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Location, location, location:
Fibrin, cells, and fibrinolytic
factors in thrombi
Anuj Narwal, Claire S. Whyte and Nicola J. Mutch*

Aberdeen Cardiovascular and Diabetes Centre, School of Medicine, Medical Sciences and Nutrition,
Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom

Thrombi are heterogenous in nature with composition and structure being

dictated by the site of formation, initiating stimuli, shear stress, and cellular

influences. Arterial thrombi are historically associated with high platelet

content and more tightly packed fibrin, reflecting the shear stress in these

vessels. In contrast, venous thrombi are generally erythrocyte and fibrin-rich

with reduced platelet contribution. However, these conventional views on

the composition of thrombi in divergent vascular beds have shifted in recent

years, largely due to recent advances in thromboectomy and high-resolution

imaging. Interestingly, the distribution of fibrinolytic proteins within thrombi

is directly influenced by the cellular composition and vascular bed. This in

turn influences the susceptibility of thrombi to proteolytic degradation. Our

current knowledge of thrombus composition and its impact on resistance

to thrombolytic therapy and success of thrombectomy is advancing, but

nonetheless in its infancy. We require a deeper understanding of thrombus

architecture and the downstream influence on fibrinolytic susceptibility.

Ultimately, this will aid in a stratified and targeted approach to tailored

antithrombotic strategies in patients with various thromboembolic diseases.
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Introduction

Thrombosis is the underlying pathology of major cardiovascular diseases, including
myocardial infarction, ischemic stroke, and venous thromboembolism (VTE) which
encompasses deep vein thrombosis and pulmonary embolism. Despite advances in
diagnostics and novel antithrombotic drugs the mortality rate remains at 1 in 4
worldwide, creating a considerable burden on healthcare and society (1). In addition,
thrombosis is a major cause of mortality in other disease, such as cancer, pathogenic
infections, and autoimmune diseases (2–4). Hemodynamic forces and anatomic location
significantly impact the formation, structure and stability of a thrombus within
the vasculature. The resulting thrombi are heterogenous in nature, comprised of
varying degrees of fibrin, platelets, erythrocytes, leukocytes, and neutrophil extracellular
traps (NETs) (5). Thrombotic structures also vary within the arterial, venous, and
microcirculation, at areas of turbulent flow, arising from atherosclerotic lesions,
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prosthetic devices or irregular vessel geometries and in different
anatomic sites, such as the lung or ventricles of the heart (6).
Analysis of thrombi has been hampered by availability of fresh
samples, however, advancements in thrombectomy to remove
thrombi from human blood vessels provided opportunities to
examine the structure and composition of a thrombus (7).
In addition, various ex vivo and in vivo models of thrombus
formation and thrombolysis have provided useful tools to
understand thrombus initiation in different vascular beds, the
composition of various thrombus components, impact of shear
and their downstream impact on fibrinolysis (8–12). Developing
an understanding of thrombus composition, localization and
abundance of fibrinolytic proteins in specific settings is crucial
to personalize antithrombotic treatment strategies and develop
novel drugs to target thrombosis.

Thrombus initiation

The trigger for thrombosis depends largely on the vascular
bed (Figure 1). Nonetheless, an initial step is adherence of
platelets to the vessel wall via various receptors, including the
GPIb-IX-V/GPVI adheso-signaling complex thereby initiating
platelet activation and aggregation (13). Activated platelets
provide a catalytic aminophospholipid surface to assemble
the prothrombinase complex, thereby catalyzing conversion of
prothrombin to thrombin. These events elicit a conformation
change in integrin αIIbβ3, allowing interaction with fibrinogen,
which permits tethering of platelets to the forming fibrin
network. Fibrinogen binding initiates outside-in signaling
and promotes clot retraction, a process whereby activated
platelets transduce contractile forces to the fibrin network
augmenting clot density and decreasing clot size. Clot retraction
is important for clot stability and maintaining blood vessel
patency. Interestingly, a recent study found a direct link between
endogenous fibrinolysis and clot retraction, suggesting that
these processes are inextricably linked in vivo (14). Additional
platelet receptors for fibrin have been proposed, including GPVI
(15), which can directly instigate platelet activation and drive
thrombus propagation (16).

