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Segmentation of the left ventricle (LV) in echocardiography is an important

task for the quantification of volume and mass in heart disease. Continuing

advances in echocardiography have extended imaging capabilities into

the 3D domain, subsequently overcoming the geometric assumptions

associated with conventional 2D acquisitions. Nevertheless, the analysis of

3D echocardiography (3DE) poses several challenges associated with limited

spatial resolution, poor contrast-to-noise ratio, complex noise characteristics,

and image anisotropy. To develop automated methods for 3DE analysis, a

sufficiently large, labeled dataset is typically required. However, ground truth

segmentations have historically been difficult to obtain due to the high inter-

observer variability associated with manual analysis. We address this lack of

expert consensus by registering labels derived from higher-resolution subject-

specific cardiac magnetic resonance (CMR) images, producing 536 annotated

3DE images from 143 human subjects (10 of which were excluded). This

heterogeneous population consists of healthy controls and patients with
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cardiac disease, across a range of demographics. To demonstrate the utility

of such a dataset, a state-of-the-art, self-configuring deep learning network

for semantic segmentation was employed for automated 3DE analysis. Using

the proposed dataset for training, the network produced measurement biases

of −9 ± 16 ml, −1 ± 10 ml, −2 ± 5 %, and 5 ± 23 g, for end-diastolic volume,

end-systolic volume, ejection fraction, and mass, respectively, outperforming

an expert human observer in terms of accuracy as well as scan-rescan

reproducibility. As part of the Cardiac Atlas Project, we present here a large,

publicly available 3DE dataset with ground truth labels that leverage the

higher resolution and contrast of CMR, to provide a new benchmark for

automated 3DE analysis. Such an approach not only reduces the effect of

observer-specific bias present in manual 3DE annotations, but also enables

the development of analysis techniques which exhibit better agreement

with CMR compared to conventional methods. This represents an important

step for enabling more efficient and accurate diagnostic and prognostic

information to be obtained from echocardiography.

KEYWORDS

3D echocardiography (3DE), machine learning (ML), segmentation (image
processing), left ventricle (LV), multimodal imaging, cardiac magnetic resonance
(CMR) imaging, domain adaptation, Cardiac Atlas Project

1. Introduction

Machine learning (ML) has shown considerable promise
for automated analysis and interpretation in the domain
of cardiovascular imaging (1, 2). Already, its application to
cardiac magnetic resonance (CMR) imaging has exhibited
excellent results with high accuracy and reproducibility
by leveraging several large cohort databases such as the
UK Biobank (3–5). Although CMR offers higher spatial
resolution and tissue contrast for the assessment of
cardiac mass and volume, transthoracic echocardiography
remains at the frontline of cardiac imaging as the most
widely used and readily accessible modality for screening,
diagnosis, and management of cardiovascular disease.
Technological advances in ultrasonography have enabled
three-dimensional echocardiography (3DE), consequently
removing the dependency on accurate plane positioning and
geometric assumptions required for standard two-dimensional
echocardiography (2DE). As a result, several studies have
shown that 3DE-derived measurements are generally superior
to 2DE in terms of chamber quantification accuracy (6, 7),
reproducibility (8), and prognostic power (9). Despite these
advantages, 3DE has not yet been universally integrated into
clinical practice for the assessment of cardiac function due to
limitations in image quality, and increased costs associated with
acquisition and long analysis times compared with 2DE.

In comparison to other cardiac imaging modalities, analysis
of 3DE is particularly challenging owing to the limited spatial
resolution, low contrast-to-noise ratio (CNR), complex noise

characteristics (speckle in combination with common artifacts),
and image anisotropy. Several factors can influence the image
quality of 3DE including, but not limited to, sonographer
experience, vendor-specific processing, acquisition settings, and
patient body habitus. Discrepancies in the delineation of
important cardiac structures, such as the left ventricle (LV),
compared to those from a reference modality such as CMR,
have been shown to be observer- and software-dependent, as
well as exhibit regional variability in terms of the magnitude of
differences in geometry (10). In particular, acoustic shadowing
and signal dropout further compromise local image quality,
leading to greater inter- and intra-observer variability in manual
annotations at these locations. To address this, statistical shape
priors (or atlases) can be used to provide suitable estimates in
regions where image information is corrupted or missing (11–
14). However, these approaches are ultimately limited by the
generalizability of such templates and may be ill-suited in cases
of atypical anatomy.

