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Introduction: Kawasaki disease (KD) may increase the risk of myocardial infarction or

sudden death. In children, delayed KD diagnosis and treatment can increase coronary

lesions (CLs) incidence by 25% and mortality by approximately 1%. This study focuses

on the use of deep learning algorithm-based KD detection from cardiac ultrasound

images.

Methods: Specifically, object detection for the identification of coronary artery

dilatation and brightness of left and right coronary artery is proposed and di�erent AI

algorithms were compared. In infants and young children, a dilated coronary artery is

only 1-2 mm in diameter than a normal one, and its ultrasound images demonstrate a

large amount of noise background-this can be a considerable challenge for image

recognition. This study proposes a framework, named Scaled-YOLOv4-HarDNet,

integrating the recent Scaled-YOLOv4 but with the CSPDarkNet backbone replaced

by the CSPHarDNet framework.

Results: The experimental result demonstrated that the mean average precision

(mAP) of Scaled-YOLOv4-HarDNet was 72.63%, higher than that of Scaled YOLOv4

and YOLOv5 (70.05% and 69.79% respectively). In addition, it could detect small

objects significantly better than Scaled-YOLOv4 and YOLOv5.

Conclusions: Scaled-YOLOv4-HarDNet may aid physicians in detecting KD and

determining the treatment approach. Because relatively few artificial intelligence

solutions about images for KD detection have been reported thus far, this paper is

expected to make a substantial academic and clinical contribution.

KEYWORDS

Kawasaki disease, echocardiography, deep learning, object detection, Scaled-YOLOv4,

HarDNet, coronary dilatation and brightness

1. Introduction

Kawasaki disease (KD), a systemic vasculitis predominantly affecting medium-sized arteries

(1, 2). It may accelerate coronary arteriosclerosis and sudden death risks, and it is the leading

cause of acquired heart disease in children of many developed countries (3). The global incidence

of Kawasaki Disease (KD) has increased in the last 10–20 years, with an annual incidence rates

per 100,000 children <5 years old around 100–300 in Japan and northern Asia regions (4). It is

therefore a significant disease burden for children.
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KD-associated coronary lesions (CLs) are the most serious

cardiovascular sequelae and can lead to acute intra-coronary

thrombosis and stenosis (5). These lethal complications

often occur in KD patients with delayed use of intravaenous

immnunosglssosbulin (IVIG) or refractory to initial IVIG (6).

Abou Sherif et al. (7) demonstrated the effects of coronary artery

aneurysms on human health. Therefore, timely assessment of patients

with KD using imaging modalities is the key factor ensuring the

effective lowering of long-term cardiovascular events in KD patients.

Among multi-modality imaging used to evaluate KD-associated

CLs, echocardiography is the most common to identify patients

with KD as it is non-invasive, easy-accessible, widely available, and

cost-effective and provides a real-time qualitative assessment of

the coronary system (8). At present time, echocardiography has to

be assessed by cardiologist. The echocardiography contains large

amount of information. It is therefore logic to employ the advanced

bioinformatics technology to assess the echocardiography in patients

with KD (9, 10).

Artificial intelligence (AI), deep learning (DL), is basically a

number of neural network-related algorithms to identify patterns

with purpose and has been widely applied in the medical field

to assist in diagnosis. Its power comes from its ability to find

these associations from large amounts of data and draw non-linear

relationships between various predictors and an outcome of interest

without background knowledge. There are numerous applications

of deep learning in cardiac ultrasound image classification (11–

14) described briefly in Table 1. In addition, some important object

detection algorithms belonged to the category of DL were recently

proposed (21–23) organized in Table 2. However, to the best of our

knowledge, there are no relevant studies regarding applied AI for CLs

assessment in patients with KD.

2. Method

There are five major procedures of this study depicted in

Figure 1. First of all, this retrospective study included cardiac

ultrasound images from patients with KD in Kaohsiung Chang

Gung Hospital from June 1, 2000, to June 30, 2020 (IRB approving

No. 202001238B0C502). The extracted data were patient age, body

height, body weight, cardiovascular diameter of coronary arteries,

TABLE 1 Summary of cardiac medical image researches.