Differential agonist distribution in the evolving platelet
mass results in phenotypically different subpopulations of
platelets (17–20) within the microenvironment of the thrombus.
Phosphatidylserine (PS)-negative (aggregating platelets) have a
spread morphology, avidly bind fibrinogen, via activated αIIbβ3,
and generate fibrin on their surface (21). PS-exposing platelets
(procoagulant) bind the prothrombinase complex and exhibit a
characteristic balloon shape with prolonged spikes in cytosolic
Ca2+; these platelets lack activation of integrin αIIbβ3 (20–22).
Work from our group (10, 23, 24) and others (25–28) has shown
that PS is concentrated in the “cap” or “body” of these platelets
along with key hemostatic proteins.

Thrombin generation on the activated platelets amplifies
fibrin formation, thereby providing structural support,
mechanical stability and integrity to the thrombus. Fibrin
structure is altered by multiple parameters, and is largely
dictated by fibrinogen and thrombin concentration (29). Low
thrombin concentrations generate thick fibrin fibers, loosely
woven, and permeable fibrin clots leading to hyperfibrinolysis.
In contrast, high thrombin concentrations give rise to clots
comprising of a dense network of thin fibrin fibers associated
with hypofibrinolysis (30). Various studies have shown that
compact fibrin structures, with highly branched networks are
associated with pathophysiological diseases such as, coronary
artery disease, ischemic stroke and pulmonary embolism
[reviewed by Undas and Ariens (31)]. Fibrin fibers orient in the
direction of flow, with increased alignment as shear stress is
magnified (32). Interestingly, recent studies indicate that fibrin
forms a protective biofilm over the external area of a thrombus,
as a protection against invading pathogens (33).

Impact of thrombus location and
shear stress

Arterial thrombosis

Arterial thrombosis is typically triggered by rupture
of an atherosclerotic plaque, permitting contact of highly
prothrombotic material, rich in tissue factor and lipids, with
plasma thereby prompting platelet activation and coagulation
(Figure 1A). Structural analysis of coronary arterial thrombi
revealed they are comprised of fibrin (43% of thrombus
volume) and platelets (31%) (34). Fibrin was tightly packed,
perhaps not surprising given the high shear stress (1,000–
1,500 s−1), and arranged in bundles, possibly reflecting the
lateral association of fibers due to increased compression
exerted by platelet contraction (35). Interestingly, a small
number of compressed erythrocytes, termed polyhedrocytes,
were evident and the remainder of thrombus volume was
occupied by microvesicles and leukocytes (34). Thrombi from
ST-segment-elevation myocardial infarction (STEMI) patients,
were again largely composed of fibrin with increased erythrocyte
to platelet ratio than reported in coronary artery thrombi (36).
Intriguingly, in primary coronary intervention fibrin content
correlated with plasminogen activator inhibitor-1 (PAI-1) and
P-selectin, indicative of a role for platelets in driving fibrin
formation (36).

Interestingly, thromboemboli retrieved from the middle
cerebral artery or intracranial carotid artery of patients with
acute ischemic stroke revealed significant heterogeneity, but
again platelet-fibrin areas were dominant, interspersed with
areas of nucleated cells and erythrocytes (37). More recent
studies unveil heterogenous areas, comprised of erythrocyte-
rich and fibrin poor areas and platelet- and fibrin-rich

Frontiers in Cardiovascular Medicine 02 frontiersin.org

https://doi.org/10.3389/fcvm.2022.1070502
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


fcvm-09-1070502 January 12, 2023 Time: 17:17 # 3

Narwal et al. 10.3389/fcvm.2022.1070502

areas (38). A recent elegant study of thrombi from acute
ischemic stroke, using scanning electron microscopy and
immunohistochemistry, revealed an outer shell, comprised of
densely packed fibrin, von Willebrand factor, and aggregated
platelets (39). Parameters affecting thrombus growth shift at the
point of occlusion when shear stress decreases due to diversion
of the blood. Nonetheless, microfluidic modeling of occlusive
thrombus formation that permits pressure release demonstrated
that despite the variations in shear stress fibrin accumulation
under arterial rates was still reduced in comparison to the
venous circulation (40).

Venous thrombosis

The mechanisms underpinning development of venous
thrombosis are still debatable, with a call for action and
prioritization of funding in this area (41). The concepts of
Virchow’s triangle, including changes in blood composition,
reduction in blood flow, and changes to the vascular
endothelium are considered key drivers, but further work is
required to tease out precise mechanisms. Genetic and acquired
risk factors augment the risk of venous thrombosis [reviewed
by Wolberg et al. (42)]. A pivotal study by von-Bruhl et al. (43)
demonstrated that initiating events of venous thrombosis in vivo
involve crosstalk between platelets, monocytes and neutrophils
(Figure 1B). They elegantly demonstrated that neutropenia,
genetic ablation of FXII, or disintegration of NETs individually
confer protection against deep vein thrombosis (DVT) in vivo
(43).

