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Neutrophils and platelets are among the most abundant cell types in peripheral blood

and characterized by high plasticity and a readily available reservoir of surface proteins

and secretable granule contents. Receptor-mediated activation and granule release

predispose both cell types for rapid responses to various stimuli. While neutrophils

provide the first line of defense to microbial infections and platelets are known for their

aggregatory functions in hemostasis and thrombosis, research of the past decade has

highlighted that both cell types jointly shape local and systemic immune responses

and clot formation alike. Concomitant activation of neutrophils and platelets has

been observed in a variety of cardiovascular diseases, including arterial and venous

thrombosis, atherosclerosis as well as myocardial infarction and ischemia-reperfusion

injury. In this review, we describe the mechanisms by which neutrophils and platelets

interact physically, how release of granule contents and soluble molecules by either

cell type affects the other and how this mutual activation supports the efficacy of

immune responses. We go on to describe how activated platelets contribute to host

defense by triggering neutrophil extracellular trap (NET) formation in a process termed

immunothrombosis, which in turn promotes local platelet activation and coagulation.

Further, we review current evidence of hazardous overactivation of either cell type and

their respective role in cardiovascular disease, with a focus on thrombosis, myocardial

infarction and ischemia-reperfusion injury, and describe how neutrophils and platelets

shape thromboinflammation in COVID-19. Finally, we provide an overview of therapeutic

approaches targeting neutrophil-platelet interactions as novel treatment strategy in

cardiovascular disease.
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INTRODUCTION

Neutrophils and platelets are among the most abundant cells in peripheral blood. Traditionally,
a clear division of labor was proposed between these cell types: one providing the most essential
of host defenses against invading pathogens (1), the other forming plugs to prevent bleeding
(2). Evolutionarily, inflammatory reactions to invading pathogens and hemostatic responses share
common features: Both infection and impairment of vascular integrity observed in sterile injury
lead to exposure of damage- or pathogen-associated molecular patterns (PAMPs and DAMPs),
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respectively, the sensing of which results in immune cell
activation, cytokine and granule release and concurrent effects
on vascular homeostasis (3, 4). Consequently, the traditional
view of platelets and neutrophils acting separately has started
to blur, with both clinical and experimental studies pointing
toward the involvement of both cell types in coagulation and
immunity alike (5, 6). Interestingly, neutrophils and platelets
show significant overlap of surface receptors such as Toll-like
Receptors (TLR) (1, 7–9) capable of sensing DAMPs and PAMPs,
and both possess an intracellular weaponry of granules, ready to
be released upon detection of pathogens or loss of endothelial
integrity, respectively.

In this review, we describe the armamentarium of both
platelets and neutrophils comprising multiple surface receptors
and soluble agonists that shape the intricate interplay between
both cell types. We go on to describe the effects of reciprocal
platelet-neutrophil activation observed in inflammation and
its impact on immune responses and clot formation alike.
Specifically, we focus on platelet-neutrophil interactions and
their hazardous overactivation in cardiovascular disease, with a
focus on atherosclerosis, thrombosis, and ischemia-reperfusion
injury (IRI). We then provide an overview on how detrimental
platelet and neutrophil overactivation and exhaustion drive
cardiovascular complications and a prothrombotic phenotype
observed in severe Coronavirus disease 2019 (COVID-19).
Finally, we summarize currently investigated therapeutic
approaches that target platelet-neutrophil interactions.

MECHANISMS OF
PLATELET-NEUTROPHIL INTERPLAY

Direct Interactions
P-selectin on platelets and P-selectin glycoprotein ligand-1
(PSGL-1) on neutrophils are among the most important
molecules mediating platelet-neutrophil interaction. Together
with glycoprotein (GP) Ibα and the neutrophil integrin αMβ2,
known as Mac-1 (CD11b/CD18), this receptor pair drives
platelet-neutrophil interactions under (thrombo)inflammatory
conditions (Figure 1A) (10–12). Indeed, adherent neutrophils
were shown to actively scan flowing blood for activated platelets
using PSGL-1-positive uropods to subsequently transmigrate
across the inflamed endothelium (11). Mac-1 also mediates
neutrophil-platelet interactions through a third receptor
expressed on platelets, the junctional adhesion molecule 3
(JAM-3) (13).