References Problem Method

Gao et al. (11) Cardiac classification Optical flow technology and CNN

Nascimento and Carneiro (15) Segmentation Manifold learning with DBNs

Chen et al. (12) Ultrasound image classification Fully convolutional network and transfer learning

Bridge et al. (16) Enhance ultrasound images and localize fetal heart disease Bayesian inference and regression forest

Poudel et al. (17) CT image classification Recursive full CNN

Avendi et al. (18) Left ventricle segmentation CNN andstacked autoencoder

Wolterink et al. (19) Coronary artery calcification quantization in cardiac CT Paired CNNs

Gungor et al. (13) View Classification and Object Detection in Cardiac Ultrasound InceptionV3 and Faster-RCNN with ResNet101

Chen et al. (14) Object detection on the ventricular septal defects of doppler ultrasound images YOLOv4-DenseNet

Sirjani et al. (20) Ventricle segmentation EchoRCNN for deep video object segmentation

and cardiac ultrasound images in the DICOM format. The inclusion

criterion was the receipt of KD diagnosis (International Classification

of Diseases, Ninth Revision, Clinical Modification code: 446.1,

or International Classification of Diseases, Tenth Revision

code: M303).

All the echocardiography was performed by board-certificated

pediatric cardiologists. The echocardiographic images of coronary

arteries were obtained according to the standard procedure as

shown in the scientific statement of American Heart Association

on Kawasaki Disease (10). The inter-observer variability was around

0.90–0.95 by laboratory quality check.

After anonymization of the obtained echo image data. As

such, the privacy of the included patients was not infringed upon.

We labeled region of interest on the images using LabelMe.

The annotation results was validated by another experienced

cardiologist. Considering the retrospective nature of this study,

we did not consider additional behavioral factors of the included

children. Thereafter, in-depth learning was performed using

different models and evaluate which object detection algorithm will

perform better.

2.1. Research definition

Coronary arteries can be divided into left coronary arteries

(LCAs) and right coronary arteries (RCAs). One of the main

symptoms of KD is CLs, which are detectable on cardiac ultrasound.

Clinically, short axis ultrasound can be used to assess for

abnormalities in LCAs and RCAs. Figure 2 presents ultrasound

images from Kaohsiung Chang Gung Hospital; we took two features

of CLs, brightness and dilatation (10), to be detected.

We created object detection algorithms to learn the precise

location of the two major symptoms. Image annotation was required

to mark the location of the aneurysm as shown in Figure 3.

Subsequent algorithms were designed to read the contents of

the JSON materials, including file location, disease attribute, and

corresponding location. In addition, the association between data

amplification method and marking results, such as the image

rotation-marking frame relationship, was considered so as to

maximize the advantages of data amplification.
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TABLE 2 Major characteristics of the object detection algorithms.

References Name Method

Redmon et al. (24) YOLO The first one-stage approach

Liu et al. (25) SSD One-stage approach inspired by YOLO

Redmon and Farhadi (26) YOLOv2 K-means algorithm generates anchors, Darknet-19 as the backbone, Wordtree, and batch normalization

Lin et al. (27) RetinaNet CNN model with a Feature Pyramid Network

Redmon and Farhad (28) YOLOv3 ResNet as the backbone, upsampling, FPN, and three scales of output heads

Tian et al. (29) YOLOv3-DenseNet Replace the ResNet by DenseNet as the backbone

Bochkovskiy et al. (21) YOLOv4 CSP, SPP, FPN, PAN, mosaic augmentation, label smoothing, mish function, and so on

Jocher (22) YOLOv5 CSPized the neck and a focus layer

Wang et al. (23) Scaled-YOLOv4 Different scales for various running environments

FIGURE 1

FlowChart of this research.

