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Pompe disease (PD) is a rare, autosomal recessive, inherited, and progressive

metabolic disorder caused by α-glucosidase defect in lysosomes, resulting

in abnormal glycogen accumulation. Patients with PD characteristically have

multisystem pathological disorders, particularly hypertrophic cardiomyopathy,

muscle weakness, and hepatomegaly. Although the pathogenesis and clinical

outcomes of PD are well-established, disease-modeling ability, mechanism

elucidation, and drug development targeting PD have been substantially

limited by the unavailable PD-relevant cell models. This obstacle has been

overcomewith the help of induced pluripotent stemcell (iPSC) reprogramming

technology, thus providing a powerful tool for cell replacement therapy,

disease modeling, drug screening, and drug toxicity assessment. This review

focused on the exciting achievement of PD disease modeling and mechanism

exploration using iPSC.
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Introduction

As a lysosomal glycogen accumulation disease, Pompe disease (PD) is an autosomal

recessive disorder caused by the mutation of the GAA gene encoding α-glucosidase

(AαGlu), leading to glycogen over-accumulation in the lysosomes of different tissues,

especially in the skeletal and cardiacmuscles (1, 2). A huge amount of lysosomal glycogen

accumulation in the skeletal muscles and cardiomyocytes eventually leads to death from

cardiorespiratory failure (3). PD can be classified into two types based on the onset age

of the disease, infantile-onset Pompe disease (IOPD) and late-onset forms (LOPDs).

For different patients, the tissue injury and clinical symptoms depend on the varied

residual enzyme activity, and thus, this determines the prognosis of patients with PD.

Patients with IOPD with absent AαGlu activity usually manifest progressive skeletal

muscle weakness and cardiac hypertrophy and die within a few months after birth

without effective treatment as a result of heart and respiratory failure (4). Patients with

LOPD often develop reduced AαGlu activity and have a slower skeletal muscle weakness

progression, rarely showing cardiac muscle involvement (5, 6).
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Pompe disease animal models have made a significant

contribution toward exploring pathogenesis. Several PD mouse

models have been used to study PD’s pathophysiological

characteristics (7, 8), including the application of gene therapy

(9). Recently, the technology of induced pluripotent stem cell

(iPSC) reprogramming dramatically accelerated PD research

advancement. The iPSC generated from patients with PD (PD-

iPSC) can be successfully differentiated into various somatic

cells, such as cardiomyocytes and the skeletal muscles, in which

the phenotypes and pathological features with the same genetic

background can be recapitulated in vitro. PD-iPSCmodeling can

be a good tool to probe the pathogenic mechanism and new

valuable therapeutic strategies. This review aimed to make an

overview of PD-iPSC modeling, including disease pathogenesis,

different target models derived from iPSC, and a summary of

research progress about PD.

GAA function and PD pathogenesis

Alpha-glucosidase (GAA) enzyme deficiency caused

glycogen accumulation within the swollen lysosomes and

probable ruptured lysosomes, thus manifesting as a multisystem

disorder, especially in the skeletal and cardiac muscles (10).

The GAA gene is approximately 18.3 kb long and localized

on chromosome 17q25.3 (11) with a 2,859 bp-length cDNA

encoding the protein enzyme, AαGlu, with 952 amino acids

(2), which hydrolyses lysosomal glycogen to glucose and then

preventing glycogen storage in lysosomes (12). GAA experiences

the sequential processes of protein modification in different

organelles, from glycosylation in the endoplasmic reticulum to

mannose 6-phosphate addition in the Golgi (13) and finally to

enzyme digestion in the lysosome where the 110 kDa precursor

is converted into d 76- and 69-kDa mature forms with enhanced

enzyme activities (14).

So far, 2,075 GAA mutations consisting of 1,205 in exons

and 870 in introns have been identified, suggesting the

highly heterogeneous spectrum of GAA mutations (15–18),

which lead to varying expression levels and/or GAA protein

activity. DifferentGAAmutations may partially explain different

expressions and GAA protein activity. Point mutations can

influence posttranscriptional splicing or directly change the

GAA protein function, while deletions and/or insertions of DNA

fragments may yield unstable mRNA transcription, thus finally

affecting protein translation, posttranslational modifications,

trafficking into the lysosome, and glycogenolysis activity of

GAA. As the most reported mutation type, missense mutations

of theGAA gene occurring in the unexposed amino acid residues

often result in misfolding of the 3D protein structure (19, 20).

