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Introduction: Deep learning demonstrates great promise for automated analysis of

CMR. However, existing limitations, such as insufficient quality control and selection of

target acquisitions from the full CMR exam, are holding back the introduction of deep

learning tools in the clinical environment. This study aimed to develop a framework for

automated detection and quality-controlled selection of standard cine sequences images

from clinical CMR exams, prior to analysis of cardiac function.

Materials and Methods: Retrospective study of 3,827 subjects that underwent CMR

imaging. We used a total of 119,285 CMR acquisitions, acquired with scanners of

different magnetic field strengths and from different vendors (1.5T Siemens and 1.5T

and 3.0T Phillips). We developed a framework to select one good acquisition for each

conventional cine class. The framework consisted of a first pre-processing step to

exclude still acquisitions; two sequential convolutional neural networks (CNN), the first

(CNNclass) to classify acquisitions in standard cine views (2/3/4-chamber and short axis),

the second (CNNQC) to classify acquisitions according to image quality and orientation;

a final algorithm to select one good acquisition of each class. For each CNN component,

7 state-of-the-art architectures were trained for 200 epochs, with cross entropy loss and

data augmentation. Data were divided into 80% for training, 10% for validation, and 10%

for testing.

Results: CNNclass selected cine CMR acquisitions with accuracy ranging from

0.989 to 0.998. Accuracy of CNNQC reached 0.861 for 2-chamber, 0.806 for

3-chamber, and 0.859 for 4-chamber. The complete framework was presented

with 379 new full CMR studies, not used for CNN training/validation/testing, and

selected one good 2-, 3-, and 4-chamber acquisition from each study with

sensitivity to detect erroneous cases of 89.7, 93.2, and 93.9%, respectively.
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Conclusions: We developed an accurate quality-controlled framework for automated

selection of cine acquisitions prior to image analysis. This framework is robust and

generalizable as it was developed on multivendor data and could be used at the

beginning of a pipeline for automated cine CMR analysis to obtain full automatization

from scanner to report.

Keywords: cardiac magnetic resonance, deep learning, quality control, cardiac function, view-selection,

multivendor

INTRODUCTION

Cardiac magnetic resonance (CMR) is the state-of-the-art
clinical tool to assess cardiac morphology, function, and
tissue characterization (1), and both European and American
guidelines advocate its use to diagnose and monitor a large
number of cardiovascular diseases (2, 3). The role of CMR
continues to grow due to the technical advances that allow
increasingly detailed analysis of the cardiovascular system.

However, systematic manual analysis of the different CMR
sequences which are acquired during a typical CMR exam is
highly time consuming, where the bulk of the time is taken up
by repetitive tasks, such as image identification, selection, and
segmentation, which are at the basis of CMR post-processing.

Deep learning (DL), a branch of artificial intelligence (AI), is
securing an emergent role in the field of CMR, as it provides
for automatization of repetitive tasks, significantly reducing the
time required for image analysis, while maintaining a high degree
of accuracy (4, 5). Physicians’ time can thus be optimized and
targeted for critical review of clinical and imaging information to
reach a correct diagnosis. Moreover, automated analysis allows
access to biomarkers of cardiac function that would normally be
too labor intensive to obtain, such as peak ejection and filling
rates from ventricular volume curves (6, 7) or atrioventricular
valve planar motion (8) from long-axis segmentations.

Several groups have shown promising results on the
implementation of DL in the analysis of CMR, including
segmentation of cine images to derive cardiac function (5),
analysis of perfusion defects to detect inducible ischemia (9), and
assessment of late gadolinium enhancement and T1 mapping to
aid tissue characterization (10, 11).

However, some limitations still need to be addressed before a
widespread clinical adoption of DL tools, such as steps to perform
automated selection of target images from the full CMR exam,
as well as robust systems to flag inadequate quality of image or
of analysis, which are the necessary steps that precede analysis
of CMR sequences in the clinical setting. We have previously
shown that comprehensive quality-control can be introduced
into a DL pipeline for accurate, automated analysis of cine CMR
images that adheres to clinical safety standards (5). On the other

Abbreviations: 2Ch, 2-Chamber view; 3Ch, 3-Chamber view; 4Ch, 4-Chamber

view; ACHD, adult congenital heart disease; AI, artificial intelligence; CMR,

cardiac magnetic resonance; CNN, convolutional neural network; DL, deep

learning; GE, General Electrics; GSTFT, Guy’s and St. Thomas’ NHS Foundation

Trust; LVOT, left ventricular outflow tract; QC, quality control; SAX, short axis.

hand, DL has not yet been systematically implemented for image
recognition and selection prior to analysis in CMR.