2.2. Scaled-YOLOv4-HarDNet object
detection algorithm

The main framework of Scaled-YOLOv4-HarDNet is depicted in

Figure 4. Because the proposed algorithm adopts the main features of

Scaled-YOLOv4 and HarDNet, we illustrate the original settings and

also explain the key modification items of Scaled-YOLOv4. Scaled-

YOLOv4 integrates various methods, such as the cross stage partial

network (CSPNet), spatial pyramid pooling with CSP (SPPCSP),

FPN, path aggregation network (PANet), mish activation function,

label smoothing, and complete IOU (CIoU) loss function.

The use of CSPHarDNet as the backbone is one of the main

features of the proposed algorithm, and the input of CSPHarDNet

is CBM, which is formed through a combination of convolution

layers and the batch normalization and Mish activation function.

The input resolution of the first convolution layer is 416 × 416. The

Mish function is a self-regularized nonmonotonic neural activation

function, which increases the penetration of information in the neural

network. Moreover, ZCRn comprises zero pool, CBM and CSPRn.

CSPRn refers to the CSPNet framework, with n denoting the number

of copies. CSPNet divides the function scheme into two parts: In the

first part, gradient change is retained in the feature map from the

beginning to the end to ensure the accuracy and reduce the amount

of calculation and storage cost required. The second part involves the

skip connection approach of ResNet. The first part is consistent with

the feature map of the second part. The output resolutions of three

output heads are 52× 52, 26× 26, and 13× 13, respectively.

Scaled-YOLOv4 uses FPN and PANet methods in the Neck

area, whereas YOLOv3 only uses FPN. FPN performs upsampling

from smaller to larger resolutions and then connects with the larger

ZCRn. The PANet framework applies bottom-up path enhancement

to the previous local convolution layer by performing the upsampling

operation. Its advantage includes shortening the information path

between high- and low-resolution features.

Originating from YOLOv5 (22), Scaled-YOLOv4 adopts CSPNet

in Neck to increase the training and detection speed further. The

activation function in Neck can be replaced by the Mish function.

Scaled-YOLOv4 is applicable in different environment based on

depth requirements. For instance, the P5 architecture can be adopted

in an edge computing environment, and the P6 architecture can be

adopted in general environments. For larger GPU devices, such as

the Tesla V100, the P7 architecture can be used for training and

prediction. Thus, we compared our algorithm with YOLOv5 by using

the P5 architecture.

Scaled-YOLOv4 uses a head area identical to that of YOLOv3

and outputs the same three dimensions with 76 × 76 (256 feature

maps), 38× 38 (512 feature maps), and 19× 19 (1,024 feature maps)

resolution when the input resolution is 608. When the resolution is

reduced to 416 × 416, the output resolution of the three dimensions

are 13× 13 (1,024 feature maps), 26× 26 (512 feature maps), and 52

× 52 (256 feature maps). The only change in the head area is the loss

function, and the loss function for Scaled-YOLOv4 is CIoU, which

measures the difference between the real and the prediction boxes.

Finally, in our proposed algorithm Scaled-YOLOv4-HarDNet,

there are four variants which are the combination of the activation

function and the number of layers. Firstly, we substitute the original

activation function ReLU and to be Mish function. Secondly, because

the number of layer in a deep learning algorithm also influences the

performance, we select the number of layers in the CSPHarDNet
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FIGURE 2

Two major echocardiographic coronary patterns in children with KD. (A) LCA brightness, (B) LCA dilatation, (C) RCA brightness, and (D) RCA dilatation.

FIGURE 3

Object detection picture and annotation format in JSON. (A) Left coronary artery annotation and (B) JSON file.

includes 39 and 68. Instead of using the full name of Scaled-

YOLOv4-HarDNet, the four variants are named HarDNet39-ReLU,

HarDNet39-Mish, HarDNet68-ReLU, andHarDNet68-Mish in short.

This study will conduct extensive experiments and compare the

proposed algorithms with two existing benchmark algorithms.