Erythrocytes comprise nearly 60% of the volume of venous
thrombi with fibrin fibers accounting for about 30% (34).
Polyhedrocytes were also found in venous thrombi, with
around 5% of thrombus volume composed of echinocytes
(34). These “thorny” erythrocytes are indicative of oxidative
stress and perhaps cellular aging within the thrombus
environment. Leukocytes and microvesicles were detected but
were less abundant (34). The endothelial contribution in
venous thrombosis is vital, as it captures leukocytes, tissue
factor-positive microvesicles and platelets (Figure 1B). The
composition of pulmonary emboli (PE) largely mirrored that of
venous thrombi, with polyhedrocytes accounting for majority of
the thrombus volume (34). A recent report indicates that PE
thrombi are generally “earlier” stage in terms of composition
with a higher erythrocyte component (44). Intriguingly, within
venous thrombi fibrin fibers were largely evident as individual
fibers rather than bundles, perhaps reflecting a decrease in
mechanical stability, and accounting for their tendency to
readily embolize.

Severe COVID-19 disease is associated with an increased
risk of thrombosis (45), both systemically and locally within the
pulmonary vasculature (46). Studies indicate that PE derived
from critically ill COVID-19 patients differ significantly from

non-COVID PE (47). Thrombi were located directly within
opacitated lung segments, indicative of in situ thrombogenesis
(48). An increased rate of in situ PE in COVID-19 may
suggest that leukocytes drive thrombogenesis. Indeed, an in vivo
model of DVT has revealed significant fibrin deposition in
rats with normal neutrophil counts which is attenuated in
neutropenia (49). Further research is required to directly
compare the structural composition of PE formed in situ vs.
those that embolize to the pulmonary vasculature which will
aid understanding of underlying mechanisms and personalize
diagnosis and care.

Mechanistic contributions of cells
to thrombus composition

The mechanistic contributions of various circulating cells,
including erythrocytes and inflammatory cells, to thrombosis is
currently the subject of intense scientific scrutiny. Many avenues
of interplay between hemostatic factors and cells or cell-cell
interactions have and continue to be uncovered, some of these
are highlighted below.

Erythrocytes

Erythrocytes were long considered to be innocent
bystanders in thrombi but are now considered to play a more
significant role than previously thought [reviewed by Byrnes
and Wolberg (50)]. Erythrocytes express the Fas ligand, FasL
and the death receptor, FasR (51). Activation of FasR induces
loss of asymmetry and integrity of the phospholipid bilayer thus
exposing aminophospholipids. This provides an “eat-me” signal
to remove older erythrocytes from the circulation, however,
these aminophospholids can also assemble the prothrombinase
complex leading to thrombin generation. ADP-activated
platelets express FasL on their membrane which interacts with
FasR on erythrocytes augmenting aminophospholipid exposure
(52). To date this unique cell-cell interaction has only been
demonstrated in vitro, however, it provides a novel mechanism
in which erythrocytes can promote thrombus formation.

Erythrocyte aggregation influences blood flow and is a
cardiovascular risk factor. It was hypothesized that fibrinogen
and other plasma proteins induced erythrocyte aggregation
via non-specific binding. However, Carvalho et al. (53)
demonstrated a unique interaction between fibrinogen and
an unknown receptor on erythrocytes using atomic force
microscopy. A patient with Glanzmann thrombastenia, a
hereditary bleeding disorder caused by deficiency of integrin
αIIbβ3, showed defective binding of fibrinogen to erythrocytes.
Similarly, the αIIbβ3 inhibitor, eftifibatide, attenuated binding
of fibrinogen to erythrocytes, albeit to a lesser degree than on
platelets. Interestingly, mice carrying a homozygous mutation
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FIGURE 1

Current understanding of arterial and venous thrombi initiation. (A) Initiation of arterial thrombus formation is triggered by atherosclerotic
plaque rupture. Exposure of collagen and tissue factor leads to recruitment and activation of platelets at the site of injury. Thrombi in arteries are
formed under high shear stress and are rich in platelets. (B) Formation of venous thrombi is currently understood to be triggered by various
mechanisms. The activated endothelium leads to recruitment and binding of cells and factors including leukocytes, tissue factor positive
microvesicles and platelets. These agents further promote tissue factor recruitment ultimately leading to formation of a venous thrombus.