This study aimed at developing a framework for automated
identification and quality-controlled (QC) selection of cine
images used for cardiac function analysis from routine clinical
CMR exams. This framework was then implemented as the first
step of a larger pipeline for QC CMR analysis of cine images
previously developed by our group (5).

MATERIALS AND METHODS

The framework we present is composed of a set of algorithms
combined with two convolutional neural networks (CNN) aimed
at identifying conventional cine views (CNNclass) and at sorting
these images according to quality into “correct” and “wrong”
(CNNQC). This construction allows for the framework, presented
with a full CMR exam, to perform a selection of one good quality
acquisition for each conventional cine class, which is then used
for analysis of cardiac function, and to flag exams when no image
of sufficient quality could be identified (see Figure 1).

The developed pipeline was implemented in Python using
standard libraries such as Numpy and Pandas as a dedicated deep
learning library Pytorch.

Study Population
This is a retrospective multivendor study conducted on a large
CMR dataset. 3,445 CMR exams were included: 1,510 from
UK Biobank and 1,935 from Guy’s and St. Thomas’ NHS
Foundation Trust (GSTFT), London, comprising of a total of
119,285 individual CMR acquisitions. Images were acquired on
1.5T Siemens and 1.5T and 3.0T Phillips CMR scanners using
a large variety of protocols, with variable voxel- and image-size,
acquisition techniques and under-sampling factors.

Our dataset was randomly selected from the pool of available
studies in the UK Biobank and GSTFT databases. All exams
were acquired between 2004 and 2020. The random selection
was used to obtain a heterogeneous population, including
both healthy and pathological hearts, with a variety of cardiac
pathologies (ischemic heart disease, dilated and hypertrophic
cardiomyopathy, valvular heart disease, adult congenital heart
disease (ACHD), and others). In the case of grossly disruptive
artifacts (e.g., device artifacts covering the majority of the
chambers), or grossly distorted anatomy (e.g., patients with
single-ventricle morphology or Ebstein’s disease), CMR exams
were excluded from the dataset.
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FIGURE 1 | Complete framework. The framework consisted of a first pre-processing step to exclude still images; two sequential convolutional neural networks (CNN),

the first to classify images in standard cine views (2/3/4-chamber and short axis), the second to classify images according to image quality and orientation; a final

algorithm to select one good image of each class. This construction allows for the framework, presented with a full CMR exam, to perform a quality-controlled

selection of one good image for each conventional cine class, which is then used for analysis of cardiac function. Ch, chamber; CNN, convolutional neural network;

LAX, long axis; SAX, short axis; QC, quality control.
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Identification of Conventional Cine Classes
The first part of our framework aimed to identify the standard
cine views used for analysis of cardiac function from the complete
exam. These were the 2-Chamber view (2Ch), 3-Chamber view
(3Ch), 4-Chamber view (4Ch), and the short-axis stack (SAX).

First, all single-frame acquisitions were excluded from the
exams based on the dicom-header information. This allowed to
reduce the bulk of acquisitions available in a complete CMR exam
to a set of multi-frame acquisitions. The 2Ch, 3Ch, 4Ch, and
SAX sequences were subsequently selected from the remaining
acquisitions using our view selection algorithm. To identify the
class of the cine acquisitions, only a single frame of the acquisition
is needed. Therefore, the first frames of each of the remaining
data was used for training. All data was manually classified into
the conventional cine classes by an expert physician (2,905 2Ch,
1,171 3Ch, 2,963 4Ch, 9,112 SAX images) and a class of “other”
(4,043). In case of doubt, a second opinion was sought, and
a decision was made by consensus. Prior to CNN training, all
images were cropped to a standard size of 256 × 256 pixels and
converted to numpy arrays.