3. Experimental results

In total, 1,283 images–of which 395 and 472 were on the

LCA for brightness and dilatation, respectively; 174 and 242

were on the RCA for brightness and dilatation, respectively–were

included in the validation dataset. The number of images varied

due to the coronary artery symptoms of KD tending to occur

in the LCA and RCA. After image arrangement, we use 70%

of images to train our proposed algorithms, 20% of images are

as the validation dataset during the training, and the rest of

10% of images as the test dataset. Two well-known benchmark

algorithms, Scaled-YOLOv4 and YOLOv5, are applied into the

comparison. The following training parameters: batch = 72 and

epoch = 300 are used across the experiments. To carry out these

experiments, we employed the PyTorch environment with Nvidia
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FIGURE 4

Scaled-YOLOv4-HarDNet framework.

TABLE 3 Comparison among models on the four patterns via mAP metric (%).

Algorithm LCA brightness LCA dilatation RCA brightness RCA dilatation Overall

Scaled-YOLOv4 61.37 82.98 64.98 70.86 70.05

YOLOv5 58.98 84.85 61.86 73.45 69.79

HarDNet39-ReLU 60.07 83.42 67.03 71.58 70.52

HarDNet39-Mish 63.77 81.42 65.3 73.65 71.04

HarDNet68-ReLU 66.5 81.86 66.73 69.24 71.08

HarDNet68-Mish 63.85 85.41 74.22 67.04 72.63

Average 62.43 83.32 66.69 70.97 70.85

The best mAP value of each class is shown in bold.

NGC container 21.08 on a Tesla V100 server of Taiwan Computing

Cloud.

After each algorithm was trained, we used the rest of 10%

of images to test the real performance of these algorithm. The

test results are presented in Table 3. We list the performance

of each algorithm on the four patterns of LCA and RCA via

the mean average precision (mAP) metric in percentage. The

best mAP value of each class is shown in bold. The overall

column shows the average results of the four patterns for each

compared algorithm. Among them, HarDNet68-Mish achieves the

highest overall mAP score to be 72.63% and the HarDNet39-

ReLU (71.08%) is the inferior version of our proposed method.

However, HarDNet39-ReLU is still better than Scaled-YOLOv4

(70.05%) and YOLOv5 (69.79%). Themodels includingHarDNet had

significantly improved outcomes compared with the original Scaled

YOLOv4; moreover, Mish function also led to a better performance

than ReLU.

From the four image types, the average result of LCA dilatation

is >83.32% which shows the LCA dilatation is easier to be detected.

However, RCA dilatation is not as high as the one of LCA dilatation.

Moreover, the pattern of LCA brightness has the lowest mAP in

average which implies LCA brightness is the most difficult one to

be detected.

The effectiveness of the aforementioned methods was compared

using different Intersections over Union (IoU) as criteria; the

comparison of AP50, APsmall, APmedium, ARsmall, and

ARmedium is presented in Table 4. Here, AP represents the

average precision or accuracy, AR the average recall, and AP50 the

AP with IoU= 50% and “small” and “medium” represent the sizes of

the bounding boxes; we did not include a large classification because

no large-sized objects were considered. The best AP value of each

class is also shown in bold. The result of the AP50 is quite similar

to the one of mAP-50 because HarDNet68-Mish is best algorithm

which outperform the Scaled-YOLOv4 and YOLOv5. When it comes

to the metrics of APsmall or ARsmall, HarDNet68-Mish is also the

best one compared with others. However, if we apply the metrics

of APmedium and ARmedium, Scaled-YOLOv4 is better than the

proposed algorithms.
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TABLE 4 AP and AR results of the compared algorithms.

Algorithm AP50 APsmall APmedium ARsmall ARmedium

Scaled-YOLOv4 70.1 28.54 40.55 30.83 51.36

YOLOv5 69.81 30.46 37.56 32.64 46.33

HarDNet39-ReLU 70.51 29.64 39.67 32.92 50.7

HarDNet39-Mish 70.55 30.33 37.16 32.08 49.32

HarDNet68-ReLU 70.81 32.09 39.14 33.61 50.41

HarDNet68-Mish 72.57 33.34 39.93 35.42 50.7

The best AP value of each class is also shown in bold.