Interestingly, P-selectin-induced neutrophil activation
supports neutrophilic secretion of cathepsin G (CTSG) and
neutrophil elastase (ELANE), both of which cleave the N-
terminus of surface PSGL-1, thereby negatively regulating
further activation (12). Direct physical interactions between
platelets and neutrophils are also mediated by CD40 ligand
(CD40L/CD154) and CD40 (14), the adhesion-molecule ICAM-
2 and integrin αLβ2, known as Lymphocyte function-associated
antigen 1 (LFA-1) (5), and TREM-1 ligand (TREM-1L)
and TREM-1 (15) on platelets and neutrophils, respectively
(Figure 1A). Binding via these receptors can induce reciprocal

activation of downstream signaling cascades: For e.g., TREM-
1L/TREM-1 binding promotes neutrophil reactive oxygen
species (ROS) production, degranulation and release of IL-8
(15, 16), without affecting platelet aggregation (15), while
CD40-CD40L interaction boosts platelet-neutrophil interaction,
platelet activation and enhances neutrophil recruitment through
upregulation of Mac-1 (17, 18).

Notably, well-known platelet adhesion receptors GPIb-V-
IX complex and integrin αIIbβ3, known as GPIIBIIIA, which
mediate binding of extracellular matrix and plasma proteins such
as von Willebrand factor (vWF) and fibrin(ogen), were shown
to also confer platelet-neutrophil interactions through Mac-1.
The immunoreceptor tyrosine-based activation motif (ITAM)
receptor GPVI, the main platelet receptor for collagen, aids in
local and systemic immune responses by promoting platelet-
neutrophil aggregate formation and neutrophil recruitment in
a model of gram-negative, pneumonia-driven sepsis (19). A
recent study found that septic patients requiring intensive care
treatment displayed acquired dysfunctions in GPVI-mediated
platelet activation (20).

Interactions Through Secreted Molecules
and Cytokines
While not directly mediating platelet-neutrophil interactions,
numerous receptors are implicated in activation of platelets,
which subsequently promote neutrophil binding and
propagation of activation. These receptors include TLRs like
TLR4, which promote both neutrophil activation and neutrophil
extracellular trap (NET) formation in endotoxemia and gram-
negative sepsis (8), complement receptors such as C3aR,
which enhance thromboinflammation and neutrophil-mediated
damage in myocardial infarction (21), and eicosanoid receptors
(Figure 1B). Regarding the latter, a seminal study recently
described the shuttling of neutrophil-derived arachidonic acid
into platelets in a P-selectin-dependent manner, which was
processed to thromboxane A2 (TXA2) by activated platelets
(22). Subsequent TXA2 secretion induced endothelial cell
activation, ICAM-1 expression and promoted neutrophil
recruitment to sites of inflammation. Consequently, targeting
of platelet activation through blockade of soluble agonist
receptors such as the adenosine-diphosphate (ADP) receptor
P2Y12 reduced platelet-neutrophil interaction and attenuated
thromboinflammation in endotoxemia (23, 24).

Platelet secretion of several soluble mediators affects
neutrophil functions under steady-state conditions and
inflammation alike: Platelet-derived heterodimers consisting
of platelet factor 4 (PF4) and CCL5/RANTES (regulated on
activation, normal T cell expressed and secreted) stored in alpha
granules (2, 25) promote neutrophil extravasation in acute lung
injury (26) and are known to modulate neutrophil function in
sterile inflammation (27). Similarly, soluble P-selectin dimers
shed by activated platelets promote leukocyte adhesion and NET
formation under inflammatory conditions in mice (28). Further,
High mobility group box 1 (HMGB1) secreted by activated
platelets enhances neutrophil recruitment by activating Receptor
for advanced glycation endproducts (RAGE) on neutrophils
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FIGURE 1 | Direct and indirect platelet-neutrophil interactions. (A) Overview of neutrophil (left, petrol) and platelet receptor pairs (right, yellow) that directly engage and

promote reciprocal activation of either cell type. (B) Overview of soluble agonists secreted by platelets promoting neutrophil activation (left panel) and vice versa (right

panel). CTSG, cathepsin G; ELANE, neutrophil elastase; EV, extracellular vesicles; HMGB1, High mobility group box 1; ROS, reactive oxygen species; TXA2,

thromboxane A2. Created with BioRender.com.