The manually classified data were divided as follows: 80%
was used for training, 10% was used for validation, and 10%
for testing. The training, validation and test data cohorts
had a mutually exclusive subject pool, i.e., acquisitions from
the same subject could only be used in one of the three
cohorts. We trained seven state-of-the-art CNN architectures:
AlexNet (12), DenseNet (13), MobileNet (14), ResNet (15),
ShuffleNet (16), SqueezeNet (17), and VGG (18). Each network
was trained for 200 epochs with cross entropy loss, to
classify end-diastolic images into the five classes described. For
training data, data augmentation was performed on-the-fly using
random translations (±30 pixels), rotations (±90◦), flips (50%
probability) and scalings (up to 20%) to each mini-batch of
images before feeding them to the network. The probability of
augmentation for each of the parameters was 50%. Augmentation
is the only technique we use to prevent over-fitting, as other
techniques were not found to improve performance and their
omission contributed to a simpler network architecture.

An additional algorithm was used after CNNclass to check
complete classification of the short axis acquisition. An image
classified as SAX was confirmed to belong to a short axis
acquisition if the following two criteria, screened by the
algorithm, were met: (1) the image belonged to a stack composed
of a minimum of 8 slices, (2) at least 2 out the 3 central images of
the stack were classified as short axis by CNNclass.

Quality Control of Selected Images
The second part of our framework aimed to scrutinize the
quality of the identified long-axis cine images. QC of short axis
acquisitions was not performed in this step, as our downstream
pipeline for automated CMR analysis already includes short-axis
QC (5).

To train the networks for QC (CNNQC), a set of 2Ch
(1,937), 3Ch (1,591), 4Ch (2,003) images from our database
were reviewed by an expert physician and classified as
“correct” or “wrong” based on whether image quality was
satisfactory for subsequent analysis. Images that included

mis-triggering, breathing, implant or fold-over artifacts were
classified as “wrong” if the detection of myocardial borders was
hindered. Moreover, all off-axis orientations (i.e., presence of
left ventricular outflow tract (LVOT) in 4Ch, fore-shortening
of the apex, absence of any of the valves in 3Ch) were also
classified as “wrong.” In case of doubt, a second opinion was
sought, and a decision was made by consensus. The resulting
database consisted of 1,444 “correct” and 493 “wrong” 2Ch, 1,098
“correct” and 493 “wrong” 3Ch images and 1,393 “correct” and
610 “wrong” 4Ch images.

The manually classified data were used to train QC networks
for each class (2Ch-CNNQC, 3Ch-CNNQC, 4Ch-CNNQC). The
data were divided as follows: 80% training, 10% for validation,
10% for testing. We trained the same seven CNN architectures
as described in the previous section. We used the same
training process as described for training of CNNclass, with
the difference that CNNQC was trained as binary classifiers,
i.e., a two-class classification problem as opposed to five,
and therefore used binary cross entropy with a logit loss
function. Additionally, we implemented an adaptive learning
rate scheduler, which decreases the learning rate by a constant
factor of 0.1 after 5 epochs stopping on plateau on the
validation/test set (commonly known as ReduceLRonPlateau).
This step was added as it improves CNN training when
presented with unbalanced datasets. The CNNQC’s output was
a binary classification (“correct” vs. “wrong”), as well as the
probabilities (i.e., certainty) associated with the classification for
each case.

Complete Framework: From Full Study to
Selection
To complete the framework, the CNNclass and CNNQC were
combined with a final selection algorithm. This algorithm
selected one good quality acquisition of each standard cine
view for image analysis, when multiple acquisitions of a single
class were present in the exam. For long axis data, it did so
by identifying the case with the highest probability of being
scored “correct” by the CNNQC. For short axis, the stack
with the highest probability of belonging to SAX (obtained
from the output of the CNNclass) was selected. If any of the
classes was absent in an exam, or the framework did not
identify an image of sufficient quality, the case was flagged for
clinician review.

As the individual components act in series in the complete
framework, their sequential action will yield an overall
performance that is different from the sum of the individual
ones. To find the best combination of components, each
possible combination of the trained CNN architectures trained
in the previous steps was tested using an additional test-
set of 379 scans randomly selected from the database,
not previously used for CNN training. For each exam,
a manual operator selected the best cine long and short
axis acquisitions. To determine the intra- and inter-observer
variability present in the manual analysis, 100 randomly selected
scans were re-analyzed by the same operator and by a
second operator.
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TABLE 1 | Population characteristics.

