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Left Ventricular (LV) Non-compaction (LVNC), Hypertrophic Cardiomyopathy (HCM),

and Dilated Cardiomyopathy (DCM) share morphological and functional traits that

increase the diagnosis complexity. Additional clinical information, besides imaging data

such as cardiovascular magnetic resonance (CMR), is usually required to reach a

definitive diagnosis, including electrocardiography (ECG), family history, and genetics.

Alternatively, indices of hypertrabeculation have been introduced, but they require

tedious and time-consuming delineations of the trabeculae on the CMR images. In

this paper, we propose a radiomics approach to automatically encode differences in

the underlying shape, gray-scale and textural information in the myocardium and its

trabeculae, which may enhance the capacity to differentiate between these overlapping

conditions. A total of 118 subjects, including 35 patients with LVNC, 25 with HCM,

37 with DCM, as well as 21 healthy volunteers (NOR), underwent CMR imaging.

A comprehensive radiomics characterization was applied to LV short-axis images to

quantify shape, first-order, co-occurrence matrix, run-length matrix, and local binary

patterns. Conventional CMR indices (LV volumes, mass, wall thickness, LV ejection

fraction—LVEF—), as well as hypertrabeculation indices by Petersen and Jacquier,

were also analyzed. State-of-the-art Machine Learning (ML) models (one-vs.-rest

Support Vector Machine—SVM—, Logistic Regression—LR—, and Random Forest

Classifier—RF—) were used for one-vs.-rest classification tasks. The use of radiomics

models for the automated diagnosis of LVNC, HCM, and DCM resulted in excellent

one-vs.-rest ROC-AUC values of 0.95 while generating these results without the

need for the delineation of the trabeculae. First-order and texture features resulted

to be among the most discriminative features in the obtained radiomics signatures,

indicating their added value for quantifying relevant tissue patterns in cardiomyopathy

differential diagnosis.
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1. INTRODUCTION

Cardiomyopathies (CMs) are defined as primary myocardial
disorders in the absence of other conditions that may affect
the structural or functional properties of the heart’s muscle
(1). CMs are divided into distinct morphologic phenotypes
(1), including hypertrophic cardiomyopathy (HCM) and dilated
cardiomyopathy (DCM) as two of the most prevalent CMs.
HCM is characterized by an increase in left ventricular (LV) wall
thickness (2), DCM by LV (or biventricular) systolic dysfunction
and dilatation (3), while both disorders are unexplained by
loading conditions. Left ventricular non-compaction (LVNC) is a
recently defined and poorly understood condition, characterized
by prominent LV trabeculae, a thin compacted myocardial layer,
and deep inter-trabeculae recesses (4).

Cardiac magnetic resonance (CMR) is current the gold
standard imaging modality for the clinical assessment of CMs,
as well as to identify and differentiate the different phenotypes.
CMR is widely used in the diagnosis of HCM (5), DCM
(6), and LVNC (7–9). However, some LVNC features can
overlap with those of other CMs and LVNC patients might
present with morphological findings of HCM and/or DCM
(10). Furthermore, hypertrabeculation may also occur in the

healthy population, which makes it challenging to differentiate
physiologic from pathological hyper-trabeculation forms (11)
by CMR. The difficulties to differentially and timely diagnose

LVNC in clinical practice has motivated the development of new
imaging indices, in particular, the Petersen (7) and Jacquier (8)
coefficients, which estimate the level of hypertrabeculation in the

LV myocardium. However, these coefficients, while they improve
LVNC diagnosis (9), are challenging and tedious to estimate in
practice, as they require expert and accurate identification and
delineation of the trabeculae on the CMR images. This is a time-
consuming task that is furthermore subject to inter-observer
variability given the inherent complexity of the trabeculae.