Pompe disease iPSC modeling

Pompe disease animal models have made a significant

contribution toward promoting PD research. The murine PD

models exhibit cellular and tissular phenotypes similar to those

in human beings, such as decreased GAA activity, obvious

lysosome glycogen accumulation, and abnormal ultrastructure

in the lysosome, but their integral clinical feature differs greatly

from patients (21). In contrast, iPSC-derived target cells could

recapitulate the characteristic phenotype in the in vitro dish,

which is equivalent to the iPSC donor. Therefore, iPSC derived

from patients with a hereditary disease can provide an ideal cell

and/or organoid resource for disease modeling and mechanism

study (22–24). Last decade, more than ten studies utilized PD-

iPSC modeling to explore the phenotypes and pathogenetic

mechanism, which greatly expand the understanding of the

disease (Table 1).

Glycogen accumulation in iPSC

Glycogen accumulation in PD-iPSC was investigated in

the early stages. Higuchi et al., successfully established iPSC

from patients with IOPD and LOPD. They observed massive

glycogen granules in IOPD- and LOPD-iPSCs, but the IOPD-

iPSCs exhibited more glycogen accumulation compared with

LOPD-iPSCs. In addition, treatment with recombinant human

lysosomal alpha-glucosidase (rhGAA) could significantly

alleviate glycogen particle accumulation in the lysosomes of

IOPD-iPSCs dose-dependently (22). This study revealed that

glycogen accumulation, a hallmark of PD pathophysiological

phenotypes, could occur as early as the iPSC stage.

Pompe disease iPSC-derived
cardiomyocytes

Huang et al. (25) established iPSCs from two patients

with late-onset Pompe disease (LOPD-iPSCs) carrying GAA

mutations and derived cardiomyocytes (PD-iCM) from PD-

iPSC. It was shown that a mass of glycogen accumulated in

PD-iCM, underlying the ultrastructural aberrances including

swollen mitochondria, the formation of vacuoles containing

glycogen particles, and the formation of autophagosome-like

structures. The above major pathologic phenotypes of PD-iPSC-

derived cardiomyocytes were alleviated by rhGAA (25).

Raval et al. (26) reprogrammed IOPD skin fibroblasts

into iPSC cells and differentiated them into cardiomyocytes.

They found that, in the PD-iPSC-derived cardiomyocytes,

GAA activity was undetectable and lysosomes filled with

pathognomonic glycogen were observed. Contractile properties

and autophagy of PD-iPSC-derived cardiomyocytes were not

impaired, exhibiting the comparable feature of the control

group. It was explained by the authors that contractile

dysfunction may not be the major stimulus of hypertrophic

cardiomyopathy secondary to the PD, and autophagic

dysfunction is not central to early Pompe cardiomyopathy in

humans. However, several factors including the culture system,
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TABLE 1 Characteristics of Pompe disease iPSC models.

Disease
type

Reprogram
-ming
methods

Target
cells

Main research method Main observations Potential
durgs/
therapeutics

Mutations References

GAA-KO

mouse

Retrovirus Skeletal

myocytes

Electron microscopic

Enzyme activity assay

PAS/ACP staining

Morphological features

GAA enzyme activity

Glycogen accumulation

(–) Not mentioned (31)

IOPD Retrovirus Cardiomyocytes Cellular glycogen content

Enzyme activity assay

Measurement of intact cellular respiration

Electron microscopy

Microarray analysis

Glycogen accumulation

GAA enzyme activity

Ultrastructural aberrances

Metabolomics changes

rhGAA L-carnitine c.1935C>A

c.1935C>A/c.2040+1G>T

(25)

IOPD

LOPD

Retrovirus (–) PAS staining

Electron microscopy

Glycogen accumulation

Ultrastructural aberrances

rhGAA Not mentioned (22)

IOPD Lentivirus Cardiomyocytes Electron microscopy

Enzyme activity assay

Engineered cardiac tissue preparation and

functional

Testing

Isoelectric focusing studies

N-Linked glycan identification by

MALDI-TOF-MS

Glycogen accumulation

GAA enzyme activity

Contractile function

Autophagic dysfunction

Golgi-based glycosylation

(–) c.2532-2673del

c.1441delT/2237G>A

(26)

LOPD (–)

Pre-established

Cardiomyocytes Glycogen content analysis

Electron microscopy

Enzyme activity assay

Glycogen accumulation

GAA enzyme activity

Lysosomal enlargement

Gene therapy

(GAA)

c.796C>T/c.1316T>A (27)

Not

mentioned

(–)

Pre-established

Skeletal

myocytes

Glycogen content analysis

Enzyme activity assay

Electron microscopy

Glycogen accumulation

GAA enzyme activity

Ultrastructural aberrances

Gene therapy

(GAA and TFEB)

Not mentioned (32)

LOPD

PD mouse

(–)

Pre-established

CE-MS Analysis

Glutathione redox ratio assay

Reactive oxygen species assay

Metabolomic profiling

Oxidative stress-associated

metabolic parameters

(–) Not mentioned (28)

