
fcvm-09-1075639 January 27, 2023 Time: 15:22 # 1

TYPE Mini Review
PUBLISHED 02 February 2023
DOI 10.3389/fcvm.2022.1075639

OPEN ACCESS

EDITED BY

Christos Bourantas,
University College London, United Kingdom

REVIEWED BY

Patrick Doeblin,
German Heart Center Berlin, Germany
Nay Aung,
Queen Mary University of London,
United Kingdom

*CORRESPONDENCE

Dinesh K. Kalra
dinesh.kalra@louisville.edu

SPECIALTY SECTION

This article was submitted to
Cardiovascular Imaging,
a section of the journal
Frontiers in Cardiovascular Medicine

RECEIVED 20 October 2022
ACCEPTED 30 December 2022
PUBLISHED 02 February 2023

CITATION

Umer M and Kalra DK (2023) Cardiac MRI
in Fabry disease.
Front. Cardiovasc. Med. 9:1075639.
doi: 10.3389/fcvm.2022.1075639

COPYRIGHT

© 2023 Umer and Kalra. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in this
journal is cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

Cardiac MRI in Fabry disease
Muhammad Umer and Dinesh K. Kalra*

Division of Cardiology, University of Louisville, Louisville, KY, United States

Fabry disease is a rare, progressive X-linked inherited disorder of glycosphingolipid

metabolism due to a deficiency of α-galactosidase A enzyme. It leads

to the accumulation of globotriaosylceramide within lysosomes of multiple

organs, predominantly the vascular, renal, cardiac, and nervous systems. Fabry

cardiomyopathy is characterized by increased left ventricular wall thickness/mass,

functional abnormalities, valvular heart disease, arrhythmias, and heart failure. Early

diagnosis and treatment are critical to avoid cardiac or renal complications that

can significantly reduce life expectancy in untreated FD. This review will focus on

the role of cardiovascular magnetic resonance imaging in the diagnosis, clinical

decision-making, and monitoring of treatment efficacy.
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1. Introduction

Fabry disease (FD) is a rare, monogenic X-chromosome-linked lysosomal storage disorder
caused by mutations in the GLA gene. It results in an absence or deficiency of the
enzymatic activity of α-galactosidase A (α-GAL) (1). More than 1000 GLA gene variants
have been identified–including pathogenic mutations, variants of unknown significance,
and benign polymorphisms. The deficiency of α-GAL activity impairs the breakdown of
the glycosphingolipid, globotriaosylceramide (GL3)–resulting in progressive accumulation
throughout the body, including the blood vessels, heart, kidneys, skin, nervous system,
gastrointestinal system, and eyes (2). The massive accumulation of GL3 in cardiomyocytes
is detectable as early as childhood and adolescence (3). It activates secondary pathways,
including cytokine production, coagulation activation, and oxidative stress (4). GL3-induced
oxidative stress in cardiomyocytes causes tyrosine nitration and DNA damage—resulting in
contractile dysfunction, myocardial stiffness, and cardiomyocyte apoptosis. GL3 accumulation
in the microvasculature causes endothelial injury, intima-media thickening due to smooth
muscle cell proliferation, and atheroma production. Cardiomyopathy results from progressive
GL3 accumulation in myocytes, valvular fibroblasts, conductive tissue, the microvascular
endothelium, and smooth muscle cells. Left ventricular hypertrophy (LVH) is present in 50%
of males and 33% of females (1). LVH and diastolic dysfunction occur in the early stages of
the disease and eventually progress to systolic dysfunction and heart failure over the next few
decades of life.

The prevalence of FD is around 1 in 40,000 to 1 in 117,000 (1) in the general population.
However, FD may be more prevalent than previously believed as it is the underlying diagnosis
in about 0.5% of patients with non-obstructive hypertrophic cardiomyopathy (prevalence of
1 in 300 in the adult population) (5, 6). Classic FD is defined by absent or very low α-GAL
activity (7), early-onset, and progressive multisystemic involvement. In comparison, atypical
FD or cardiac variant has some residual or lower than normal α-GAL activity (6), variable
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onset, and predominantly involves the heart. Heterozygous females
may have low-normal or variably deficient α-GAL activity, variable
onset, and may develop significant multisystemic manifestations
depending on the underlying GLA mutation and X-chromosome
inactivation (8, 9). Furthermore, diastolic dysfunction and
myocardial fibrosis can develop in females without LVH (10).