Radiomics is an emerging image analysis technique for deeper
phenotyping of cardiovascular health and disease in CMR
(12). It enables the examination of a large pool of advanced
imaging features that describe a wide range of complex, as well
as subtle traits of the cardiac tissues at different scales and
locations. Compared to existing cardiac indices such as those
listed above, radiomics features encode multivariate information
by capturing and combining heterogeneous morphological
(e.g., sphericity, compactness) and appearance (e.g., entropy,
coarseness) properties of the tissues. Hence, in the last years,
several works have shown its potential for identifying new
imaging signatures that can be leveraged for enhanced cardiac
disease understanding (13, 14) and quantification (15–17). In
addition to providing comprehensive indicators of cardiac health
and disease, CMR radiomics features are easier to calculate as
they only require the segmentation of the myocardial boundaries,
and even this segmentation process can be automatized (18).

This work is the first to develop and evaluate a radiomics
model for automatically differentiating LVNC, DCM, and HCM
phenotypes in CMR. Based on a clinical dataset comprising
different CM subgroups as well as healthy subjects from routine
clinical practice, a machine learning pipeline is implemented to

TABLE 1 | Cohort size for each specific disease/control and clinical criteria for

inclusion.

Disease Cohort size Clinical inclusion criteria

DCM 37 Depressed LVEF with increased LV

volumes. Usually normal LV mass, wall

thickness and asymmetry.

HCM 25 Increased LV mass with wall thickness

> 15mm and/or asymmetry > 1.3.

Ussually preserved LVEF.

LVNC 35 Jacquier ratio > 20% and Petersen ratio

> 2.3. LVEF, LV volumes, LV mass and

wall thickness can be normal or not.

NOR 21 Normal conventional CMR values. No

history of relevant cardiovascular disease

or systemic diseases.

combine multiple radiomics features into a novel discriminative
model of LVNC, HCM, and DCM. Subsequently, the obtained
radiomics model is evaluated in great detail and its performance
compared to the one obtained based on CMR indices, including
the existing, manually estimated trabecular indices of LVNC. The
results described in this paper show the promise of the proposed
radiomics approach for achieving state-of-the-art LVNC, HCM,
and DCM differential diagnosis more efficiently, while removing
the need for the delineation of the LV trabeculae.

2. DATA AND METHODOLOGY

2.1. Dataset
The study cohort consists of 118 subjects, including 37 DCM,
25 HCM, and 35 LVNC patients, as well as 21 healthy control
(NOR) subjects. HCM and DCM populations were available
from the 2020 M&Ms MICCAI Challenge dataset (18). All
patients for this study were assessed at the Hospital Universitari
Vall d’Hebron (HUVH) following standard CMR protocols.
Table 1 summarizes the clinical diagnostic criteria for each
disease. In short, HCM, DCM, and LVNC diagnoses were
established by expert cardiologists based on currently accepted
imaging criteria (5–8) combined with other clinical data, such as
electrocardiography, family history, and genetics. The mean age
of the cohort was 49.4±17.97 and 76 subjects (65% of the cohort)
were men (see Tables 2, 3 for more detailed information).

2.2. CMR Clinical Indices
All patients underwent a standard CMR protocol. In brief, all
scans were performed with a 1.5 Tesla scanner (Avanto, Siemens
Healthcare, Erlangen, Germany), with typical cine parameters
as follows: TR/TE (repetition time/echo time) = 3.2/1.5 ms,
voxel size 1.4 × 1.4 × 8 mm, and a slice gap of 2.0 mm. The
temporal resolution was interpolated to 25 phases per cardiac
cycle (28–37 ms). The protocol includes a complete cine short-
axis ventricular stack with the base to apex coverage acquired
using balanced steady-state free procession (bSSFP) with one
breath-hold per image slice. Short axis cine images were obtained
and analyzed. Semi-automatic contouring of LV endocardial and
epicardial end-diastolic (ED) and end-systolic (ES) borders was
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TABLE 2 | Cohort characteristics.