IOPD Sendai virus Skeletal

myocytes

PAS staining

Glycogen analysis

Electron microscopy

mTORC1 activation assay

Rapamycin analysis

Metabolomic analysis

Gene expression profiling and microarray data

analysis

Lysosomal glycogen accumulation

GAA enzyme activity

mTORC1-related signaling

Energy metabolism

Mitochondrial oxidative function

rhGAA c.1880C>T

c.796 C>T/c.1316 T>A.

c.1798C>T/c.2481+1

G>A

(33)

IOPD Sendai virus Hepatocytes PAS staining

Glycogen analysis

Immunofluorescence and electron microscopy

Lysosomal glycogen accumulation

rhGAA rescue for lysosomal glycogen accumulation

rhGAA c.1880C > T

c.796 >T/c.1316T>A

c. 1798C>T/c.2481+1

G>A

(39)

IOPD Lentivirus Skeletal

myocytes

Enzyme activity assay

Electron microscopy

DIC analysis

GAA enzyme activity

Ultrastructure

Contraction dynamics

(–) c.1441delT/2237G>A (34)

(Continued)
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the experimental condition, and the detection timepoint may

also influence the results. Nevertheless, they found that PD-

iPSC-derived cardiomyocytes produced lysosome-associated

membrane proteins (LAMPs) lacking appropriate glycosylation,

resulting from the loss of the lysosomal glycogen hydrolyzing

ability (26). Glycan processing abnormality due to glycosylation

deficiency in lysosomes may contribute to the pathophysiology

of Pompe cardiomyopathy.

In another set of experiments, Sato et al. (27) discovered that

glycogen accumulation and lysosome enlargement could also

be observed in LOPD-iPSCs and LOPD-iPSC-CMs. Especially,

they corrected the defect by GAA gene overexpression using the

lentiviral vector, resulting in alleviated glycogen accumulation

and enhanced AαGlu activity (27). Furthermore, they concluded

that dysfunctional mitochondria and aggravating oxidative

stress are likely involved in cardiac complications caused by

the PD after performing the metabolomic assay of PD-iPSC-

derived cardiomyocytes cells. It was further confirmed using the

genetic engineering mouse PD model, suggesting that oxidative

stress and an impaired mitochondrial function may underlie the

pathogenesis of late-onset PD (28).

Although patients with IOPD frequently manifest

hypertrophic cardiomyopathy, the mechanism of hypertrophic

cardiomyopathy caused by the loss of GAA activity remains to

be clarified. Our team has been focusing on PD disease for the

last 5 years. We previously reported four IOPD cases carrying

four complex GAA gene mutations (29). Additionally, we also

reprogrammed peripheral blood mononuclear cells (PBMC)

from one of the patients with IOPD to generate induced

pluripotent stem cells (IOPD-iPSCs) carrying compound

mutations of the GAA gene (R608X and E888X) (30). Together

with cardiomyocytes’ differentiation from iPSCs, the study

provided another ideal in vitro cardiac hypertrophy model

based on the IOPD-iPSCs.

Pompe disease iPSC-derived skeletal
muscle

Having generated iPSC from a mouse model with PD,

Kawagoe et al. (31) successfully differentiated skeletal muscle

cells from mouse PD-iPSCs. It was shown that the derived

skeletal muscle cells exhibited massive glycogen accumulation

in lysosomes (31). These results indicate that the iPSC-derived

skeletal muscle cells generated from a murine model could also

be a useful disease model for pathogenesis investigation and

skeletal muscle treatment in PD. Using skeletal muscle cells from

PD patient-specific iPSC, Sato et al. (32) found that lentivirus-

delivered GAA remarkably decreased the number of glycogen

granules via increased GAA enzyme activity. In addition, the

therapeutic effect of GAA overexpression could be further

improved by introducing transcription factor EB (TFEB),
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a transcription factor regulating biogenesis and lysosome

autophagy (32). Yoshida et al. (33) generated a skeletal muscle

model of IOPD with patient-specific iPSCs. The accumulation

of lysosomal glycogen was clear and was rescued in a dose-

dependent manner by rhGAA. They further demonstrated that

the signaling pathway mediated by the mammalian/mechanistic

target of rapamycin complex 1 (mTORC1) was inhibited in

myocytes derived from IOPD-iPSCs, implying that disturbed

mTORC1 signaling may participate in the pathogenesis of

skeletal muscle damage in IOPD (33). Recent advances in

bioengineering provide multifactorial andmultidimensional cell

culture strategies that more closely mimic the native biological

microenvironment. Based on the micropatterned technology,

Jiwlawat et al. successfully generated regularly aligned skeletal

muscle cells, which spontaneously contract specifically along the

long axis of the myotube. More importantly, the phenotype of

aberrant accumulation of lysosomal glycogen particles was more

clearly observed (34). Esmail and Danter utilized computer

simulation and artificial intelligence (AI) learning to generate

computer-simulated induced pluripotent stem cells (AI-iPSCs)

and differentiated skeletal muscle cells (AI-iSkMCs) to assist

IOPD research and drug screening. Calcium disorder and

mitochondrial dysfunction were accurately predicted in IOPD-

AI-iSkMC. Furthermore, the L-type calcium channel (LTCC)

was precisely identified as a biomarker using IOPD-AI-iSkMC

simulation, which has been previously proven to be upregulated

in the muscle cells from the mouse and human PD models (35).