2. Diagnostic assessment

Fabry disease is a multisystem disease with frequent misdiagnoses
and significant diagnostic delays in females (16.3 ± 14·7 years) and
males (13.7 ± 12·9) (9, 11), that adversely affects patient outcomes.
FD can significantly reduce life expectancy, by approximately
20 years in males and 15 years in females (12, 13). FD
cardiomyopathy includes progressive left ventricular wall thickness,
ventricular dysfunction, myocardial ischemia, arrhythmias, and
valvular heart disease. Severe microvascular dysfunction is the
primary underlying mechanism for myocardial ischemia in the
absence of coronary artery disease.

The main diagnostic challenge from a cardiac perspective is
distinguishing FD cardiomyopathy from other forms of unexplained
LVH, given its infrequent clinical suspicion, especially in the
absence of extracardiac manifestations in atypical FD patients and
heterozygote females. Increased community awareness will be needed
in order to recognize FD as a potential cause of seemingly idiopathic
LVH. Confirmation of FD is made by enzyme activity assay and/or
genetic testing; tissue biopsy is rarely required. However, genetic
testing is the initial screening test in most US centers due to its
wide availability. A comprehensive diagnostic approach is needed for
early diagnosis and treatment of FD cardiomyopathy, including early
recognition of clinical red flags, biomarkers, multimodality cardiac
imaging, and assessment for the involvement of other organ systems
such as the kidneys, nervous system, etc.

3. Cardiovascular magnetic
resonance

Cardiovascular magnetic resonance is an essential imaging
modality for the quantitative and qualitative assessment of
cardiomyopathies. In contrast to transthoracic echocardiography
(TTE), CMR provides anatomical and structural evaluation,
myocardial strain analysis, and quantitative tissue assessment using
late gadolinium enhancement (LGE) and novel parametric mapping
techniques like native T1 mapping and extracellular volume (ECV)
measurement. It can detect the majority of genotype-positive
patients with mild or subclinical cardiac phenotypes. CMR, with
advanced mapping techniques, is a valuable diagnostic tool in
asymptomatic carriers and preclinical deposition of GL3 in the
myocardium, microvasculature, conduction system, and valves (14).
Multiparametric CMR, along with biomarker testing, picks up the
majority of cases of early organ involvement in mild FD (15). This
significantly impacts decision-making in asymptomatic disease, as
current guidelines recommend treatment when imaging features
indicate myocardial involvement. However, CMR is less readily
available than TTE and requires an experienced technician and
interpreter, and medical device incompatibility or artifacts may limit
accurate evaluation.

3.1. Structural evaluation

Cardiovascular magnetic resonance is the gold standard
for the assessment of myocardial wall thickness and mass. In
comparison, TTE is limited by acoustic windows, overestimating
or underestimating wall thickness and mass, dropout artifacts
in the basal inferolateral wall and RV myocardium, and lower
reproducibility (17).

3.1.1. Left ventricle
Left ventricular hypertrophy is the most common structural

change reported in FD (18). Patients predominantly have concentric
LVH at the beginning (1). Asymmetrical hypertrophy with a grossly
thickened septum compared to the inferolateral wall develops in
late stages–replacement fibrosis causing wall thinning of the latter.
Kampmann et al. (19) noted that the severity of LVH progresses with
age, occurring 10–15 years later in females than in males. Females
are less likely to develop LVH than males (33% vs. 50%) (1). Left
ventricular mass (LVM) is directly related to left atrial thickness
and dimensions. CMR analysis is also valuable due to the higher
contribution of papillary muscles and trabeculations to total LVM in
FD patients (20, 21).

3.1.2. Right ventricle
Right-sided structural changes are common in FD, typically right

ventricular hypertrophy (RVH), with preserved systolic function and
normal chamber size. However, diastolic dysfunction often exists
that may progress to advanced heart failure (22). Niemann et al.
(23) noted that RVH was evident in 71% of the patients at baseline.
A significant positive correlation existed between left and right
ventricular wall thickness. ERT showed no beneficial effects on RV
morphology and function in this study. However, in another study
by Wuest et al. (24), ERT significantly reduced RV mass (baseline
31 ± 6 g/m2 vs. follow-up 27 ± 7 g/m2, p < 0.05).