Characteristics Full cohort DCM HCM LVNC NOR

Sample size 118 37 25 35 21

Age (years) 49.39 ± 17.97 50.24 ± 15.12 60.88 ± 17.84 44.57 ± 17.46 40.85 ± 16.99

Sex (M/F) 76 / 42 26 / 11 18 / 7 19 / 16 13 / 8

Male percentage (%) 64.41% 70.27% 72.00% 54.28% 61.90 %

BMI (Kg/m2) 26.37 ± 3.65 27.12 ± 3.89 26.32 ± 2.59 25.24 ± 3.45 25.67 ± 4.38

EDLVV (ml) 169.02 ± 63.88 225.40 ± 67.72 126.54 ± 34.58 159.07 ± 49.61 136.87 ± 24.47

ESLVV (ml) 97.03 ± 66.49 158.19 ± 75.45 51.34 ± 21.01 87.36 ± 45.56 57.65 ± 12.52

LV Mass (g) 122.29 ± 46.06 153.04 ± 51.70 139.05 ± 46.65 95.53 ± 26.37 102.52 ± 18.70

LVEF (%) 47.18 ± 16.03 32.47 ± 12.72 60.23 ± 9.79 47.26 ± 14.14 58.07 ± 4.09

Petersen coefficient 1.77 ± 0.90 1.61 ± 0.53 0.80 ± 0.39 2.86 ± 0.48 1.45 ± 0.54

Jacquier (%) 17.47 ± 10.08 16.70 ± 4.80 12.32 ± 2.72 24.30 ± 15.66 14.10 ± 3.19

ISV (mm) 11.15 ± 4.86 9.40 ± 1.70 19.12 ± 4.41 8.48 ± 1.61 9.09 ± 1.57

PW (mm) 7.26 ± 1.42 7.48 ± 1.46 8.25 ± 1.49 6.51 ± 1.10 6.95 ± 0.92

Assymetry (IVS/PW) 1.51 ± 0.57 1.27 ± 0.18 2.34 ± 0.75 1.30 ± 0.18 1.30 ± 0.16

The table presents the average and standard deviation for the characteristics of the entire cohort, including age, sex, percentage of men, and BMI. On the right are presented the

characteristics of each disease group.

TABLE 3 | Mann Whitney U statistical test for demographics and clinical characteristics group comparison.

Demographics DCM-HCM DCM-LVNC DCM-NOR HCM-LVNC HCM-NOR LVNC-NOR

Age (years) 0.011 0.08 0.05 0.0011 <0.001 0.26

BMI (Kg/m2) 0.354 0.144 0.208 0.378 0.415 0.432

CMR indices

EDLVV (ml) <0.0001 <0.0001 <0.0001 <0.0036 0.08 0.031

ESLVV (ml) <0.0001 <0.0001 <0.0001 <0.0001 0.028 <0.0014

LV mass (g) 0.02 <0.0001 <0.0001 0.0011 0.013 0.1214

LVEF (%) <0.0001 <0.0001 <0.0001 <0.0001 <0.099 0.0005

Petersen coefficient <0.0001 <0.0001 0.094 <0.0001 <0.0001 <0.0001

Jacquier (%) <0.0001 0.014 0.019 <0.0001 0.040 0.0005

IVS (mm) <0.0001 0.017 0.304 <0.0001 <0.0001 0.09

PW (mm) 0.014 0.0007 0.058 <0.0001 0.0006 0.046

Asymetry <0.0001 0.11 0.12 <0.0001 <0.0001 0.4934

P-values provided for existing CMR indices involved in classification. IVS, Inter-ventricular septum; PW, Posterior wall.

performed with Circle 42 (CVi 42) software (Calgary, Canada).
A total of 9 existing CMR indices were quantified, including
LV ejection fraction (LVEF), end-diastolic and end-systolic LV
volumes (EDLVV, ESLVV), LV mass, inter-ventricular septum
(IVS), posterior wall (PW) thickness, asymmetry (IVS/PW),
and Petersen and Jacquier coefficients (7, 8). Right ventricle
contours were not provided for the study; thus features were
not considered. However, these diseases are predominantly
related to the LV cavity, therefore missing information from the
right ventricle was not considered relevant. Fractal dimensions
(9) were not included in the experiments due to its limited
applicability in daily clinical routine and its lack of prognostic
correlation (19). Additionally, Petersen and Jacquier coefficients
(7–9) were considered more validated for this experiments. All
CMR analyses were performed by an expert cardiologist with
several years of experience in the field.