(29). Similarly, serotonin stored in platelet dense granules
promotes neutrophil CD11b expression, oxidative bursts and
degranulation in mice and men (30). Vice-versa, neutrophil-
derived agonists such as cathelicidins (LL37 in humans, CRAMP

in mice) can activate platelets and thereby propagate thrombus
formation, as shown in mouse models of arterial thrombosis
and histopathological analyses of human thrombi (31). Further,
enzymes such as ELANE and CTSG as well as ROS released by
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neutrophils promote platelet activation (32) through cleavage
of protease-activated receptors (PAR), as recently shown for
CTSG and PAR4 (33). This reciprocal influence of both cell
types is also observed at the level of extracellular vesicles (EVs):
While platelet-derived EVs promote NET formation in septic
shock and dengue virus infection (34, 35) and are able to shuttle
regulatory RNA to neutrophils (36), neutrophil-derived EVs
transfer metabolites to platelets and thereby promote reciprocal
activation (22).

In summary, platelets and neutrophils interact and co-
operate through a vast variety of receptors, soluble agonists
and even EV-mediated shuttling of effector molecules. Since
some of the secreted agonists mentioned above are especially
released after physical interaction of both cell types, direct
binding and subsequent agonist release may promote reciprocal
(hyper)activation at both the local and the systemic level (5, 37).

RECIPROCAL PLATELET AND
NEUTROPHIL ACTIVATION DRIVES
IMMUNOTHROMBOSIS

Reciprocal binding of platelets and neutrophils leads to
phenotypical changes in both cell types. Classical neutrophil
responses upon platelet binding include conformational changes
of adhesion and activation receptors such as CD11b and
CD177, but also shedding of surface molecules like L-selectin
(CD62L) (1). In neutrophils, MAPK- and Syk-mediated signaling
upon platelet interaction mediates production and release of
the neutrophil chemoattractant CXCL8/interleukin-8 (IL-8) and
beta-integrin activation, enhancing neutrophil recruitment and
adhesion to ICAM-1-positive endothelial cells (38).

Functionally, platelet binding can boost phagocytic capacity
and bacterial clearance exerted by neutrophils, as well as
production and ROS secretion under inflammatory conditions
(11, 39). Immuno-responsive platelets also collect and
bundle pathogens, aiding in local control of infection (40).
Consequently, thrombocytopenia is associated with reduced
neutrophil activation and impaired bacterial clearance (41). One
of the most striking features of platelet-neutrophil interactions
is the ability of platelets to trigger neutrophil extracellular trap
(NET) formation, a specific death program by which neutrophils
release nuclear DNA covered with histones and neutrophil
effector enzymes into blood and the interstitium (41). This
process, which is triggered by P-selectin/PSGL-1 interactions
(42) and likely represents an ancient defense mechanism
to prevent spreading of a variety of pathogens including
bacteria, viruses, and fungi (8, 35, 43–47), enables neutrophils
to “ensnare” circulating microbes and facilitates clearance by
phagocytes (8, 41, 48). Consequently, pharmacological or genetic
ablation of NET formation or cleavage of NETs by exogenous
DNases aggravates systemic bacterial load and is associated with
worsening outcome in models of bacterial infection (8, 46, 48).
The complex molecular mechanisms underlying NET formation
and resolution are discussed elsewhere (37, 49, 50).

In addition to facilitating pathogen capture, NET formation
also promotes coagulation through a plethora of mechanisms

like histone-mediated platelet activation, cleavage of tissue factor
pathway inhibitor (TFPI) and thrombomodulin by effector
enzymes like ELANE and CTSG, and direct binding of vWF
and factor XII (46, 49, 51–53). In vivo live imaging studies of
liver sinusoids have shown increased thrombin turnover locally
associated withNETs, suggesting a direct stimulation of plasmatic
coagulation through NETosis (54). However, only isolated DNA
and histones, but not intact NETs, were shown to drive activation
of the contact pathway and thrombin generation in vitro (55).
Mechanistically, neutralization of negative charges of supercoiled
DNA through histone/nucleosome binding is thought to underly
the lack of procoagulant potential observed in isolated NETs (55).