3.2. Functional evaluation

Fabry disease is different from other interstitial
cardiomyopathies–GL3 accumulation is intracellular, resulting
in a true increase in LV myocyte mass and a reactive LVH. It impairs
ventricular compliance, increases filling pressures, and restricts
diastolic filling, causing heart failure (19). CMR is highly accurate
and reproducible in measuring ejection fraction (EF) and ventricular
volumes and does not rely on geometric assumptions as in TTE. It
can determine small changes in ventricular function and volume
on serial assessment and is especially helpful in quantifying the
impact of therapy.

3.2.1. Myocardial strain analysis
Cardiovascular magnetic resonance measurement of myocardial

deformation and mechanics by strain and strain rate analysis is
an emerging tool for the quantitative assessment of global and
regional cardiac function in cardiomyopathies, often providing
a preclinical diagnosis. Feature tracking-CMR (FT-CMR) is a
very feasible and highly accurate technique for strain/strain rate
analysis in cardiac diseases, especially the assessment of LV-GLS
(global longitudinal strain) in LVH has excellent reproducibility
(25). It is more accurate in assessing all myocardial segments
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and independent of intramyocardial features compared to TTE-
speckle tracking. Mathur et al. (26) demonstrated the reproducibility
of CMR strain abnormalities in FD. Base-to-apex circumferential
strain (CS) gradient was lower in FD patients compared to
healthy controls (2.1 ± 3.7% vs. 6.5 ± 2.2%, p = 0.002), and
it was able to discriminate between FD patients without LVH
or LGE from healthy controls, endorsing it as an early marker
of cardiac involvement in FD. In a study by Roller et al. (16),
GLS was significantly reduced in FD patients (p = 0.0009) and
correlated with Lyso-GL3 elevation. GLS values increased with
worsening LVH and LGE. Another study by Vijapurapu et al. (27)
demonstrated that in LVH-negative FD patients, GLS impairment
was correlated with a reduction in T1, suggesting that mechanical
dysfunction occurs before GL3 accumulation. In conclusion, FT-
CMR abnormalities are reproducible imaging biomarkers for early
cardiac involvement in FD.

3.3. Tissue characterization

3.3.1. Late gadolinium enhancement
Late gadolinium enhancement reflects replacement fibrosis and

helps differentiate FD cardiomyopathy from ischemic and other
hypertrophic cardiomyopathies. LGE is present in almost half of
FD patients and typically involves the basal and mid inferolateral
myocardium in about 75% of these patients (28, 29) (Figure 1).
About one-fourth of FD females can develop LGE without LVH (10).
TTE can miss nearly half of the early-stage cardiomyopathy cases
in females; however, the majority of these will be detected by CMR.
Thus, the assessment of fibrosis by CMR is crucial in the screening
and staging of FD, especially in female patients who may not meet
conventional LVH criteria early on by TTE (10). Liu et al. (30) studied
the association between diastolic dysfunction and myocardial fibrosis

FIGURE 1

Cardiovascular magnetic resonance (CMR) assessment in Fabry disease (FD). (A) Steady state free precession (SSFP) CINE short-axis view showing
increased wall thickness of mid-inferoseptum measuring 22 mm. (B) Dark-blood T2 short inversion-time, inversion-recovery (STIR) image showing
myocardial edema (arrowheads) in the basal inferolateral wall (BIFL). (C) Late gadolinium enhancement (LGE) imaging showing mid-myocardium BIFL
LGE in short-axis view. (D) Native T2 mapping showing high myocardial T2 value in BIFL (54 ms; normal reference value 45 ± 2 ms for this 1.5 T scanner).
(E) Native T1 mapping showing low myocardial T1 value in the septum (812 ms; normal reference value 984 ± 18 ms for this 1.5 T scanner). (F) Native T1
mapping in advance disease showing pseudonormalization of T1 value in the septum and increased T1 in the BIFL. (G) Long-axis CINE SSFP image with
color-coded myocardial longitudinal strain map. (H) Short-axis CINE SSFP image with color-coded myocardial circumferential strain map. (I) Decreased
global longitudinal strain of −13.2%, as the enlarged scale on the Y-axis showed [adapted from Roller et al. (16)].
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TABLE 1 Role of CMR parameters in characterizing the etiology of hypertrophic cardiomyopathy and the quantitative assessment of treatment efficacy in Fabry disease (FD).