2.3. Radiomics Extraction
From the region of interest provided by the LV endocardial
and epicardial contours, radiomics were extracted from end-
diastole (ED) and end-systole (ES) phases, following a pre-
established pipeline from the open-source Python [(20), version
3.7.9] PyRadiomics library [(21), version 3.0]. A set of 420
radiomics features were extracted from the LV cavity (LV)
and LV myocardium (LVMYO) within the original filter,
including different types: 52 shape, 72 first-order, and 296 texture
features (see Supplementary Material for a full list of radiomics
extracted). We perform a radiomics features characterization
by considering both the ED and ES phases to be able to
identify disease-specific changes over a heartbeat cycle of the
radiomics features.

Shape radiomics features quantify and measure
the morphological traits in segmented contours,
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independently of the gray-level intensity distribution.
These subset of features are easily interpretable, as they
are closely related to surfaces and volumes calculated
with existing CMR indices in clinical routine. Some of
these features include simple metrics such as volume,
elongation, or surface area, and more advanced metrics
like sphericity.

First-order radiomics features are obtained from signal
intensity characteristics based on the histogram. Specifically,
first-order statistics describe the distribution of pixel/voxel
intensities within the image region defined by the mask
through commonly used and basic metrics, regardless of the
spatial relationship (21). First-order radiomics features include
easily interpretable features such as median or mean, and
more mathematically advanced metrics such entropy, energy,
or kurtosis.

Finally, texture radiomics features capture subtle changes
in the gray-scale pixel distribution, identifying tendencies,
and neighboring gray-scale changes through advanced
matrix calculations. Texture features can be grouped in:
Gray Level Co-occurrence Matrix (GLCM), Gray Level Size Zone
Matrix (GLSZM), Gray Level Run Length Matrix (GLRLM),
Neighboring Gray Tone Difference Matrix (NGTDM), and Gray
Level Dependence Matrix (GLDM) (21).

Shape features are expected to capture morphological cardiac
characteristics normally associated with each disease. On the
other hand, both first-order and texture features are expected

to play an important role in identifying grayscale changes in
the LV or LVMYO tissue, a relevant trait of trabeculations in
LVNC subjects.

2.4. Machine Learning Scheme
From the previous section, a total of 420 radiomics features
were extracted and were potential candidates for inclusion in
the targeted radiomics model for disease classification. However,
not all of these features will have predictive power, and hence
feature selection will be first applied to select the most optimal
features for the classification task. We separated this feature
selection process into 2 steps. First, we identify those that are
highly correlated, for each feature, and remove them from the
radiomics set as they carry a similar predictive signal. For this
purpose, we estimated Pearson correlation between all features,
and those above 0.9 were considered redundant. It is well-known
that radiomics are highly redundant thus, with this first step
we only aimed to remove the most correlated ones, and be
further reduced with a more sophisticated feature selector. The
procedure resulted in a reduction from 420 radiomics features
to only 120. This reduced subset is introduced in the Pipeline
function from Python Sci-kit learn package [(22), version 0.24.2]
that has three different steps, including the additional feature
selection method mentioned above:

1. Normalization: Data normalization is required before
introducing the data into the machine learning models

FIGURE 1 | Machine learning validation: 10-fold outer loop Nested CV and a three-fold CV inner loop scheme.
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because different scales in the variables measured represent
that features have different contributions to the model
fitting, and this may introduce bias. We applied the
MinMaxScaling function from the Sci-kit Python library
(22). The StandardScaler was also considered, although no
significant difference was found with a min-max scaling.