CNN training Complete framework

Number 3,445 379

Age (years) 57 ± 16 49 ± 19

Sex (males) 1,911 (55) 228 (60)

Height (cm) 176 ± 32 171 ± 18

Weight (kg) 79 ± 18 80 ± 19

BMI (kg/m2 ) 27 ± 5 27 ± 7

Ethnicity Caucasian 2,401 (69.7) 231 (60.9)

Afro-Caribbean 172 (5.0) 54 (14.2)

Asian 85 (2.5) 10 (2.6)

Other 21 (0.6) 7 (1.8)

Not stated 766 (22.2) 77 (20.3)

Cardiac pathology Healthy 1,886 (54.7) 68 (17.9)

IHD 315 (9.1) 43 (11.3)

DCM 167 (4.8) 27 (7.1)

HCM 77 (2.2) 16 (4.2)

ACHD 185 (5.4) 59 (15.6)

Valvular 133 (3.9) 37 (9.8)

Vascular 104 (3.0) 32 (8.4)

Arrhythmic 159 (4.6) 26 (6.9)

Other 419 (12.2) 71 (18.7)

Age, sex, height, weight, and cardiac pathology of subjects used for training of CNNs,

framework and full pipeline validation. All continuous values are reported as mean ±

standard deviation, while categorical variables are reported as number (percentage).

ACHD, adult congenital heart disease (excluding valvular and vascular abnormalities);

CNN, convolutional neural network; HCM, hypertrophic cardiomyopathy; IHD, ischaemic

heart disease; SD, standard deviation.

Statistics
Class Identification CNN
Precision, recall, and F1-score of each class (“4Ch,” “3Ch,” “2Ch,”
“SAX,” “other”) and overall accuracy were computed at test-time
to evaluate the performance of each trained CNNclass.

Quality Control CNNs
Precision, recall, and F1-score of each class (“correct,” “wrong”)
and overall accuracy were assessed to evaluate the performance
at test-time of each trained 2Ch/3Ch/4Ch-CNNQC.

Complete Framework
Sensitivity (defined as: the percentage of incorrect cases
identified as incorrect), specificity (defined as: the percentage of
correct cases identified as correct), and balanced accuracy were
computed for each framework. Cohen kappa coefficient was used
to assess intra- and inter-observer variability.

Full Pipeline: From Scanner to Report
Finally, we added the complete framework as the first step
of our previously validated pipeline for quality-controlled AI-
based analysis of cardiac function from CMR (5). Broadly, this
pipeline consists of quality-controlled image segmentation and
analysis of cine images to obtain LV and RV volumes and mass,
LV ejection and filling dynamics, and longitudinal, radial and
circumferential strain. T
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We present the feasibility and importance of a fully automated
multi-step QC pipeline by (1) running 700 new CMR exams cases
(not earlier seen during training) through the pipeline, and (2)
presenting a video (Supplementary Video 1) of the full analysis
for a good-quality case. For the 700 cases we ran through the
pipeline we report the average time for selection and complete
cine analysis from a full CMR study, and again report sensitivity,
specificity and balanced accuracy of error detection.

RESULTS

Study Population
Of the 3,827 CMR exams used for this study 3,448 were used
for the training and validation of CNNclass and CNQC [1,026
acquisition of 16,151 (6.4%) were excluded because of grossly
disruptive artifacts or grossly distorted anatomy]. These included
patients undergoing clinical scans at GSTFT as well as subjects
voluntarily enrolling onto the UK BioBank project, yielding
a heterogeneous population in terms of sex (55% male) and
clinical presentation (43% healthy, the remaining displaying a
wide variety of cardiovascular pathologies, as shown in Table 1).

The remaining 379 CMR scans were used to test the complete
framework. These were all selected from the GSTFT database to
obtain a population representative of routine clinical practice.
Demographic characteristics are comparable to the training
population, but clinical presentation wasmore variable, with only
18% of patients having no cardiovascular pathology.

Population characteristics are summarized in Table 1.

Class Identification CNN
Precision, recall, F1-score, accuracy for all CNNclass are
presented in Table 2. All trained architectures showed excellence
performance, with accuracy ranging from 0.989 to 0.998.
DenseNet and ResNet reached highest accuracy, i.e., 0.988.
DenseNet showed best precision, recall and F1-score for
conventional cine classes: 0.998, 1.00, 0.999 for 2Ch, 1.00, 1.00,
1.00 for 3Ch, 1.00, 0.998, 1.00 for 4Ch, and 0.996, 0.999, 0.998
for SAX.