The primary challenge associated with the development
of automated methods for 3DE analysis is the prerequisite
of a sufficiently large training dataset. Historically, reference
annotations have been difficult to obtain due to the high degree
of variability associated with manual 3DE segmentation, thus,
limiting the scope of ML-based solutions. Currently, the dataset
belonging to the Challenge on Endocardial Three-dimensional
Ultrasound Segmentation (CETUS)1 (15), organized as part of

1 https://www.creatis.insa-lyon.fr/Challenge/CETUS/
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the 2014 Medical Image Computing and Computer Assisted
Interventions (MICCAI) conference, remains the only publicly
available resource. This dataset consists of expert-annotated
3DE images from 45 subjects, for which data from 15
subjects are made publicly available for training. Due to the
lack of clear guidelines for endocardial contouring in 3DE,
considerable effort was expended in establishing a consistent
analysis regime amongst three expert observers. Despite this,
large inter-expert variability was reported and an agreement
was only reached after several revisions and consensus
discussions (16). Nevertheless, efforts in providing a publicly
accessible benchmark such as the CETUS platform represent
an important step toward the development of automated 3DE
analysis methods.

Alternative approaches for generating training data
involve producing synthetic 3DE images via in silico
simulations (17, 18) or generative adversarial networks
(19, 20). While these methods do not require additional
segmentation (as the underlying anatomy is known in such
cases), synthetic datasets are often unable to adequately
capture all features found in real images. Unsupervised
domain adaptation strategies have also gained interest in
medical imaging applications, enabling knowledge gained
from higher-resolution images or data to improve the
segmentation of lower-resolution or degraded images (21–
23). However, as with unsupervised methods in general,
it cannot be certain that the model is optimized for
the target domain.

Alongside the ongoing advances in 3DE acquisition systems,
more accurate and efficient analysis methods will substantially
benefit patient care and management. Having acknowledged the
lack of expert consensus in obtaining reference annotations,
and the limitations associated with population shape priors and
synthetic data, we instead leveraged subject-specific labels from
CMR acquired in a heterogenous population of 134 subjects.
Here, we present MITEA (MR-Informed Three-dimensional
Echocardiography Analysis): an annotated 3DE dataset for
the segmentation of the LV myocardium and cavity for
quantification of systolic function and mass, and subsequently
show how this data can be used to train a deep learning model
for automated 3DE analysis. The full annotated 3DE dataset
and trained model can be accessed as part of the Cardiac
Atlas Project2 (24). To date, this represents the largest publicly
available 3DE dataset, and the first which uses labels derived
from subject-specific CMR analyses.

2. Materials and methods

Non-invasive multimodal 3DE and CMR imaging were
performed within two hours in 144 prospectively recruited

2 https://www.cardiacatlas.org/

participants (87 healthy subjects with no existing or history
of cardiac disease; and 57 patients with acquired, non-
ischemic cardiac disease), of which 134 (82 healthy subjects;
and 52 patients with cardiac disease) were included in the
study. Ethical approval for this research was granted by the
Health and Disability Ethics Committee of New Zealand
(17/CEN/226). Written informed consent was obtained from
each participant.

Multimodal data belonging to 70 of these subjects
have been previously presented as part of an investigation
into systematic measurement biases between 3DE and
CMR (10). The present study extends upon this work
by: inclusion of additional disease cases for improved
generalizability; inclusion of scan-rescan 3DE images to
assess repeatability; and utilization of paired multimodal
data for the development of automated 3DE segmentation
techniques. An overview of the method for data generation
is illustrated in Figure 1, and detailed in the following
subsections.

2.1. Multimodal image acquisition

Transthoracic real-time (single-cycle) 3DE images were
acquired using a Siemens ACUSON SC2000 Ultrasound
System and a 4Z1c matrix array transducer (Siemens Medical
Solutions, Mountain View, CA, USA) with 36 × 48 (1,728)
elements. Targeted images of the LV were acquired from the
apical window in a steep left lateral decubitus position during
breath-holds. Parameters (including choice of fundamental
or harmonic imaging, depth, gain, compression, and width
of the volumetric dataset) were optimized by an experienced
sonographer on a per-subject basis to maximize the image
volume sampling rate, while maintaining adequate spatial
resolution for analysis. To measure scan-rescan repeatability,
two 3DE clips were acquired per subject (producing a total
of 268 3DE datasets across the 134 included participants).
All acquisitions were reconstructed into 3D Cartesian
image volumes (with a rectangular bounding box and
zero-values outside the pyramidal volume) using 1 mm
isotropic voxels.

Multi-planar cine CMR imaging was performed on either
a Siemens Magnetom 1.5T Avanto Fit (n = 77) or 3T Skyra
(n = 57) scanner (Siemens Healthcare, Erlangen, Germany)
with an 18-channel body matrix coil, using a retrospectively
gated balanced steady-state free precession sequence under
breath-holds. Acquired planes included three long-axis slices
(standard two-, three-, and four-chamber views) and a short-
axis stack of 6–10 slices (spanning the length of the LV from
mitral valve to apex) over one cardiac cycle, with the following
typical imaging parameters: TR = 3.7 ms, TE = 1.6 ms,
flip angle = 45◦, field of view = 360 mm × 360 mm,
in-plane resolution = 1.4 mm × 1.4 mm, and slice
thickness = 6 mm, in keeping with standard protocols.
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FIGURE 1

Method overview for generation of the MR-Informed Three-dimensional Echocardiography Analysis (MITEA) dataset, showing paired
multimodal imaging using 3D echocardiography (3DE) and cardiac magnetic resonance (CMR) imaging. The registration of CMR-derived left
ventricular geometries was performed at end-diastole (ED) and end-systole (ES) to produce subject-specific labels for the myocardium and
cavity.