2. Feature selection: The number of features remaining was
still large and had to be reduced before reaching the model

TABLE 4 | Summary table of the testing performance of the selected models.

CMR indices Radiomics p-value

Models Mean STD Mean STD

One vs. Rest SVM 0.972 0.03 0.942 0.03 > 0.05

Random forest 0.978 0.03 0.964 0.01 > 0.05

Logistic regression (multinomial) 0.970 0.03 0.956 0.03 > 0.05

The table provides AUC values for CMR existing indices and radiomics, along with the

p-value. Bold values represent the highest AUC value obtained in test.

TABLE 5 | Generic and differential diagnosis AUC testing metrics for Random

Forest model.

CMR indices Radiomics p-value

General model Mean STD Mean STD

Random Forest 0.978 0.03 0.964 0.01 > 0.05

Differential diagnosis models

DCM-vs.-Rest 0.97 0.02 0.93 0.03 > 0.05

HCM-vs.-Rest 1.00 0.00 0.99 0.03 > 0.05

NOR-vs.-Rest 0.95 0.02 0.97 0.02 > 0.05

LVNC-vs.-Rest 0.96 0.04 0.92 0.03 > 0.05

P-values are presented in the table for statistical significance analysis and prove they are

comparable. Bold values represent the highest AUC value obtained in test.

building section. For this purpose, the SelectKBest function
from Python’s Sci-kit learn library (22) was performed. The
algorithm works by selecting the best features based on
univariate statistical tests. It selects the features according to
two different parameters: highest score function and number of
features (k). These parameters had to be defined beforehand.
The score function parameter selected was f_classif, which
computes the ANOVA f -value for the sample and provides
the associated p-value for each feature based on the correlation
with the class label. The k parameter is defined as the number
of features selected by the feature selector. Prior the analysis,
we do not know the optimal number of features to be selected,
therefore the k-value before the analysis had to be defined
within the range of parameters from 5 to 120 (i.e., number of
possible features it may select), to be later introduced in the

FIGURE 3 | In our grid search scheme, we analyzed incrementally the number

of features selected for all the hyper-parameter combinations and we show

that validation AUC was not increasing significantly once reached 30–40

features, with the lowest STD at 40 features. AUC when selecting under 10

features reduced drastically.

FIGURE 2 | Roc curve comparison for differential diagnosis. The left subfigure represents the CMR indices ROC curve. The right subfigure represents the radiomics

ROC curve.
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hyper-parameter optimization Grid Search CV. The number
of features selected is tested iteratively, selecting the best k
radiomics according to the score function and tested further
with the model.

3. Model building: Three different machine learning algorithms
were trained and tested: One vs. Rest Support Vector Machine
(SVM), Multi-class Random Forest (RF), and Multi-class
Logistic regression (LR) for classification (22). According
to a recent review (23), both SVM and RF models were
the most used techniques for conventional ML for image-
based diagnosis. Additionally, prior knowledge from a recent
publication (24) proved also the reliability of SVM and RF
when dealing with radiomics. Finally, we decided to include
Logistic Regression as one of the most-used techniques
in statistical analysis for the purpose of increasing the
comparison benchmark.

For evaluation, the experiment is validated in a nested CV
scheme (25). We performed a 10-fold outer loop and a three-
fold inner loop (see Figure 1 for a more graphical description).
This represents that for each fold in the outer loop, 90% of the
data is kept for training and validation, while the remaining 10%
will be held for testing. The same procedure was performed in
the inner loop for each fold. The remaining train and validation
data were split into 66% for training and 33% for validation.
All the splits in our scheme were performed with Stratified K-
fold sci-kit learn function (22) to keep classes balanced. The
normalization and feature selection steps were performed in each
fold of the nested CV scheme to avoid data leakage. This means
that no knowledge of the held test set was introduced into the
training stage, which could corrupt the learning process and its
posterior generalization.