Quality Control CNN
Precision, recall, F1-score, and accuracy for all CNNQC are shown
in Table 3. Accuracy was variable for different architectures and
ranged from 0.751 to 0.861 for 2Ch, from 0.690 to 0.806 for
3Ch, and from 0.705 to 0.859 for 4Ch. Precision, recall and F1-
score were consistently lower for the “wrong” class compared to
the “correct” class for all trained architectures and across the 3
different chamber views.

Complete Framework
Sensitivity, specificity, and balanced accuracy of each constructed
framework to identify and select one good quality 2Ch, one good
quality 3Ch, and one good quality 4Ch image for each exam
are shown in Table 4. For the sake of brevity, we present the
results of one CNNclass, i.e., DenseNet, given the very high and
similar performance of all different architectures, combined with
all possible CNNQC’s.
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TABLE 4 | Framework validation.

Framework for image identification and selection

DenseNet CNNclass+

2Ch-CNNQC 3Ch-CNNQC 4Ch-CNNQC

Network SEN SPE BACC SEN SPE BACC SPE SEN BACC

AlexNet 79.4 89.8 84.6 84.4 85.8 85.1 70.3 90.9 80.6

DenseNet 75.0 91.1 83.0 93.2 85.3 89.2 88.2 90.9 89.5

MobileNet 78.1 92.4 85.2 88.9 85.9 87.4 72.2 91.9 82.1

ResNet 77.8 91.4 84.6 88.9 85.1 87.0 83.3 90.9 87.1

ShuffleNet 89.7 91.5 90.6 88.9 85.9 87.4 93.9 89.2 91.6

SqueezeNet 55.3 88.2 71.8 51.8 91.0 71.4 23.3 95.5 59.4

VGG 84.4 91.8 88.1 84.8 85.1 84.9 79.4 91.4 85.4

SEN, Sensitivity; SPE, Specificity; and BACC, balanced accuracy of each constructed framework for image identification and selection. Best performing framework per class is highlighted

in blue.

The best performing framework was: DenseNet CNNclass

+ ShuffleNet 2Ch-CNNQC (sensitivity = 89.7%, specificity =

91.5%, balanced accuracy = 90.6%), DenseNet 3Ch-CNNQC

(sensitivity = 93.2%, specificity = 85.3%, balanced accuracy =

89.2%), ShuffleNet 4Ch-CNNQC (sensitivity = 93.9%, specificity
= 89.2%, balanced accuracy= 91.6%).

Cohen’s k for intra- and inter-observer agreement for the same
manual operator and between the two different operators were
0.79 and 0.60, respectively.

Full Pipeline: From Scanner to Report
The sensitivity, specificity and balanced accuracy of the
integrated view selection and quality-controlled cardiac analysis
pipelines was 96.3, 85.0, and 90.6%, respectively. Performance
was also assessed for healthy and pathological cases separately.
Results are summarized in Table 5.

The average time for selection and complete cine analysis
from a full CMR study was between 4 and 7min for a clinical
CMR exam.

Supplementary Video 1 portrays how implementing the new
framework prior to segmentation results in good quality analysis.

DISCUSSION

In this study we present a DL-based framework to identify all
conventional cine views from a full CMR exam, and subsequently
select one image per class of good quality for further automated
image analysis. To the best of our knowledge, this is the first
automated framework developed for this purpose.

The framework was trained on a large database, a prerequisite
to develop DL tools of good quality. It was also trained on
multivendor and clinically heterogeneous data, which makes
it generalizable to be implemented as the first step for other
existing tools for image analysis. Moreover, the framework was
developed through training and testing of 7 state-of the art CNN
architectures for each step. In DL, several network variants are
available, each exhibiting different strengths and weaknesses.
Studies often focus on a single highly individualized network,

TABLE 5 | Full pipeline performance.