The pathophysiological process that underlies inflammation-
driven NETosis, recruitment of proinflammatory monocytes,
platelet activation and increased coagulation with deposition of
fibrin(ogen) is termed immunothrombosis. Immunothrombosis
is considered a protective host defense mechanism designated
to prevent microbial spreading (49). While enhancing pathogen
capture during infection, dysregulated and excessive activation
of immunothrombosis—termed thromboinflammation—can
promote local ischemia and subsequent collateral organ damage.
In addition, thromboinflammation has been attributed to
remote organ injury, aggravation of systemic inflammation and
disseminated intravascular coagulation (DIC) (37, 49, 56–59). In
addition, excessive NET formation may be detrimental in some
cases of bacterial infection: In models of infective endocarditis,
NETs were shown to induce trapping and formation of platelet-
bacteria aggregates on injured heart valves, thereby potentiating
bacterial growth and vegetation expansion (60, 61).

PLATELET-NEUTROPHIL INTERACTIONS
IN CARDIOVASCULAR DISEASE

Chronic (Cardio)Vascular Inflammation
Cardiovascular events including myocardial infarction,
ischemia-driven heart failure and stroke are all sequelae of
atherosclerosis and remain the most frequent cause of death
world-wide (62).

Since the early 2000s, evidence has emerged highlighting
the role of platelet adhesion and subsequent leukocyte—and
specifically neutrophil—recruitment in early atherogenesis
(63) and the progression of atherosclerotic lesions (64, 65).
This evidence is supported by more recent data that implicate
a general role for platelets in atheroprogression through
recruitment of other leukocyte subsets—namely monocytes
and eosinophils (66, 67). Both neutrophilia and thrombocytosis
as well as increased platelet-neutrophil aggregates (PNA) are
observed in patients with chronic cardiovascular conditions
such as peripheral (PAD) (68) and coronary artery disease
(CAD) (69–71). Local recruitment of circulating neutrophils
to atherosclerotic plaques is enhanced by platelets binding
to inflamed endothelium (Figure 2A) (14, 72). Subsequent
PNA formation has been shown to depend on P-selectin/PSGL-1
interaction, and elevated soluble P-selectin is observed in patients
with cardiovascular disease and positively correlates with the
risk of major adverse cardiovascular events (MACE) (73–75). In
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FIGURE 2 | Continued
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FIGURE 2 | Platelet-neutrophil interactions in cardiovascular disease. (A) PSEL/PSGL-1- and CD40L/CD40-dependent recruitment of neutrophils to the

atherosclerotic plaque promotes neutrophil infiltration and subsequent destabilization of the plaque, for instance through histone-mediated cell death of smooth muscle

cells (SMC). (B) Both arterial and venous thrombosis are promoted by PNA formation and reciprocal activation of platelets and neutrophils through GPVI/cathelicidin,

GPIIBIIIA/SLC44A2, HMGB1/RAGE, HMGB1/TLR and complement/C3aR interactions. Syk, Syk family kinase; RAP1B, Ras-related protein Rap-1b; Myd88, Myeloid

differentiation primary response 88. (C) Inflammatory responses in stroke and ischemia-reperfusion injury induce procoagulant platelet activation (red) and formation of

phosphatidylserine (PS)+ PNAs that promote neutrophil activation and infiltration and propagate thrombus formation through platelet-neutrophil macroaggregates. (D)

Direct binding of SARS-CoV-2 to either platelets or neutrophils, subsequent PNA formation and hyperactivation, IgG-mediated procoagulant platelet activation and

IL-8 mediated neutrophil self-stimulation all promote NET formation and systemic thromboinflammation associated with severe COVID-19. PI3K, Phosphoinositide

3-kinase; CXCR1/2, C-X-C motif chemokine receptor 1/2. Yellow intravascular cells depict proinflammatory monocytes. Created with BioRender.com.

addition, CD40-CD40L interactions of platelets and neutrophils
and other leukocyte subsets exacerbates atherosclerosis, while
CD40 deficiency was associated with reduced atheroprogression
(14). Enhanced adhesion of neutrophils to sites with high
atherosclerotic plaque burden as well as neutrophil recruitment
into the plaque are associated with plaque instability, erosion, and
rupture (76–78). Activated neutrophils recruited into the plaque
can exacerbate chronic vascular inflammation, specifically
atherogenesis and atheroprogression, by NET formation,
promoting a proinflammatory macrophage phenotype and
inducing histone H4-mediated lytic cell death of smooth muscle
cells inside the plaque (79, 80). Targeting endovascular platelet-
neutrophil interactions before subsequent neutrophil adhesion
and plaque recruitment ensue therefore provides therapeutic
promise. The effects of platelet-neutrophil interactions in
other entities of chronic cardiovascular inflammation, such as
abdominal aortic aneurysms, are reviewed elsewhere (81, 82).