Models’ performance are dependent on the hyper-parameters
selected (26). For this purpose, a Grid Search CV (22) was applied
in the inner loop, thus ensuring the optimal hyper-parameters
were selected. Grid Search CV (22) is an optimizer algorithm
that calculates the model’s performance for each combination of
hyper-parameters and keeps the one that achieved the highest
prediction metric, to be later tested on the testing held data (see
Supplementary Table 1 in Supplementary Material for the full
list of hyper-parameters used).

Paired t-test on both distributions of testing AUC
performances was performed to analyze the statistical
significance for each general machine learning model across
CMR indices and radiomics, as well as for each differential
diagnosis (i.e., identifying a single disease class from the whole
cohort) and prove they were comparable. Additionally, Receiver
Operating Characteristic (ROC) curves were calculated to
provide a better representation of the true and false-positive
rates for each differential diagnosis. Due to the architecture
of our Nested CV scheme, we obtain 10 different tests AUC,
one per fold (10-fold outer loop, see Figure 1, left side). This
means that each of the 10 models resulted from the Grid Search
CV in the inner loop might be different (i.e., the combination
of hyper-parameters and the number of features selected may
vary depending on different characteristics of the training and
validation set). Thus, to present the most relevant features on

average in a single list, we analyzed the features selected by each
of the 10 models and selected for representation those features
that remained constant across the 10-folds and were finally
sorted by feature importance score. With this, we create a highly

TABLE 6 | Top-10 best performing radiomics for each differential diagnosis,

divided across subsection.

Radiomics feature Type Region Phase Weight (%)

DCM vs. Rest

Minor axis Shape LVMYO ES 7.0

Volume Shape LV ES 6.7

Least axis Shape LVMYO ES 5.8

Max2D diameter slice Shape LV ES 5.5

Least axis Shape LV ED 5.4

Least axis Shape LVMYO ED 5.1

Long run high gray level emphasis GLRLM LV ES 5.1

Minor axis Shape LVMYO ED 5.0

Volume Shape LV ED 5.0

Sphericity Shape LVMYO ES 5.0

HCM vs. Rest

Surface area to volume ratio Shape LVMYO ES 7.4

Sphericity Shape LVMYO ES 7.2

Large dependence high gray level E. GLDM LV ES 6.9

Long run high gray level E. GLRLM LV ES 6.7

Sphericity Shape LVMYO ED 6.2

Skewness First order LV ES 5.3

Gray level non-uniformity GLSZM LV ES 5.1

Autocorrelation GLCM LV ES 5.0

Energy First order LV ES 4.9

Surface area to volume ratio Shape LV ES 4.8

NOR vs. Rest

Gray level non-uniformity GLRLM LV ES 6.5

Run length non-uniformity GLRLM LVMYO ES 6.0

Sphericity Shape LVMYO ES 5.9

Low gray level run E. GLRLM LVMYO ED 5.7

Dependence variance GLDM LVMYO ES 5.7

Max2D diameter slice Shape LVMYO ES 5.2

Gray level non-uniformity GLSZM LVMYO ES 5.2

Long run high gray level emphasis GLRLM LVMYO ED 5.2

Max2D diameter slice Shape LV ES 5.0

Minor axis Shape LV ED 4.9

LVNC vs. Rest

Large dependence low gray level E. GLDM LVMYO ES 6.6

Surface area to volume ratio Shape LVMYO ED 6.5

Inverse variance GLCM LVMYO ES 6.1

Long run emphasis GLRLM LVMYO ES 5.9

Large area low gray level E. GLSZM LVMYO ES 5.7

Large dependence low gray level E. GLDM LVMYO ED 5.6

Large area emphasis GLSZM LVMYO ED 5.2

Zone percentage GLSZM LVMYO ED 5.1

Long run emphasis GLRLM LVMYO ED 5.1

Percentile 90 First order LVMYO ES 4.8
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approximated list of the most relevant radiomics features for
each classification.