With these settings, an average of 29 ± 4 (range 20–44)
frames per cardiac cycle were obtained for the included
study population.

2.2. Image analysis

Patients were subjectively graded on a five-point 3DE image
quality scale (poor, suboptimal, adequate, good, excellent) by
a single expert (independent of the sonographer who acquired
the images). This subjective score was based on a combination
of perceived endocardial border definition (i.e., the overall
sharpness of the LV cavity due to ultrasound attenuation, choice
of harmonics, and selection of gains and compression), and the
visibility of wall segments (relating to signal dropout and LV
coverage due to probe alignment and selection of an adequate
pyramidal volume size). After qualitative grading, the ratio
between the mean difference and variance in signal intensity
between the LV myocardium and cavity were calculated to
provide a quantitative measure of CNR (25), given by:

CNR =

∣∣µmyocardium − µcavity
∣∣√

σmyocardium2 + σcavity2

where µmyocardium and µcavity are the mean signal intensities
in the regions belonging to the myocardium and cavity,

respectively, and σmyocardium and σcavity are the corresponding
standard deviations.

To generate subject-specific labels from CMR, time-varying
geometric models of the LV over one cardiac cycle were
constructed semi-automatically by guide-point modeling (26)
using Cardiac Image Modeler (CIM, Version 8.1, University
of Auckland, New Zealand), by a single analyst. To create
an initial coarse geometry and to establish the LV position
and orientation, fiducial landmarks (i.e., the base of the
myocardium in the long-axis slices; apical and basal centroids
in the corresponding short axis slices, and insertion points
of the right ventricle (RV) along the LV epicardial border in
the short-axis slices, where visible) were manually identified.
This was subsequently refined by interactively fitting contours
to the endocardial and epicardial borders on both the long-
and short-axis slices, and manually correcting in-plane breath-
hold mis-registrations using the image intersections. Papillary
muscles and trabeculations were included within the LV
cavity (Figure 2A). This analysis generated a bicubic Hermite
and linear finite element model of the LV (27), with the
origin positioned at one-third of the distance from base
to apex, with the LV long axis parallel to the x-axis, and
the center of the RV directed toward the orthogonal y-axis.
From the model, 145 unique points were sampled per surface
(for the endocardium and epicardium) to produce a mesh
consisting of 290 3D rectangular Cartesian (x, y, z) vertices
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FIGURE 2

Image analysis and 3D left ventricle (LV) geometry extraction from cardiac magnetic resonance (CMR) using Cardiac Image Modeler (CIM,
Version 8.1, University of Auckland, New Zealand) at end-diastole (ED) and end-systole (ES). (A) Contour examples of the endocardium (white)
and epicardium (blue) on a 4-chamber long axis slice and mid-ventricular short axis slice, showing exclusion of trabeculae and papillary
muscles from the myocardium. (B) 3D surface meshes (dimensions in mm) sampled from the LV finite element model. (C) Volume-time curve
generated from CMR image analysis, indicating frame indices of interest.

representing the LV myocardium. Static 3D LV geometries were
extracted at end-diastole (ED) and end-systole (ES) (Figure 2B),
corresponding to the first CMR image frame, and the image
frame associated with the smallest cavity volume, respectively
(Figure 2C).

2.3. Multimodal registration and label
generation

For each subject, registration of CMR with 3DE was
performed in two steps, comprising an automated coarse
alignment of the global LV position, followed by a manual
refinement of the LV model within the 3DE image volume.
To establish the initial transform at ED, the B-spline Explicit
Active Surfaces (BEAS) algorithm (14) was used to create
a fully automated segmentation of the LV from 3DE, from
which a vector connecting the apex and basal centroid was
extracted to represent the LV long axis orientation and
position with respect to each 3DE acquisition. To differentiate
between the circumferential wall segments, the direction of
the RV center from the central axis was approximated as
being 70 degrees from the inferior RV insertion [automatically
detected based on image features as part of the BEAS
segmentation (28)], as the anterior insertion is generally not
well visualized in 3DE. The resultant axes were subsequently
registered to the cardiac coordinate system used in the
finite element model of the LV in Section “2.2 Image

analysis,” yielding a transformation matrix representing the
rigid mapping between the 3DE image LV model coordinate
systems. This transformation was subsequently applied to
initially align the CMR-derived LV model to the 3DE image for
each subject.