Thrombosis
As a consequence of atheroprogression, plaque erosion and—
ultimately—plaque rupture, thrombogenic material including
vWF, extracellular matrix proteins and cellular debris released
by the necrotic core is exposed to circulating blood cells (76).
Sensing of PAMPs and extracellular matrix proteins swiftly leads
to the recruitment of platelets via GPIbα-vWF and GPVI–
collagen interactions (2), which start to form a cellular clot
called the “white thrombus” (83). These highly activated platelets
recruit leukocytes in a Mac-1/GPIbα- and PSGL-1/P-selectin-
dependent manner, promoting fibrin(ogen) deposition and
enhancing clot stability (10, 84). Notably, the recruitment cascade
appears to be model-dependent, and leukocyte recruitment to
laser-induced arterial injury was shown to depend on LFA-
1/ICAM-1 neutrophil-endothelium interactions, but not solely
on platelets (85). Within this prothrombotic microenvironment,
a self-sustaining loop of reciprocal platelet and neutrophil
activation is initiated (Figure 2B): Activated neutrophils secrete
cathelicidins (LL-37/CRAMP), which promote further platelet
activation and aggregation through the collagen receptor GPVI
and its downstream signaling cascades, including tyrosine kinase
Syk (31). Next, platelets secrete HMGB1, which self-stimulates
platelets via the TLR4-Myd88 axis and promotes NET formation
through RAGE on neutrophils, thereby sustaining platelet
activation and clot stability (29, 39). Platelet-neutrophil crosstalk
in arterial thrombosis is enhanced by two additionalmechanisms:
A recent study revealed that neutrophilic α9β1 mediates platelet
activation and arterial thrombus formation. Mechanistically,
α9β1-promoted platelet activation reciprocally enhances NET

formation and secretion of CTSG, which in turn sustains
arterial neutrophil recruitment (86, 87). Of note, blockade of
platelet-induced NETosis through pharmacological or genetic
ablation of Protein arginine deiminase 4 (PAD4) attenuates
arterial thrombus formation (78, 88). Following neutrophil
activation, excreted NETs promote platelet activation and
aggregation through complement C3 activation and subsequent
platelet signaling through the anaphylatoxin receptor C3aR and
downstream RAP1B (21, 89). Consequently, C3aR deficiency
reduces platelet activation and attenuates arterial thrombosis
(90). The translational relevance of these observations in mouse
models of arterial thrombosis are underlined by the presence of
LL-37 and TF-positive NETs in coronary artery thrombi from
patients with acute myocardial infarction and a marked NET
signature in thrombi from patients suffering from coronary stent
thromboses (31, 91–93).

In venous thrombosis, endothelial inflammatory responses
and ICAM-1/VECAM expression promote swift recruitment
of platelet and both monocytes and neutrophils alike and
the formation of PNAs and platelet-monocyte aggregates
(PMAs) (37, 94). The underlying molecular mechanisms are
reminiscent of arterial thrombosis and involve PSEL/PSGL-1
interactions, HMGB1-induced platelet and neutrophil activation
through TLR2/4 and RAGE, respectively, and propagation
of immunothrombosis through NET formation (29, 37). A
novel interaction between activated GPIIBIIIA on platelets and
the choline transporter SLC44A2 on neutrophils was recently
observed under low shear rate. This interaction enhanced NET
formation and thereby propagated deep vein thrombosis (95).
Supporting the role of neutrophils and platelets in venous
thrombosis, both genetic ablation of P-selectin, blockade of
HMGB1 receptors and therapeutic targeting of NETs through
exogenous DNases or genetic ablation of PAD4 resolved
thrombus formation (52, 94, 96).