Full pipeline

BACC SEN SPE

Healthy 92.3 96.5 88.1

Pathological 87.3 95.7 78.9

Global 90.6 96.3 85.0

SEN, Sensitivity; SPE, Specificity; and BACC, balanced accuracy of full pipeline, global,

and for left (LV) and right ventricle (RV), and healthy and pathological hearts.

tailored for a task through multiple trial-and-error experiments.
This makes reproduction of the methods and appreciation of
its performance in the context of other datasets challenging. In
our work, we present the data of all trained CNN architectures,
thus displaying our selection process in a reproducible, fair, and
meaningful way.

Finally, we integrated the new framework as the first step
of a larger pipeline we had previously developed (8), and we
demonstrated that it could produce highly accurate, rapid, and
fully-automated cine analysis from a complete collection of
images routinely acquired during a clinical study.

Class Identification CNN
Class identification is the first necessary step for image
analysis, making algorithmic classification of standard views a
fundamental step for true automatization of analysis (19). DL
has been used to meet this need for automated analysis of echo
images (20, 21), but not in the field of CMR.

Identification of conventional cine classes can be seen as
a trivial task. Nonetheless it is time consuming, especially
in long CMR studies, where a multitude of sequences are
acquired. Moreover, view recognition cannot rely on the name
of the sequences, as these are not replicated across groups and
misnaming is common, especially when images are repeated
due to insufficient quality or slight errors in view-planning,
or added during acquisition. These characteristics make the
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problem of class identification well-suited for automation. In
computer vision tasks in particular, DL has shown excellent
performance (22). This is reflected by the high performance
of all trained CNNclass architectures, which had an accuracy
approaching 100%. Precision, recall and F1-scores were mostly
between 0.99 and 1 for all classes.

Quality Control CNN
The second DL component of our framework was trained to add
a quality-control step to our framework by identifying images
of insufficient quality or inadequate planning to inform the
automated image analysis process.

Quality control is crucial to transfer DL research tools to the
clinical reality in a safe manner, and its importance is increasingly
recognized (5, 10, 23, 24). The performance of our CNNQC was
lower compared to the CNNclass with highest recorded accuracy
of 0.86 for 2Ch and 4Ch, and 0.80 for 3Ch. This is explained
by several reasons. First, the input data were highly unbalanced,
which is a natural consequence of the fact that radiographers
aim to acquire good quality images, resulting in the poor quality
class being significantly underrepresented. This is reflected by
the significantly lower precision, recall and f1-scores for the
identification of “wrong” images compared to that of “correct”
ones. To reduce the bias of unbalanced data, we used cross
entropy loss, adaptive learning rate scheduler, and balanced
accuracy, but such bias can never be fully controlled. Second,
images to be considered of insufficient quality have a wide
range of problems, from motion artifacts to off-axis planning of
different types, making their grouping into one class difficult for
the CNN. In particular, when evaluating 3Ch views, the quality of
both the cardiac chambers and the aorta were considered, which
might explain the lower performance compared to 2Ch and 4Ch
views. On the other hand, separation into different classes would
have resulted in further imbalance of the data, with insufficient
numbers in each hypothetical poor-quality class. Therefore, we
decided to group them together. Last, there is a degree of
subjectivity in this task, as the same problem can be present
to a varying degree of severity; for example, off-axis planning
of the 4Ch view can result in the presence of a clear LVOT,
or just a small disruption of the basal septum. The subjectivity
of QC is reflected in the intra- and inter-observer variability
during manual assessment. Consequently, it is both unlikely and
unnecessary for any algorithm to reach 100% accuracy in this
task. The cases with low degree of severity were the most likely
to be misclassified, as well as the most frequent source of inter-
and intra-observer disagreement, as displayed in Figure 2.

Complete Framework
For the complete framework, we selected the CNNclass and
CNNQC that performed best in combination with a selection
algorithm, rather than the networks that performed best in the
validation of the individual steps. This was done for two reasons.
First, a sequential process can leverage individual strengths and
weaknesses to obtain the best combined result. Second, the
addition of the selection algorithm after the two CNNs aimed at
achieving a more complex and possibly more clinically relevant
task: selection of images for further analysis, which can be highly

time-consuming, especially in long exams containing several
acquisitions. It was therefore our intent to test the integrated
framework and select the one with the best overall performance.