The initial alignment was refined by manually applying
rigid translations and rotations using an open-source data
analysis and visualization application (ParaView 5.8.0) (29)
(Figure 3), by the same expert that carried out subjective 3DE
image quality grading and CMR analysis. Manual registrations
were performed at two frames only, representing ED and ES.
For CMR, the relevant static LV geometries were extracted
according to the method described in Section “2.2 Image
analysis” and Figure 2C. For 3DE, ED and ES image frames were
manually selected corresponding to when the cavity appeared
largest and smallest. The manual refinement was performed
independently for the ED frame, and further adjusted at ES,
as required, to account for any changes in relative transducer
angle and position over the cardiac cycle during acquisition.
All manual alignments were carried out by a single observer,
resulting in 536 (134 included subjects × 2 clips × 2 frames)
independent alignments.

The closed meshes were subsequently converted into 3D
masks of equal dimensions to the corresponding Cartesian 3DE
images, containing two foreground label classes (representing
the cavity and myocardium). Of note, foreground label regions
were not constrained to the pyramidal volume, as shown in
Figure 4.
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FIGURE 3

Registration of 3D echocardiography (3DE) with subject-specific geometries of the left ventricle (LV) derived from cardiac magnetic resonance
(CMR) at end-diastole, showing an example 3DE image volume (visualized with an opacity transfer function on a blue-to-red colormap) and
corresponding 2D mid-ventricular image slice and contours of the endocardium (endo) and epicardium (epi), viewed longitudinally and axially.
Labels denote anatomical LV aspects: B-A, base-to-apex; S-L, septal-lateral; A-I, anterior-inferior. All dimensions are in mm.
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FIGURE 4

Example of an annotated 3D echocardiography (3DE) image sliced longitudinally at end-diastole (ED) and end-systole (ES), showing portions of
labeled regions and corresponding contours for the left ventricular cavity (white) and myocardium (blue) falling outside the acquired 3DE
pyramidal volume (as indicated by the arrows).

2.4. Deep learning segmentation
experiment

To demonstrate the application of the dataset for deep
learning, nnU-Net (30), a self-configuring network for semantic
segmentation was employed for automated 3DE analysis. An
80/20 split was used for training and testing, with images
from the same acquisition (i.e., ED and ES from the same
cycle) and clips from the same participant (i.e., scan and
rescan) grouped together. This resulted in data from 107 unique
participants being included in the training set (a total of 428
paired images and labels), and data from 27 participants in
the testing set (108 paired images and labels). The network
was trained using fivefold cross-validation with a further
80/20 split for training and validation, producing five model
instances (each trained using data from 85 or 86 participants),
which were ensembled (by averaging softmax probabilities)
for inference.

Using the 3D full-resolution U-Net configuration with
no cascade, each fold was trained for 200 epochs (chosen
empirically based on stable validation loss curves), where each
epoch consisted of 250 iterations over shuffled batches of
size two. Stochastic gradient descent with a large Nesterov
momentum (31) (µ = 0.99) and a high initial learning rate
of 0.01 [reduced by (1 − epochcurrent/epochmax)0.9] using the
polyLR schedule (32), producing an almost-linear decrease to
zero, was used for optimization, with the sum of cross-entropy
and Dice as the loss function. To diversify the data and increase
model robustness, on-the-fly data augmentations including
rotation, scaling, mirroring, and low-resolution simulation (by
means of downsampling followed by upsampling), were applied
during training. Training time was approximately 170 s per
epoch on an NVIDIA Tesla V100 GPU with 32GB memory.
With the exception of a reduction in the number of epochs
(set to 1,000 by default) to reduce overfitting, the model was

deployed with all other out-of-the-box parameters for pre-
processing, network architecture selection, training, and post-
processing. The self-configured architecture for the present
dataset is shown in Figure 5.

2.5. Validation and performance

Model performance was evaluated on the testing set
(n = 27 subjects, 54 acquisitions) in terms of segmentation
accuracy at ED and ES using the Dice coefficient, mean surface
distance (MSD), and Hausdorff distance (HD); as well as
the agreement in routine clinical cardiac indices including
LV end-diastolic volume (EDV), end-systolic volume (ESV),
mass (LVM) (calculated as the average of mass at ED and
ES), and ejection fraction (EF). Clinical measurements were
also compared with those derived from conventional manual
analysis using TOMTEC 4D LV-ANALYSIS 3 (TOMTEC
Imaging Systems GmbH, Unterschleißheim, Germany), a
commercially available, vendor-neutral software platform for
3DE quantification, performed by a single expert for the 27 test
subjects (including rescans).