Ischemic Stroke and Ischemia-Reperfusion
Injury
Ischemic stroke, triggered by either cardiac embolism or
carotid plaque rupture, is characterized by systemic increases
in circulating neutrophils and formation of platelet-neutrophil
aggregates, with the extent of neutrophilia correlating with
infarction size and patient prognosis (97, 98). In a pivotal study,
Denorme et al. (99) described a hazardous interplay between
neutrophils and a hyperactivated subtype of platelets, so-called
procoagulant platelets, in mice. This platelet population, which
is induced upon combined stimulation of either strong soluble
agonists or high mechanical shear stress, is hallmarked by high
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levels of phosphatidylserine (PS) exposure, microvesiculation
and striking morphological changes, namely platelet ballooning
(100–103). In a model of ischemia-reperfusion injury (IRI)
of the brain, procoagulant platelets were induced systemically,
subsequently promoted recruitment of neutrophils across the
blood-brain-barrier (BBB), leading to intracerebral ROS release,
NETosis and exacerbated brain damage (Figure 2C). Targeting
procoagulant platelet activation through genetic ablation or by
pharmacological blockade of PS attenuated cerebral damage and
enhanced neurological outcomes (99, 104, 105).

Platelet-neutrophil interplay also affects IRI in other organs,
such as heart, liver and kidney, as described elsewhere (106–
109). Of note, reperfusion injury in the lung is attributed
to platelet-neutrophil interplay: While platelet-dependent NET
formation was observed in experimental models and clinical
samples of lung transplant dysfunction (110), Yuan et al.
found that gut ischemia induced the formation of PS+

platelet-neutrophil aggregates in the mesenterial vasculature,
which subsequently led to uncontrolled NETosis and the
formation of platelet-neutrophil macroaggregates occluding the
lung vasculature (111). Targeting either platelet-neutrophil
interactions or platelet-induced NETosis alleviated intravascular
thrombosis and enhanced outcomes, suggesting PNA and NET
formation as potent clinical targets.

COVID-19-RELATED
IMMUNOTHROMBOSIS

The COVID-19 pandemic has impacted global human life, and
an unprecedented research effort has been initiated to understand
and counter this viral infection caused by SARS-CoV-2.
Severe cases are defined by hyperinflammation reminiscent of
cytokine release syndromes (112). Interestingly, patients with
cardiovascular comorbidities are at high risk of developing
severe COVID-19, which is associated with an increased
incidence of venous and arterial thrombotic complications
like pulmonary embolism and myocardial infarction (113–115).
Indeed, a systemic procoagulant state correlating with disease
severity was identified in COVID-19 patients (57). As outlined
above, thrombosis in inflammatory disease has been linked to
intravascular interplay of platelet and innate immune cells in the
framework of immunothrombosis (46, 116). Along these lines,
thrombocytosis and neutrophilia were described in severe cases
of SARS-CoV-2 infection, and both cell types showed unique
activation patterns compared to healthy controls and other viral
infections (37, 49, 56–59).

Mechanistically, this immunothrombotic state seems to at
least in part be mediated by neutrophil-platelet interplay:
In vitro, addition of platelets derived from severe COVID-19
patients to healthy neutrophils induced activation and NETosis
(57). This seems to be triggered by direct interactions, but
also by the release of soluble mediators like RANTES and
PF4 by platelets, known to be involved in NET formation
(Figure 2D) (117). Platelet transcriptomics revealed upregulated
protein ubiquitination, antigen presentation, and mitochondrial
dysfunction in COVID-19 patients (118). This coincided with

increased MAPK signaling and higher numbers of circulating
platelet-leukocyte aggregates (PLA), including PNAs (118). In
summary, platelets are primed to interact and trigger neutrophil
activation in SARS-CoV-2 infection, which in turn leads to
neutrophil activation, granule release, and NETosis, triggering
immunothrombotic dysregulation. Preceding platelet activation
seems to be induced by three key events: An important
mechanism is vascular inflammation and endotheliopathy
induced by this betacoronavirus, which leads to endothelial
disruption and platelet activation in the vasculature (59,
116, 119). Second, direct association and uptake of SARS-
CoV-2 viral particles by platelets is observed, which triggers
hyperactivation (118, 120). Third, a research group identified
increased procoagulant potential indicated by PS exposure
and intracellular calcium elevation, induced by autoantibodies
and driven by the phosphoinositid-3-kinase (PI3K)/protein
kinase B (AKT) signaling pathway (121, 122). Interestingly,
procoagulant function was induced by Fcγ receptor IIA binding
of plasmatic IgG antibody fractions of COVID-19 patients
(121). Procoagulant platelets are also known to preferentially
interact with neutrophils, contributing to thromboinflammation
in experimental stroke, possibly contributing to the increase
in thrombotic events in patients with severe courses (99). In
conclusion, platelet-neutrophil interplay is crucial in shaping the
prothrombotic phenotype observed in COVID-19 and might
offer a path to therapeutic intervention.