LVH pattern LGE pattern T1 mapping T2 mapping Extracellular volume
(ECV)

Strain analysis

Fabry disease Majority of the
patients have

concentric LV wall
thickening (49).

Basal to mid inferolateral
mid-myocardium (29).

Initially native T1 values are reduced
but later there is pseudonormalization

in the areas of LGE. It can reliably
distinguish FD from other causes of

LVH (27).

T2 values are elevated in the area of
LGE, indicating chronic inflammation

(37, 50).

ECV is normal (39), but may
increase in the area of LGE as a

biomarker for fibrosis.

GLS and GRS are significantly
reduced, and GLS impairment
correlates with GL3/Lyso-GL3

elevation, thus having a potential
role in detecting early cardiac

involvement (16, 27).
Loss of base-to-apex CS gradient
is also an early marker of cardiac

involvement (26).

Hypertrophic
cardiomyopathy
(HCM)

Asymmetric and
involves anteroseptal

wall in 70% of the
cases. (51) Variants
include apical and
mid-ventricular.

Patchy involvement in the areas of
hypertrophy.

Patchy areas of elevated native T1
values in hypertrophied myocardium,

even in the absence of LGE (52).

Elevated T2 values indicate areas of
active tissue injury (53).

ECV is elevated in hypertrophied
myocardium (52) and correlates
with the percentage of LGE (39).

GLS of ≤−12.8% and SLS of
<−12.5% have high diagnostic
accuracy for patchy fibrosis (45,

54) in HCM.

Hypertensive
heart disease
(HHD)

Concentric LV wall
thickening with

asymmetric basal
septum involvement

(49, 55).

No significant or specific pattern of
LGE.

Normal native T1 values. Normal T2 values. ECV is normal. GLS is significantly lower and can
help differentiate from other LVH
phenotypes. Diagnostic accuracy
is similar to global native T1 and

LGE (56).

Aortic stenosis
(AS)

LV wall thickness
can be normal or
have concentric

remodeling,
symmetric

hypertrophy, or
eccentric wall

thickening (41). The
degree of LVH is an

independent
predictor of higher

cardiovascular
events (57).

No significant pattern. LGE may be
present at RV insertion points (58).

High native T1 values are an
independent predictor of adverse

outcome (59).

Significantly elevated T2 in severe AS
shows a potential role of inflammation

in myocardial remodeling (60).

Elevated ECV is a stronger
predictor of adverse

cardiovascular outcomes than the
extent of LVH and is a powerful

independent predictor of
mortality (61).

FT-CMR longitudinal
strain/velocity is significantly

reduced in severe AS and strongly
correlates with hemodynamic

sub-grouping (62).

Cardiac
amyloidosis
(CA)

Concentric LV wall
thickening (49).

Diffuse LV transmural or
sub-endocardial LGE (63).

(ATTR > AL) (64)
Atrial wall and RV free wall may also

have diffuse LGE.

Elevated native T1 values.
(AL > ATTR) (65)

T1 mapping and ECV have superior
diagnostic values compared to strain

analysis (66).

Elevated T2 is due to myocardial
edema caused by the toxic effect of

amyloid deposition on
cardiomyocytes and is a predictor of

prognosis (67).

Significantly elevated ECV values
(ATTR > AL) (68).

GLS is significantly reduced in
CA compared to FD and HCM,

with “relative apical sparing” (69).

(Continued)

Fro
n

tie
rs

in
C

ard
io

vascu
lar

M
e

d
icin

e
0

4
fro

n
tie

rsin
.o

rg

https://doi.org/10.3389/fcvm.2022.1075639
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


fcvm
-09-1075639

January
27,2023

Tim
e:15:22

#
5

U
m

e
r

an
d

K
alra

10
.3

3
8

9
/fcvm

.2
0

2
2

.10
75

6
3

9

TABLE 1 (Continued)

LVH pattern LGE pattern T1 mapping T2 mapping Extracellular volume
(ECV)

Strain analysis

Quantitative
assessment of
treatment
efficacy in FD

Structural and functional parameters Late gadolinium enhancement Parametric mapping techniques