2.6. Statistics

Paired-sample t-tests were used to identify statistically
significant measurement biases (calculated as index3DE–
indexCMR) in cardiac indices derived from 3DE (either by
nnU-Net or manually) with respect to those obtained from
corresponding CMR analyses, and Bland-Altman plots were
used to visualize the agreement between paired variables. The
f -test of equality of variances was used to assess the significance
of the reduction in the standard deviation of errors when
using nnU-Net instead of expert manual analyses in terms of
measurement accuracy (with respect to CMR), as well as scan-
rescan repeatability. Finally, to assess the reliability between
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FIGURE 5

Network architecture configured by nnU-Net for 3DE segmentation. Each 3D convolution (conv) block consists of a plain convolution, followed
by instance normalization (norm), leaky ReLU (LReLU), and dropout. Downsampling is achieved using strided convolutions (stride two), and
upsampling by transposed convolutions. Numbers indicate the number of channels corresponding to each convolution block.

paired measurements, an intraclass correlation coefficient (ICC)
using a two-way, mixed effects model for absolute agreement,
was calculated for each index. Based on established guidelines
(33), threshold values of <0.5, ≥0.5, ≥0.75, and ≥0.9,
represented poor, moderate, good, and excellent reliability,
respectively. For the quantification of absolute scan-rescan
variability due to random measurement error (34), repeatability
coefficients with 95% confidence (35) were also computed.
All statistical tests were two-tailed and deemed significant for
p-values < 0.05, and analyses were performed using IBM SPSS
Statistics for Windows (Version 26.0, IBM Corp., Armonk, NY,
USA).

3. Results

3.1. Population summary

Demographics (including age, sex, and body surface area)
and CMR-derived LV indices for the included population
are summarized in Table 1. The disease group comprised
14 patients with LV hypertrophy, 12 patients with cardiac
amyloidosis, 10 patients with aortic regurgitation, eight
patients with hypertrophic cardiomyopathy, six patients
with dilated cardiomyopathy, and two heart transplant
recipients.

3.2. Image characteristics

Images of at least suboptimal quality (n = 134) were
included for analysis, leaving 10 datasets that were excluded due
to poor quality. Figure 6 shows examples of 3DE images ranging

from poor to excellent quality, as well as the distribution of
image quality across the population. Of the 10 excluded cases,
five were healthy controls, and five were patients with cardiac
disease. A summary of 3DE image dimensions and acquired
frames per cycle is presented in Table 2.

TABLE 1 Summary of participant demographics including age, sex,
body surface area (BSA) calculated using the Mosteller formula (36),
and body mass index (BMI); and indices derived from cardiac
magnetic resonance imaging including left ventricular end-diastolic
volume (EDV), end-systolic volume (ESV), mass (LVM), and ejection
fraction (EF), for the included dataset.

Control
(n = 82)

Disease
(n = 52)

Total
(n = 134)

Age (years) 37± 16
(18–74)

62± 15
(18–84)

47± 20
(18–84)

Male sex [frequency (%)] 42 (51%) 39 (75%) 81 (60%)

BSA (m2) 1.83± 0.21
(1.39–2.25)

2.01± 0.25
(1.46–2.72)

1.90± 0.24
(1.39–2.72)

BMI (kg/m2) 24.0± 3.6
(16.9–34.2)

28.3± 5.5
(16.7–48.9)

25.7± 4.9
(16.7–48.9)

EDV (ml) 139± 31
(74–220)

166± 44
(101–314)

150± 39
(74–314)

ESV (ml) 53± 16
(19–103)

74± 38
(29–235)

61± 29
(19–235)

LVM (g) 110± 30
(58–171)

170± 51
(88–314)

133± 49
(58–314)

EF (%) 62± 5
(51–74)

57± 12
(25–78)

60± 9
(25–78)

HR difference (bpm) −1± 7
(−22–25)

−1± 6
(−13–38)

−1± 6
(−22–38)

The difference in heart rate (HR) between 3DE and CMR acquisitions (calculated as
HR3DE–HRCMR) is provided as an indication of HR variability between modalities.
Continuous variables are presented as mean± standard deviation (range).
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FIGURE 6

Examples of reconstructed 3D echocardiographic image volumes (visualized with an opacity transfer function on a blue-to-red colormap) and
corresponding 2D mid-volume longitudinal slices (grayscale), showing variable quality (subjectively scored from poor to excellent). A total of 10
subjects were excluded from the study due to poor image quality.

TABLE 2 Summary of 3D echocardiography (3DE) image parameters including Cartesian image dimensions in X (elevation), Y (azimuth), Z (depth,
i.e., apex-to-base) directions, the number of frames acquired per cycle, and the contrast-to-noise-ratio (CNR) associated with subjective quality
scores across the included study population.

Dimensions (mm) Frames per cycle CNR (dB)

n = 268 X Y Z Suboptimal Adequate Good Excellent

Mean 167 168 132 36 0.526 0.649 0.831 0.930

SD 25 26 14 12 0.110 0.144 0.148 0.146

Min. 106 117 101 12 0.346 0.209 0.480 0.675

Max. 243 243 172 69 0.726 0.920 1.128 1.377

Presented values include the mean, standard deviation (SD), minimum (min.), and maximum (max.) for each parameter.