4. Discussion

This pioneer, pilot study has demonstrated that several AI

based algorithms showed encouraging result. The assessment of

coronary morphology could be performed by AI is promising

and showed that assessment of coronary morphology may be

assisted by AI algorithm in the future and may thus greatly

decrease the work-loading by cardiologist using conventional

assessment of coronary morphology for echocardiography in patients

with KD.

In the proposed Scaled-YOLOv4-HarDNet, we verified the

39 and 68 HarDNet layers and substituted the ReLU function

with the Mish function. We the impact of the number of

layers improves the solution quality which is expected. However,

it does not guarantee to yield better prediction quality when

it comes to 85 layers in our pilot experiments. Then, Mish

function generally enhances the performance when it is compared

to the ReLU function compared to its original setting. It is

noticeable that the performance of HarDNet39-Mish is almost

equal to the one of HarDNet68-ReLU. As a result, if the object

detection model is designed to be installed on an edge device,

we could consider the HarDNet39-Mish because the model size is

smaller.

When we compared the proposed algorithm with Scaled-

YOLOv4 and YOLOv5, even thoughHarDNet39-ReLU is the inferior

version of the proposed method, it is better than the two benchmark

algorithms. Then, HarDNet68-Mish yielded the optimal overall mAP

(72.63%) across the four features compared with Scaled-YOLOv4 and

YOLOv5 (70.05 and 69.79%, respectively).

The four patterns also have different difficulty levels. LCA

dilatation has the better detection result from no matter which

object detection algorithm is applied. However, the performance

of the brightness pattern of LCA and RCA is poor. The
primary reason is that the characteristic of dilatation shows

that the color inside the vessel is black and white outside
the vessel. However, the brightness pattern is the grayish

white of the vessel wall compared to the grayish color in the

background. As a result, the brightness pattern is harder to

detect.

COCO metrics include average precision and average recall for
bounding boxes of different sizes. Here, the proposed Scaled-

YOLOv4-HarDNet, with 68 layers and the Mish function,
significantly outperformed Scaled-YOLOv4 and YOLOv5 in

terms of the average precision and average recall for small

bounding boxes. However, for the medium-sized bounding box,

Scaled-YOLOv4, but not YOLOv5, performed <0.66% better
than did the proposed framework. Thus, our COCO metrics

results indicated that proposed algorithm can detect small

objects extremely well and medium-sized objects adequately.

Finally, because we did not encounter any large objects in

the medical images in this study, how the performance of

our proposed algorithm for such objects compares with

the performance of the two benchmark algorithms remains

unknown.

According to these results, the strength of the proposed

algorithms are to detect the two KD patterns on echocardiographic

images, and also perform objective assistance for cardiologist.

Finally, varies of echo equipment models, ultrasound resolution,

case numbers, and different results from different cardiovascular

specialist in different time may be the limitation of this study.

Due to the medical images are available from the Philip EPIQ 7C

and iE33 belonged to the studied hospital, it limits the capability

of reading the echo images of other manufacturer due to the

color and resolution, frame rate are different. On the other hand,

when there are more cardiovascular specialists are involved in the

research, it is beneficial to validate the labeling results in many

rounds and yield results precisely. The results from this study

still need further validation from different researches before a

conclusion.

5. Conclusions

KD is the leading cause of acquired heart disease in children

especial in Asia. Precisely diagnosis and treatment is the major

point to prevent coronary lesions in KD. We proposed the

Scaled-YOLOv4-HarDNet, which integrates HarDNet as the

backbone rather than DarkNet. In the four variants of the

proposed algorithm with different number of layers and

activation functions, they are better than the two benchmark

algorithms Scaled-YOLOv4 and YOLOv5. Moreover, the proposed

algorithm is good at the smaller object size of coronary artery

in children which is suitable to detect the lesion in LCA and

RCA.

The results from this study will help clinician to identify coronary

artery lesion objectively from the help of AI and further support the

detection of KD.
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