NASH may become an
attractive strategy for reducing inflammation and hepatocyte
injury. Similarly, in monocyte-derived macrophages, it is
attractive to develop pharmacological interventions that target
the polarization of pro-restorative Ly-6Clo macrophages to
treat NASH.

CONCLUSION

Great developments in NASH pathogenesis, diagnosis and
treatment have been achieved in the past decades. This review
discusses factors that may induce NASH, non-invasive methods
for NASH diagnosis, and potential pharmaco-therapeutic
options to resolve NASH. Dietary factors are a major cause for
NAFLD that may further develop into NASH, particularly for
people under long-term high fat and high sugar consumption
who are obese or overweight. Body weight loss is beneficial
for early-stage NASH. Accurate and sensitive non-invasive
diagnosis methods for NASH are needed to replace invasive
liver biopsy. Although no FDA-approved drug is available
for NASH, many clinical pharmacotherapies are under
phase II or phase III clinical trials. Moving forward, more
potential NASH targets will likely be identified, offering more
opportunities to discover effective and specific drugs to treat and
resolve NASH.
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