3.3. Segmentation accuracy

Figure 7 illustrates the distribution of segmentation
accuracy scores obtained by the ensembled nnU-Net model with
respect to the cavity and myocardium, evaluated on the training
set (n = 428, consisting of data from 107 subjects × 2 clips × 2
frames) and testing set (n= 108 images, consisting of data from
27 subjects × 2 clips × 2 frames). Mean test scores were Dice
coefficient = 0.766, MSD = 1.6 mm, and HD = 9.1 mm for the
myocardium; and Dice coefficient= 0.871, MSD= 1.8 mm, and
HD = 8.0 mm, for the cavity. Segmentation metrics for each of
the five separate model instances evaluated on the testing set
is provided in the Supplementary material. For comparison,
corresponding mean scores (averaged between the reported

values for ED and ES) obtained by the most accurate method
for LV cavity segmentation in the fully automatic category by
Barbosa et al. (37) and Queirós et al. (38) of the 2014 MICCAI
CETUS challenge were Dice coefficient= 0.878, MSD= 2.4 mm,
and HD= 8.2 mm.

From visual assessment, nnU-Net produced reasonable
myocardium and cavity segmentations for all test images at
both ED and ES. Mis-segmentations occurred most frequently
where LV boundaries were missing from the image, with one
such example illustrated in Figure 8A. Here, the reference
annotations show that a substantial portion of the cavity
and myocardium falls outside the acquired pyramidal volume.
Where the pyramidal volume adequately encompassed the
LV, segmentations were generally accurate, as shown in
Figures 8B, C.
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FIGURE 7

Violin plots showing the distribution and quartiles of segmentation scores in terms of Dice coefficient, mean surface distance (MSD), and
Hausdorff distance (HD), evaluated on (A) the training set (n = 428 images) and (B) the testing set (n = 108 images). For each metric,
distributions are split into the two foreground classes (i.e., myocardium and cavity), with the central box plot derived from the data of both
classes as an estimate of the overall score.

3.4. Agreement in cardiac indices

Agreement and reliability in clinical cardiac indices between
CMR and 3DE (calculated from nnU-Net segmentations
and expert manual analyses using TOMTEC) are presented
in Table 3. Higher ICC values (representing measurement
reliability with respect to CMR) were observed across all cardiac
indices, with significant reductions in the magnitude of bias
for EDV, ESV, and LVM when using nnU-Net in place of
expert manual analyses for recovering CMR-derived cardiac
indices. Bland-Altman analyses revealed narrower 95% limits of
agreement in all cardiac indices for nnU-Net compared to expert
manual analyses, with no apparent proportional bias (Figure 9).

3.5. Scan-rescan repeatability

The variability in repeated 3DE measurements is
summarized in Table 4. Both expert manual analyses and
nnU-Net exhibited excellent reliability between scan-rescan
measurements (ICC > 0.9), with the reliability of nnU-Net being
higher for all cardiac indices. Similarly, nnU-Net outperformed

the expert human observer in terms of significantly smaller
magnitudes of variance in scan-rescan biases (again for all
cardiac indices), suggesting that measurements obtained using
nnU-Net were more consistent.

4. Discussion

Guidelines and recommendations for LV chamber
quantification using echocardiography state 3DE as the
preferred method of volumetric assessment (over conventional
2DE), where available and feasible (39), in keeping with
the advantage of 3DE in being able to circumvent the need
for geometric assumptions. Recently published normative
values stratified by age, sex, and ethnic groups by the World
Alliance Societies of Echocardiography (WASE) (40) further
endorses the use of 3DE for the assessment of LV chamber
size and function. Nevertheless, 3DE has not yet been
universally incorporated into standard clinical routine due
to requiring specialized expertise in both acquisition and
analysis, resulting in higher costs compared to 2DE. Likewise,
the generation of large amounts of expert manual annotations
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FIGURE 8

Comparison of left ventricular (LV) segmentations by nnU-Net
(yellow) against reference labels (blue) derived from cardiac
magnetic resonance (CMR) imaging for test images at
end-diastole, representing the: (A) worst, (B) median, and (C)
best model performances. For visualization purposes, 3D masks
have been converted to contours representing the LV
myocardium corresponding to longitudinal (top row) and axial
(bottom row) slices. The resulting Dice coefficients for the
myocardium and cavity were: 0.440 and 0.754, respectively, for
the worst case; 0.741 and 0.924, respectively, for the median
case; and 0.856 and 0.950, respectively, for the best case.

for the development of automated 3DE analysis methods
has historically been a tedious and complex task. Having
recognized the inter-expert variability in manual analysis (such
as was experienced during the organization of the CETUS
challenge), we sought to instead leverage the higher resolution
and contrast of CMR in a supervised manner, to provide
more objective reference labels for 3DE. Furthermore, the use
of CMR-derived labels provides an implicit advantage over
manual 3DE segmentations in terms of reducing intermodality
measurement bias.