Since it is possible that different iterations selected a different
number of features (i.e., for example, fold 1 could select 30
features and fold 2, 40 features), we analyzed the validation
AUC values for each number of features (k = 10, 20, 30, 40)
across all the combination of hyper-parameters to see the effect
of increasing the number of features on AUC (see Figure 3).
Finally, to provide a more clinical perspective, we analyzed the
implications of feature type (shape, first-order, or texture), region
(LVMYO, LV cavity), and phase (ED, ES) for each differential
diagnosis, and linked them with the existing clinical knowledge.

3. RESULTS

3.1. Classification Performance
In the first experiment, we evaluated and compared the
performance of the different machine learning models (namely
RF, OVR-SVM, and LR). As it can be seen in Table 4, the highest
AUC values were obtained by the RF technique, for all models.
Hence, the RF technique is used as the baseline models in the
remainder of the experiments. Table 5 presents the in-depth
results of the RF and each differential diagnosis.

Subsequently, we performed a comparison between the AUC
scores obtained by the existing CMR indices (i.e., standard
model) and radiomics models for classification. As it can be
seen from Table 4, the radiomics model had a comparable
performance to the standard model and there was no statistically
significant differences between the two models (p > 0.05).
However, the radiomics model was obtained without the expert
delineation of the trabeculae. In more detail, the ROC curves for
the classification models are presented in Figure 2.

3.2. Radiomics Signatures
In this section, we provide more details on the contributions of
the different radiomics features to the classification models. We
analyzed incrementally the number of features selected for all the

TABLE 7 | Top-10 best performing radiomics for RF model.

Radiomics feature Type Region Phase Weight (%)

General RF model

Sphericity Shape LVMYO ES 4.9

Long run high gray level emphasis GLRLM LV ES 4.6

Sphericity Shape LVMYO ED 3.6

Surface area to volume ratio Shape LVMYO ES 3.6

Gray level non-uniformity GLSZM LV ES 3.4

Minimum First order LVMYO ED 3.4

Least axis Shape LV ED 2.5

Large area low gray level emphasis GLSZM LVMYO ES 3.0

Volume Shape LV ED 2.9

Coarseness NGTDM LV ES 2.2

Please check Supplementary Table 2 in Supplementary Material for the full approximate

list of radiomics selected.

hyper-parameter combinations and we showed in Figure 3 that
the AUC values did not increase significantly after integrating
30–40 radiomics features in the model.

To further illustrate the predictive power of the radiomics
features, Table 6 presents across subsections the 10 best
performing radiomics for each differential diagnosis, sorted by
their weighted feature importance (in percentage). Moreover,
Table 7 shows the 10 best radiomics features involved for the
general RF model.

By looking at Figure 4, we can observe that shape features play
an important role when classifying DCM against the rest of the
diseases. Alternatively, texture features have a higher impact in
the classification of HCM and healthy subjects, and even a higher
impact in the differential diagnoses of LVNC.

Left side of Figure 5 shows the distribution of the selected
radiomics features across the cardiac structures (i.e., LVMYO
vs. LV cavity). For the identification of DCM, most of the
radiomics features (65%) pertained to the LV cavity, while the
remaining 35% belonged to the LVMYO. Conversely, features
extracted from the LV cavity and the LVMYO participated
equally to the identification of HCM and healthy subjects. Finally,
the largest difference in terms of region importance can be
found for LVNC, where almost 96% of the features belonged
to LVMYO, with only a 4% to LV cavity (see Figure 5, left
image). This last finding is in line with the existing clinical
knowledge. Normally, papillary muscles are considered inside
the LV cavity and not as a myocardial mass, according to the
guidelines and clinical consensus among cardiologists. But in
patients with LVNC conditions, trabeculae and papillary muscles
are quantified [within Jacquier coefficient (8)] outside the LV
cavity and included in the myocardial mass (LVMYO). For this
reason, contrary to what the name itself suggests, the assessment

FIGURE 4 | Differential diagnosis overlapping radar plot, comparing the

distribution of the selected radiomics across types of radiomics.
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FIGURE 5 | Distribution of the selected radiomics features across the cardiac structures [left image, i.e., LV myocardium (LVMYO) vs. LV blood pool (LV)] and cardiac

cycle phase (right image). For this analysis, all the radiomics selected by the RF model were used.

between LVNC and the rest of cardiomyopathies is determined
by changes or differences in the LVMYO.