for γ390-396 in fibrinogen showed a 50% reduction in thrombus
weight, due to reduced erythrocyte volume (54). This effect
was mediated via factor XIII activation and crosslinking (54).
The group later showed this was dependent on the presence of
plasma FXIII (55) and that retention of erythrocytes in clots
is mediated via fibrin α-chain cross-linking (56). As discussed,
erythrocytes accrued within the clot are frequently observed
as polyhedrocytes rather than their native bioconcave state
(34, 57). It is the process of clot contraction, mediated by
platelets that generates the necessary force to compress and
alter the rigidity of erythrocytes into these tightly packed arrays
of polyhedrocytes (58, 59). These lines of evidence indicate

that erythrocytes play an active role in the size and structural
integrity of pathophysiological thrombi.

Leukocytes

The intrinsic link between the innate immune system and
coagulation is now firmly established (60). Fibrin(ogen) binds
to the integrin αMβ2 which is crucial for leukocyte function
and innate immunity in vivo (61). Platelet-leukocyte aggregates,
mediated via interaction of platelet P-selectin and GPIbα with
neutrophil P-selectin glycoprotein ligand-1 and αMβ2 integrin,
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respectively, are common features in thromboinflammatory
disorders [reviewed by Swystun and Liaw (62)]. This cell-
cell interaction induces a hypercoaguable state inciting platelet
activation, binding of coagulation factors and adhesive proteins
such as von Willebrand factor (vWF).

Monocytes harbor the largest circulating pool of tissue
factor, which is principally in a quiescent state but can be
exposed and decrypted in response to various inflammatory
stimuli. Activated monocytes shed microvesicles that carry
tissue factor, expose PS, and other procoagulant factors
(63). It is well known that monocytes house a large
pool of intracellular factor XIII-A (64). Our laboratory has
recently shown that monocytes externalize factor XIII-A in
response to inflammatory stimuli which stabilizes thrombi in a
transglutaminase-dependent manner (65). Monocytes are also
the largest circulating pool of the fibrinolytic inhibitor, PAI-
2 which is upregulated in response to thrombin and LPS
stimulus (66). Interestingly, this serpin is considered to be
largely intracellular in nature, but can down-regulate uPA and
is cross-linked to fibrin (67). PAI-2 is also found in extracts of
human arterial and venous thrombi suggesting secretion from
monocytes in response to various stimuli (67). Mice deficient
in PAI-2 exhibit superior venous thrombus resolution due to
inflammatory and uPA-mediated mechanism (68). Conversely,
reports indicate that monocytes recruitment into the thrombi
is important for resolution, which is largely uPA-mediated (69).
Clearly there is a strong need to understand the nuances by
which immune cells function to explain existing controversies
in the literature and their role in governing thrombus stability.

Neutrophils accumulate at sites of injury acting to limit
invading pathogens. Brinkmann et al. described the extrusion
of neutrophil nuclear and cytoplasmic content forming NETs in
the cell death process of NETosis (70). These web-like structures
are formed in response to inflammatory stimuli, microbial
invasion and are composed of histones, DNA strands and
granular proteins including neutrophil elastase (70). NETs have
been detected in both venous (71) and arterial thrombi (72–
74). NETs contribute to thrombus formation through multiple
mechanisms, including the release of neutrophil elastase and
cathepsin G, as well as externalization of nucleosomes (75).
NETs expose tissue factor and protein disulfide isomerase, an
enzyme responsible for activating blood cell derived tissue factor
(43, 76, 77) thereby driving coagulation. NETosis is promoted
under high shear conditions (78) independent of thrombin
and fibrin generation (79). Indeed, fibrin limits NET formation
and tPA facilitates shear-induced NET formation (78). NETs
promote platelet adhesion, activation and aggregation (80)
and citrullinated histone H3 (CitH3) are detected in close
proximity to vWF within fibrin-rich areas of thrombi (81).
Conversely, platelets contribute to the formation of NETs
through lipopolysaccharide binding of Toll like receptor 4
(TLR4) (82).