Using 536 annotated 3DE images from a heterogeneous
population of 134 human subjects comprising healthy controls
and patients with cardiac disease, the dataset was used to train a
self-configuring 3D U-Net to provide automated segmentations
of the LV cavity and myocardium at ED and ES. This automated
nnU-Net model subsequently outperformed an expert human

observer in terms of accuracy against CMR reference values,
as well as scan-rescan repeatability, whilst exhibiting increased
measurement reliability (in terms of ICC) for all measured
indices. Compared to volumes obtained using conventional
manual analyses, nnU-Net had a lower magnitude of bias
between 3DE and CMR, by 12 ml for EDV, and 10 ml for
ESV. Most markedly, myocardial mass estimates using nnU-
Net were far superior to those obtained by manual analyses.
The automated method produced a bias that was seven times
smaller in magnitude (5 g nnU-Net bias compared to 35 g
manual bias in Table 3) for LVM, and excellent reliability with
respect to CMR (where previously only moderate reliability was
attained using the manual method). While there were indeed
statistically significant differences in mean EDV and EF values
between nnU-Net and CMR, these differences (i.e., 9 ml and
2%, for EDV and EF, respectively) are clinically acceptable (41),
and unlikely to influence diagnostic outcomes or treatment
pathways. In terms of segmentation accuracy, nnU-Net achieved
a comparable Dice coefficient for the LV cavity with lower MSD
and HD scores compared to the highest-ranking method trained
and evaluated on the CETUS dataset. However, it should be
noted that these comparisons are indicative only, as results were
obtained from evaluation on a different dataset.

Signal dropout [particularly at the anterior wall (10)]
remains a major challenge in 3DE analysis. Furthermore, highly
anisotropic speckle properties and decreasing lateral resolution
(being inversely proportional to transducer proximity) obscures
the boundary between the myocardium and cavity toward the
base of the LV when imaged from the apical window. By
leveraging subject-specific geometries from CMR, our approach
provides reliable reference annotations in such regions that
are otherwise unavailable. Compared to the use of population
priors, subject-specific information is more likely to produce
labels closer to the true LV geometry for a given image instance,
which may be leveraged by computational classifiers such as
convolutional neural networks, despite not being apparent to
human observers. Although this is possible in the presence
of low contrast or poor resolution, it remains a challenge for
the ML model to predict labels in regions where image data
is entirely absent, such as that illustrated in Figure 8A. This

TABLE 3 Left ventricular end-diastolic volume (EDV), end-systolic volume (ESV), mass (LVM), and ejection fraction (EF) for the testing set (n = 54
clips) derived from cardiac magnetic resonance (CMR), corresponding 3D echocardiography (3DE) measurement biases [mean ± standard deviation
(SD)], and single measures intraclass correlation coefficients (ICC) with 95% confidence intervals in squared brackets.

CMR nnU-Net Expert (manual) Comparison

N = 54 Mean ± SD Bias ICC Bias ICC t-test f-test

EDV (ml) 153± 52 *−9± 16 0.936 [0.855, 0.968] *−21± 19 0.864 [0.301, 0.953] <0.001 0.189

ESV (ml) 66± 44 −1± 10 0.975 [0.957, 0.985] *−11± 13 0.927 [0.680, 0.972] <0.001 0.104

LVM (g) 127± 55 5± 23 0.897 [0.830, 0.939] *35± 43 0.532 [0.110, 0.754] <0.001 <0.001

EF (%) 60± 10 *−2± 5 0.889 [0.795, 0.938] 2± 6 0.825 [0.714, 0.895] <0.001 0.069

Values in bold in the Comparison column represent statistically significant differences (p < 0.05) between the means (t-test) and variances (f -test) of measurement biases for the expert
manual and nnU-Net analyses. Asterisks (*) indicate statistically significant differences between 3DE and CMR using a paired t-test.

Frontiers in Cardiovascular Medicine 11 frontiersin.org

https://doi.org/10.3389/fcvm.2022.1016703
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


fcvm-09-1016703 January 2, 2023 Time: 14:59 # 12

Zhao et al. 10.3389/fcvm.2022.1016703

FIGURE 9

Bland-Altman plots showing biases and 95% limits of agreement between cardiac magnetic resonance (CMR) and 3D echocardiography (3DE)
when analyzed by an expert and with nnU-Net. The horizontal axis represents the mean of measurements obtained from 3DE and CMR, against
differences (calculated as 3DE–CMR) on the vertical axis, for end-diastolic volume (EDV), end-systolic volume (ESV), left ventricular mass (LVM),
and ejection fraction (EF). Blue shaded regions represent the magnitude of bias from zero.

highlights the importance of image quality in terms of both
texture as well as the selection of an appropriate pyramidal
volume width during acquisition, the latter of which may result
in a total lack of image information, and subsequent inability to
recover geometric information.