Regarding the contribution of cardiac cycle phases, ES
radiomics were more important than ED features for the
classification of DCM, HCM, and healthy subjects. However, ES
and ED phases play a similar role when assessing LVNC (see
Figure 5, right image).

Finally, we compared the time needed to obtain the diagnoses
using the standard as well as the proposed radiomics models.
With the existing CMR indexes, our clinical experts spent
approximately 9–12 min to delineate the trabeculae and then
derive an LVNC diagnosis, on average. In contrast, for the
proposed radiomics-based approach, the time to assess one
subject was reduced to 10–20 s depending on the image
characteristics [i.e., volume, slice images, or bin width (21)].

4. DISCUSSION

4.1. Summary of Findings
Machine learning-based radiomics models showed excellent
performance for differentiating between hypertrophic
cardiomyopathy, dilated cardiomyopathy, left ventricular
non-compaction, as well as healthy subjects. According to the
results presented in Table 4 and Figure 2, radiomics and existing
CMR indices resulted in similar performances.

The 10-most significant radiomics features for the general RF
model comprise a combination of radiomics types, regions, and
heart cycle phases (see Table 7). Looking in detail, myocardium
sphericity seems to play an important role in the overall
classification, occupying the first and third spots in terms of
predictive power for the ES and ED phases, respectively. This can
be explained by the remodeling of the heart that affects the global
and regional structure of the left ventricle.

Moreover, texture features were found to add substantial
information, positioning in the second top position of the
ranking, which underlines the widely accepted diagnostic
importance of myocardial tissue characteristics such as

myocardial fibrosis (see Table 7). Specifically, Long Run
High Gray Level Emphasis is a texture feature that explains
longer contrasted gray level strings/regions, which can be related
to the existence and prominence of myocardial trabeculations,
typically associated with LVNC.

Regarding the radiomics features for each differential
diagnosis, differences were found among the various diseases.
Concretely, we can observe how the contribution of the
radiomics features to the prediction are distributed, by type
(Figure 4), region and phase (Figure 5). While shape features
seem to play the most important role in DCM classification,
texture features are more important when classifying HCM and
LVNC subjects. This finding is in line with clinical knowledge:
DCM is defined primarily by a dilation of the left ventricle, while
myocardial fibrosis has a pivotal role in HCM diagnosis and
LVNC is defined by the presence of myocardial trabeculations.

4.2. Limitations and Future Work
The findings presented in this paper must be considered in
light of the study limitations, and future work may take
different directions. Firstly, while the radiomics performance for
automated diagnosis is promising, these results were obtained
based on a single-center small-size clinical cohort. To confirm
these promising results, future studies should be extended
toward multi-center studies. Furthermore, this work relied on
semi-automated, manually controlled, delineations of the LV
endo and epi-cardial contours on the short-axis images, before
the extraction of the existing indices and radiomics features.
However, automatic segmentation of the ventricular boundaries
has been extensively investigated using deep learning (18) and
these models could be extended to segment pathological cases in
particular for LVNC. Finally, this paper focused on the diagnosis
of LVNC and related CMs. In clinical practice, subsequently,
prediction of LVNC related events before they occur would
enable early and personalized prevention. Our plan is to extend
the proposed radiomics models to enable patient-specific risk
prediction and prognosis estimation after LVNC diagnosis.
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5. CONCLUSIONS

CMR radiomics constitutes a promising approach to
differentially diagnose overlapping and complex conditions
such as HCM, DCM, and LVNC. The classification performance
of radiomics models are in-line with the one obtained by using
existing CMR indexes but the diagnoses can be reached fully
automatically without the need for expert delineation of the
trabeculae as in previous works.
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