Localization of fibrinolytic activity

The fibrinolytic system is nature’s endogenous system
programmed to dissolve intravascular clots and counteract
the opposing coagulation system (Figure 2). Plasmin, the
key proteolytic enzyme, is formed via cleavage of circulating
plasminogen through the action of plasminogen activators,
primarily tissue-type PA (tPA) and uPA. Endothelial cells
(83), neurons (84) and hepatocytes (85) express and secrete
tPA, with recent evidence suggested that hepatocyte-derived
tPA contributes to basal circulating levels of tPA. In contrast,
uPA is largely expressed by migratory and inflammatory
cells (86). The system is governed by several inhibitors,
including α2-antiplasmin and PAI-1 and PAI-2. Activated
thrombin activatable fibrinolysis inhibitor (TAFIa; CPB2)
down-regulates fibrinolysis, via removal of C-terminal
lysine residues from partially degraded fibrin, thereby
attenuating binding of plasminogen and tPA. In thrombosis
the fibrinolytic balance is disturbed, favoring fibrin formation
and persistence, which can be partially attributed to the cellular
composition of thrombi and their relative contributions to the
system.

Profibrinolytic activity

Accumulation of tPA and plasminogen is observed in
the head of Chandler model thrombi, directly aligning with
localization of fibrinolytic activity (12). This observation is
unexpected given the knowledge that the head is rich in platelets
and leukocytes, while the tail is fibrin-rich (8). Our previous
work had established that the cellular-rich head is rich in
active uPA, which is largely leukocyte in origin (9). Within
this microenvironment proteolytic activity of the plasminogen
activators is largely protected from inhibition by PAI-1 (12),
contrasting the situation in plasma where tPA is largely
found in complex with PAI-1 (87). Elevation in endogenous
tPA during thrombus formation increases retention within
thrombi (12), indicating that thrombus resolution is dictated
by the levels of activators present during formation. However,
there is evidence of infiltration of monocyte/macrophages
and neutrophils into forming thrombi (43, 69, 81, 88).
Accumulation of plasminogen in thrombi, formed under shear
stress, has been depicted by our laboratory (10), plasminogen
was demonstrated to be primarily localized in the thrombus
core directly on fibrin and on the surface of PS-exposing
platelets, via both fibrin dependent and independent processes
(10). Consistent with this, plasminogen accumulated in the
thrombus core with PS-exposing platelets in an in vivo laser-
injury model and this process was enhanced by endogenous
plasmin activity (89). Similarly, plasminogen accumulates
in fibrin-rich areas on preformed thrombi formed under
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FIGURE 2

Fibrinolytic dissolution of thrombi. Fibrinolysis is initiated by plasminogen activators that convert circulating plasminogen to its active form
plasmin promoting degradation of fibrin. Soluble fibrin degradation products can be cleared from the circulation. Fibrinolysis is regulated at the
level of plasminogen activation, via plasminogen activator inhibitor-1 (PAI-1) or by direct inhibition of plasmin by α2-antiplasmin (α2AP).
Thrombin activable fibrinolysis inhibitor (TAFI) impedes fibrinolysis by removing C-terminal residues from fibrin, these lysine residues are vital for
plasminogen binding to fibrin. In this figure was adapted from “Tissue Plasminogen Activator Activity at Ischemic Region in the Brain,” by
BioRender.com (2022). Retrieved from https://app.biorender.com/biorender-templates.

high shear rates (90). Model thrombi formed using non-
anticoagulated blood under high shear rates show elevated
levels of PAI-1, whilst both tPA and plasminogen were
reduced, resulting in slower rates of fibrinolysis compared
to that in thrombi formed at low shear (12). Indeed, cells
that are incorporated into thrombi harbor many receptors
for plasminogen, largely utilizing C-terminal lysines (91).
Plg-RKT was identified in 2010 as the first receptor for
plasminogen to be synthesized with a C-terminal lysine (92).
Plg-RKT demonstrates affinity for tPA and is known to co-
localize with uPAR on monocytes and macrophages (92).
We have subsequently identified Plg-RKT on platelets and
found that it is directly responsible for anchoring plasminogen
to the activated platelet membrane (93). Interestingly, while
platelets do not express uPAR, we have shown that the
platelet membrane stimulates reciprocal activation of scuPA and
plasminogen to their active forms (94), thereby highlighting
the importance of cellular surfaces in regulating profibrinolytic
activity. Intriguingly, plasminogen bound to fibrin, platelets or
extracellular matrix proteins can be proteolytically activated

by uPA adhered to monocytes or microvesicles (95). Binding
of soluble Glu-plasminogen to cell surfaces enhances its
activation [reviewed in Miles and Parmer (96)] induces a
conformational change distinct from that of Lys-plasminogen
(97). These studies and others highlight the importance of the
cell membrane in supplying fibrinolytic proteins and catalyzing
plasminogen activation.