The use of CMR-derived labels for 3DE relies on the
assumption that there is no change in LV geometry (and
associated hemodynamic status) between modalities. Although
paired datasets were acquired with minimal time between
CMR and 3DE scans, multimodal imaging was nevertheless
performed asynchronously, with participants subject to natural

physiological (e.g., heart rate) and positional (i.e., supine during
CMR and lateral during 3DE) variability. Furthermore, different
lung volumes during the breath-hold requirements for imaging
may also influence venous return and consequently cardiac
output (42). Thus, the assumption that LV volumes are identical
for the same subject between scans consequently remains a
limitation of the described method for the utilization of labels
from a different modality. As the registration between CMR
and 3DE only accounts for the rigid transformation component
between imaging coordinate systems, it may be appropriate to
incorporate affine components (such as scaling) to account for
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TABLE 4 Scan-rescan variability in left ventricular end-diastolic volume (EDV), end-systolic volume (ESV), mass (LVM), and ejection fraction (EF) for
the testing set (n = 27 patients) in terms of measurement biases (calculated as randomized first measurement–second measurement), average
measures intraclass correlation coefficients (ICC) with 95% confidence intervals in squared brackets, and 95% confidence repeatability coefficients
(RC), derived from expert manual analyses and nnU-Net segmentations.

nnU-Net Expert (manual) Comparison

n = 27 Bias ICC RC Bias ICC RC f-test

EDV (ml) 1± 9 0.991 [0.980, 0.996] ±18 2± 17 0.968 [0.930, 0.985] ±34 0.002

ESV (ml) −1± 5 0.997 [0.994, 0.999] ±9 1± 10 0.982 [0.962, 0.992] ±20 <0.001

LVM (g) 1± 12 0.984 [0.965, 0.993] ±24 1± 24 0.944 [0.877, 0.975] ±47 0.001

EF (%) 1± 3 0.987 [0.971, 0.994] ±5 −1± 4 0.957 [0.907, 0.980] ±9 0.005

Values in bold in the Comparison column represent statistically significant differences (p < 0.05) between the variances of the biases.

changes in LV geometry as a result of acquisition conditions.
However, such changes are typically subtle for subjects at rest
(43–45).

From a practical perspective, there are several advantages
of using ML for 3DE analysis, including the reduction in
the time required for analysis (with network inference time
being approximately six seconds per 3DE image) and scan-
rescan variability when compared with conventional methods,
as exemplified in this study. The use of CMR in the
creation of training data for automated 3DE analysis methods
not only removes the measurement bias between the two
modalities, but also provides more accurate and reproducible
measurements (compared to manual analysis methods) to
facilitate integration of 3DE into clinical practice. Lastly, the
methodology surrounding the derivation of subject-specific
labels from an alternative imaging modality is not limited to
the LV, and similar approaches may be taken for other cardiac
structures, such as the RV and cardiac atria, to enable more
comprehensive examinations using 3DE.

4.1. Limitations and future work

While this work represents the largest publicly available
3DE dataset in terms of the number of labeled images,
it currently stands as a single-center, single-vendor study
(unlike CETUS, which includes data from three institutions
and three ultrasound vendors). Similarly, reference geometries
were obtained by a single observer, who performed both the
CMR analysis [although interobserver variability is generally
low (46)] as well as the manual refinement of CMR-to-3DE
alignment. The reliance on a single observer consequently
remains a limitation of this study, and further validation using
an independent dataset is needed to assess the reproducibility
of the label generation framework and overall robustness of
the proposed method. Contributions from other institutions
may also help to provide additional data variability to improve
the generalizability and performance of the ML workflow
presented here.

Although the use of 3D Cartesian images with isotropic
spacing provides a standard format for input into most ML

architectures, it is worth noting that in the case of 3DE,
approximately two-thirds of the image consists of zero-values
outside the pyramidal volume as a result of the rectangular
bounding box. This redundancy warrants investigation into
more efficient image representations and potential analysis
on un-interpolated radiofrequency data, which may improve
model performance.

As the present dataset is inclusive of ED and ES images only,
this method may be extended to include intermediary frames
and leverage temporal information (47) to enable automated
full-cycle analysis. Such data would enable more in-depth
analysis of cardiac motion or the assessment of diastolic function
for added clinical value.

5. Conclusion

In light of the ongoing efforts in developing and evaluating
automated 3DE analysis methods, we present here an annotated
3DE dataset comprising images of varying quality acquired
across a range of patient demographics, representing the
largest publicly available 3DE dataset to date, and the
first of which leverages subject specific labels from CMR.
Using this dataset, a state-of-the-art deep learning model
applied to unseen 3DE images was capable of reproducing
measurements derived from CMR, while outperforming
an expert human observer in terms of accuracy and
scan-rescan repeatability. As 3DE becomes increasingly
widespread, the provision of a novel benchmark represents a
critical step toward enabling the development of automated
tools for enhanced efficiency and accuracy of non-invasive
cardiac image analysis.
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