This suggests a huge potential for computational simulation and

artificial intelligence technologies to be used in future iPSC-

based research for disease modeling and biomarker discovery

(36). It should be noted that there remains room for the

improvement of the artificially induced pluripotent stem cells.

The lack of complete data of rare disease, including PD, and of

complete understanding and knowledge regarding stem cells is a

major obstacle that prevents further optimized iPSC simulation.

Recently, several strategies (37, 38) have been developed

to enhance the therapeutic effect of enzyme replacement

therapy in the primary human skeletal muscle cells, such

as the moss-GAA strategy, by which the muscle cells could

have better recombinant GAA protein uptake with decreased

posttranscriptional modification (37) and by targeting antisense

oligonucleotides (AONs) which could help to correct aberrant

splicing and restore the reading frame, thus increasing the ratio

of GAA protein with normal function (39). It is worth looking

forward to the application of these strategies in PD patient-

derived iPSC models.

Pompe disease iPSC-derived hepatocytes

In addition to muscle tissues, the liver is another frequently

involved organ in patients with IOPD. Using IOPD patient-

iPSC generated, Yoshida et al. (39) successfully constructed

an in vitro PD liver model, evidenced by aberrant glycogen

accumulation in lysosomes and dose-dependent ameliorated

glycogen accumulation by rhGAA treatment. It may provide a

potent PD liver cells model for drug screening (39).

Pompe disease iPSC-derived neural cells

The central nervous system is another organ involved in

infant-onset PD. In in vitro terminally differentiated neural

cells (40) and neural stem cells (41) derived from IOPD-

iPSCs, PD-related phenotype, including abnormal glycogen

accumulation and sharply decreased GAA activities, was

recapitulated. More importantly, they also demonstrated

potential as a drug-screening model. Using the IOPD-iPSC-

derived neurons, Huang et al. (40) successfully screened three

potential compound candidates for PD treatment, Ebselen

(antioxidant), Wortmannin (GSK3 activator), and PX-866 (PI-

3K inhibitor). All these small molecules could increase the

GAA activity of Pom-iPSC-derived neurons. In the IOPD-

iPSC-derived neural stem cells, Cheng et al. (41) found that

hydroxypropyl-β-cyclodextrin (cyclic oligosaccharide) and δ-

tocopherol (a vitamin E component) could synergize and

amplify the treatment efficiency of rhGAA on the IOPD-iPSC-

derived neural stem cells, evidenced by the alleviated autophagy

and lipid droplet accumulation. It suggests that IOPD-iPSC-

derived neural cells serve as a promising in vitro drug screening

model for drug discovery in the context of correcting central

nervous system defects.

Expectation

As summarized in Figure 1, the rapid advances in iPSC

technology allow the researchers to generate various PD target

cells by reprogramming after acquiring the specimen from

patients with PD. The disease-specific target cells, including

cardiomyocytes and skeletal myocytes, have the patients’ genetic

information (42, 43). The target cells derived from iPSCs also

provide an ideal model to investigate the pathogenesis and

develop drug screening for individualized treatment. Making

gene therapy in ex vivo using a gene-editing strategy possible

is another encouraging progress for the iPSC-based PD study.

Target cells derived from iPSCs also act as an ideal model to

carry out drug screening for personalized treatment (44). This

makes ex vivo gene therapy by gene-editing strategy a possibility

(Figure 1). Gene-editing strategies can be used for the correction

of disease-causing mutations to achieve gene therapy. The rapid

development of the 3D culture system and new biomaterials give

opportunities for the growth of the organoid disease model for

PD, which could bridge the gap between in vitro cell research and

in vivo animal models (44). The iPSC-derived target cell model
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FIGURE 1

Experimental strategy using human iPSC for Pompe disease (PD) study. The iPSC generated from patients with PD can be di�erentiated into

di�erent cell types to investigate the pathogenesis and develop drug screening for individualized treatment. Gene-editing strategies such as

CRISPR-CAS9 can be used to correct disease-causing mutations to achieve gene therapy.

and the organoid disease model are regarded as valuable tools to

further drug discovery.
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