The integration of the three steps of the framework yielded
an accurate and rapid system to select images of interest
for analysis. The best combination was DenseNet CNNclass,
ShuffleNet 2Ch-CNNQC, DenseNet 2Ch-CNNQC, ShuffleNet
4Ch-CNNQC, which had a 90% sensitivity for 2Ch, 93% for
3Ch, and 94% for 4Ch acquisitions. This is achieved at the cost
of a small proportion of good quality images being mistakenly
labeled as erroneous, thus requiring clinician review. However,
we believe this is a reasonable compromise to ensure clinical
safety within an automated process. Moreover, the process of
review is fast in case of data falsely labeled as erroneous, which
only requires a visual check from the clinician to accept the
analysis results.

Full Pipeline: From Scanner to Report
Using the image-processing steps developed in this paper, we
were able to present the first pipeline for analysis of cardiac
function from cine CMR that automates the complete process
from scanner to report, offering an automated system that
reproduces manual analysis in current clinical practice. This
pipeline is characterized by a high degree of QC (one step
in the new framework, two steps in the previously published
one). Sequential QC steps focusing on different quality problems
ensures a “Swiss cheese” framework, where if a poor-quality
image slips through a first barrier, it will likely be flagged up in a
later stage. Supplementary Video 1 displays how the new quality
control step aids in selecting images where segmentation can be
performed at high standards by subsequent pipeline steps.

Moreover, the addition of the new framework offers
automated selection of all standard cine views, which can be
further exploited for analysis of parameters beyond conventional
ones, such as longitudinal strain and atrioventricular valve
systolic excursion, expanding the role of CMR for the assessment
of systolic and diastolic function.

The full pipeline is highly accurate, with a focus on high
sensitivity, showing an improvement compared to our previously
published work (5). The pipeline is also significantly time-
efficient, producing outcome measures in about 4min for
standard scans, and in up to 7min for longer research scans. This
is faster than the time reported for the initial pipeline (5), due to
changes in the previously developed code.

In the future, we aim to extend our framework to identify
and analyze other CMR sequences, including late gadolinium
enhancement, flow and T2 mapping. Moreover, with an
expanding data set we will be able to train quality control CNNs
to recognize specific types of quality and planning errors. In order
to decrease subjectivity of this task, a collaborative initiative to
build a consensus across a vast number of operators, similar
to a recent one developed in the field of echo and AI (25),
would be of great value. Lastly, our method now requires post-
processing and is separated from the CMR scanner. In the
future, effort should be made for direct implementation on the
scanner console. In particular, the implementation of CNNQC

at the time of image acquisition would aid radiographers by
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FIGURE 2 | Manual vs. automated classification. Visual representation of: (first line) cases classified as “correct” both by manual assessment (both operators) and

CCNQC; (second line) cases classified as “wrong” both by manual assessment (both operators) and CCNQC; (third line) cases classified as “wrong” by manual

assessment (with disagreement between operators for 2-chamber) and as “correct” by CCNQC. 0, correct; 1, wrong; Ch, chamber; GT, ground truth; R1, first

operator; R2, second operator.

promptly detecting images of unsatisfactory quality. This would
improve image quality upstream and yield a greater accuracy of
downstream image analysis (26).

Study Limitations
Our dataset did not include CMR studies acquired with General
Electrics (GE), thus limiting our framework’s generalizability.
However, using Philips and Siemens granted a high degree
of variability, which would facilitate further training with
GE data.

DL algorithms inherently are black boxes. Therefore,
interpretation of decisions remains challenging. In this paper we
used a stepwise approach of classification and QC algorithms
instead of a fused algorithm to allow at least some interpretation
of the DL-based decisions.

Moreover, although we included a large number of patients
with ACHD to train and test the model, exclusion of grossly

distorted anatomy limits the use of this framework in patients
with severe ACHD.

The framework presented in this paper performs limited
quality control for short axis. We decided not to train a further
CNN for this view as already present in the previously validated
pipeline, and it would have therefore been redundant.

CONCLUSIONS

We developed and validated a framework to select cine
acquisitions and perform QC of the selected images prior
to automated cine CMR image analysis. We show that our
network is able to select cine CMR from a full clinical CMR
exam accurately and screen for image quality with a high
rate of detecting erroneous acquisitions. We implemented our
developed framework as the first step of a wider quality-
controlled pipeline to obtain automated, quality-controlled
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analysis of cardiac function from short and long axis cine images
from complete CMR clinical studies.
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