THERAPEUTIC TARGETING OF
PLATELET-NEUTROPHIL INTERACTIONS

As outlined above, targeting platelet-neutrophil interplay might
be a valuable tool to fight cardiovascular disease, in particular
acute thromboinflammation. One promising approach are
the P-selectin antibodies inclacumab and crizanlizumab that
block interaction of platelet and endothelial P-Selectin with
neutrophilic PSGL-1. In vitro experiments confirmed that
inclacumab inhibits PLA formation (123). A landmark study,
SELECT-ACS, showed that inclacumab at a dosing of 20 mg/kg
significantly reduced myocardial damage assessed by CK-MB
levels after percutaneous coronary intervention in patients with
non-ST-segment elevation myocardial infarction (124, 125).
In contrast, the SELECT-CABG Trial showed no effect of
inclacumab on bypass graft failure after coronary bypass (126).
Crizanlizumab, also blocking PSGL-1/P-selectin interaction, was
shown to be safe and effective at preventing vasoocclusive
crises mediated by platelet-neutrophil interactions in sickle cell
disease (SUSTAIN study) (127). Importantly, receiving anti-P-
selectin antibodies was not associated with increased infection
or bleeding rates, while other adverse events like diarrhea
and chest pain exceeded those observed in placebo-treated
patients (124–127). Further studies are needed to assess the
potential of these antibodies in acute and chronic coronary
syndromes. Another study targeting PLAs in pneumonia with
Ticagrelor (XANTHIPPE) (128) revealed that ticagrelor reduced
the fraction of platelet-bound leukocytes and IL-6 levels, and
also decreased oxygen demand compared to placebo-treated
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patients without affecting the incidence of adverse events.
Ticagrelor has been shown to be superior to clopidogrel in
preventing death from vascular causes, myocardial infarction,
or stroke, but the mechanisms are not fully understood
and might involve reductions in circulating PLAs (129). In
experimental settings, additional therapeutic approaches that
focus on interference with other platelet receptors like GPIbα
have been shown to decrease neutrophil recruitment into
inflamed tissue (130).

Targeting leukocyte integrins has proven a valuable
therapeutic approach for refractory chronic inflammatory
diseases (131, 132), and therapeutic interference with neutrophil
Mac-1 attenuates both inflammation and thrombosis in
experimental settings (10, 133, 134). As outlined above, NETosis
is a common effector mechanism of neutrophils triggered by
platelets and holds an important role in mediating intravascular
thrombosis and clot formation. Therefore, pharmacological
inhibition and degradation of NETs represents a promising
approach in a range of acute and chronic inflammatory
conditions. The anticoagulant heparin, used widely in acute
thrombotic events, disrupts NETs and neutralizes histones,
which contributes to its clinical effect (135, 136). In cystic
fibrosis patients, treatment with inhaled NET degrading
rhDNase1, known as dornase alfa, was associated with improved
oxygenation and decreased DNA:MPO complexes in BALF
(137). Ongoing studies are addressing its effects in COVID-19
(NCT04409925) and ischemic stroke (NCT04785066).

PF4 and CCL5/RANTES are important platelet chemokines
shaping innate intravascular immune responses. The
antiretroviral drug Maraviroc targets the CCL5 receptor
CCR5, and was developed as an entry inhibitor against HIV,
since CCR5 is a co-receptor for viral entry (138). In addition to

its antiviral properties, Maraviroc was found to reduce PLAs and
markers of atherosclerosis like carotid intima-media thickness in
HIV patients (139). This was also confirmed in an experimental
mouse model of atherosclerosis (140). A naturally occurring
loss-of-function mutation in CCR5 was also found to be
protective after stroke and traumatic brain injury, however, these
effects seem to also directly influence neurons beyond affecting
platelet-leukocyte interplay (141). Studies addressing the efficacy
of Maraviroc in stroke have been initiated (NCT04789616).

CONCLUSIONS

Recent evidence has highlighted novel interaction pathways
between neutrophils and platelets that crucially effect acute
thromboinflammation and chronic vascular disease alike.
Further translational studies as well as clinical trials will help to
pin down the most effective therapeutic strategies depending on
disease manifestation and patient characteristics.
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