Antifibrinolytic activity

Platelets are the major pool of circulating PAI-1 (98).
Degranulation following platelet activation gives rise to release
of platelet-derived PAI-1 into the local milieu (99, 100).
Our laboratory has recently showing that functional PAI-
1 is retained on the activated platelet membrane and on
associated fibrin (101), providing a local pool of serpin within
the thrombus. Platelets also contain an abundance of other
fibrinolytic inhibitors such as, alpha2-antiplasmin (102, 103)
protease nexin I (PN-1) (104–106), C1-inhibitor (107, 108)
and TAFI (109). These inhibitors are also secreted following

Frontiers in Cardiovascular Medicine 06 frontiersin.org

https://doi.org/10.3389/fcvm.2022.1070502
https://BioRender.com
https://app.biorender.com/biorender-templates
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


fcvm-09-1070502 January 12, 2023 Time: 17:17 # 7

Narwal et al. 10.3389/fcvm.2022.1070502

activation and contribute to antifibrinolytic capacity. PN-1 from
platelets downregulates the plasmin generating ability of fibrin-
bound tPA and the activity of fibrin-bound plasmin and inhibits
uPA (106, 110). However, as noted tPA, uPA and plasminogen
are largely protected from inhibition if fibrin- or cell-bound.
Activated TAFI (TAFIa) has been shown to limit plasminogen
and tPA accumulation on the platelet surface and movement
within plasma clots (111, 112). Platelets are also a rich-source
of factor XIII-A (113–115) which is known to be externalized
upon activation and can participate in thrombus stabilization
via crosslinking of a2antiplasmin into the forming thrombus
(24). Targeting of activated platelets is therefore an attractive
therapeutic strategy. Single-chain antibodies to the platelet
integrin αIIbβ3 fused to scuPA have shown promise in a mouse
ischemic stroke model (116).

Platelet-mediated clot retraction is reportedly resistant to
external fibrinolysis, however, is vulnerable to endogenous
fibrinolysis (14). Interestingly, the internal rate of fibrinolysis
is enhanced by clot retraction, whilst the external rate of
fibrinolysis is impeded thereby suggesting differences in the
fibrin susceptibility due to structural rearrangements during this
process (117). Thrombi containing erythrocytes formed in vitro
are more resistant to plasmin-mediated fibrinolysis despite the
thrombi being composed of thinner fibers and a less dense fibrin
network (118). However, thrombi obtained from stroke patients
by endovascular thrombectomy that were more responsive to
intravenous thrombolysis were found to be more erythrocyte-
rich (119). Higher erythrocyte count has been associated with
shorter intervention times, lower thrombolysis resistance and
incidences of embolism and successful recanalization (120–122).
The presence of higher white blood cell counts, NETs and
vWF have been linked to reduced rates of recanalization (123).
Clearly, there is a need for deeper research in this area to deepen
our understanding of this area and iron out discrepancies in the
current literature.

In addition to “conventional” fibrinolytic factors additional
modifiers of thrombus stability have been identified. The impact
of NETs, and specifically the DNA composition of thrombi, in
limiting fibrinolysis has recently garnered attention. Histones
alter fibrin fiber thickness and are crosslinked via factor XIIIa
into the network which downregulates fibrinolysis (124). There
is significant interest in inclusion of a DNase enzyme, as
an adjunct to Alteplase (Actilyse R©) in thrombolytic therapy.
DNase1, an endonuclease that facilitates chromatin breakdown,
has been shown to reduce NET formation and considerably limit
DVT growth in mice (43). Additionally, DNase accelerates the
rate of ex vivo thrombolysis of coronary and acute ischemic
stroke thrombi (72, 73). The presence of large vWF multimers
formed under high shear conditions also confer thrombolytic
resistance, due to resistance to ADAMTS13, which cleaves
vWF and tPA (125). Thrombotic thrombocytopenic purpura

(TTP) is caused by ADAMTS13 deficiency leading to ultra-
large vWF multimers. Targeted plasmin-mediated degradation
of vWF polymers using fusion of a nanobody targeting vWF
with the protease domain of uPA has recently shown promise
as a treatment for TTP (126).

Conclusion

The recent advances in novel ex vivo models combined
with in vivo animal models and developments in thrombectomy
have significantly improved our understanding of the complex
thrombus environment. This in turn gives significant insight
into the susceptibility of thrombi to lysis and the factors
which govern these processes. Understanding the impact of
location, shear stress and vessel geometries on the cellular
content and fibrin network is essential for the development
of targeted and personalized approaches to treat thrombotic
complications.
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