Weidemann et al. (70) noted a statistically significant 28% decrease in
LV inferolateral wall thickness and 10% decrease in LV mass by CMR in
patients treated with ERT for 12 months. Peak systolic strain rate and
end-systolic strain increased significantly in the posterior wall also. Both
radial and longitudinal strain showed improvement.
Hughes et al. (71) followed FD patients after treatment with agalsidase-α
by CMR and TTE and noted regression of LVH due to progressive
clearance of GL3 content from cardiomyocytes.
Nordin et al. (50) demonstrated that after 12 months of ERT,
LVH-positive patients had a detectable, small reduction in LVMi
(117 ± 38 versus 114 ± 36 g/m2 ; P = 0.048). There was no significant
change in GLS in both LVH-positive and LVH-negative groups.
Koeppe et al. (72) observed a significant decrease in end-diastolic wall
thickness and a decline in hypokinesia after 12 months of ERT in
LGE-negative patients.
Wuest et al. (24) followed FD patients for 13 ± 1 months after ERT;
there was a significant reduction in LV and RV mass, LV and RV EDV
and LV ESV, while LVEF increased significantly. There was no
significant change in RV ESV, SV, and EF.
Imbriaco et al. (73) evaluated FD patients after 45 months of ERT
agalsidase-β; LV mass and LV wall thickness reduced significantly. There
was no significant change in LVEF.
Messalli et al. (74) evaluated FD patients with CMR after 48 months of
treatment with agalsidase-β, and a significant reduction in LV mass and
wall thickness was observed. There was no significant change in LVEF.

No significant change was noted. Nordin et al. (50) demonstrated that after 12 months of ERT,
LVH-positive patients had a detectable, small reduction in native T1
lowering (partial normalization; 920 ± 48 ms vs. 902 ± 47; P = 0.008).
However, in LVH-negative patients, who were all females, the
reduction in native T1 lowering was not statistically significant
(940 ± 46 vs. 948 ± 60 ms; P = 0.480). Overall, 83% had an increase in
native T1 value after 1 year of ERT. There was no significant change in
ECV in both LVH-positive and LVH-negative groups. Further
research will be required to compare long-term clinical outcomes and
prognosis in patients with native T1 normalization vs. patients with
no change or native T1 reduction with ERT.
Imbriaco et al. (73) evaluated FD patients after 45 months of ERT
agalsidase-β, and a significant reduction in native T2 values was noted
in all myocardial regions.
Messalli et al. (74) observed a significant reduction in native T2 values
after 48 months of ERT with agalsidase-β.

TTE, transthoracic echocardiography; CMR, cardiovascular magnetic resonance imaging; LVH, left ventricular hypertrophy; LA, left atrium; LVMi, left ventricular mass index; EF, ejection fraction, EDV, end-diastolic volume, ESV, end-systolic volume; SV, stroke
volume; LGE, late gadolinium enhancement; FT-CMR, feature tracking cardiac magnetic resonance imaging; GLS, global longitudinal strain; CS, circumferential strain; SLS, segmental longitudinal strain; GRS, global radial strain; AL, light-chain amyloidosis; ATTR,
transthyretin amyloidosis.
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in FD. LGE was present in 38% of FD patients, mostly at the basal and
mid-segments of the inferolateral wall. In 9% of patients, LGE was
present without functional abnormalities. This indicates that LGE can
be present in FD patients with normal diastolic and systolic function;
thus, chronic inflammation likely contributes to the development of
replacement fibrosis.

3.3.2. T1 mapping
Standard imaging evaluation of anatomical and functional

abnormalities and the presence of replacement fibrosis lack sensitivity
or specificity to diagnose FD. Quantifying longitudinal relaxation
time (T1) generates a pixel-wise color-encoded map of the
myocardium, allowing the detection of very subtle pathological
changes at the microscopic level that may be indicative of the
preclinical stage. Native myocardial T1 values, obtained without
a paramagnetic contrast agent, are higher in fibrosis, edema, and
amyloid but lower in iron overload and focal fat infiltration.
Accumulation of sphingolipids inside lysosomes in FD significantly
shortens the native T1 values. T1 mapping has overcome the
limitations of gadolinium contrast agent used in patients with
advanced renal disease. In addition, T1-mapping is superior to LGE,
with higher diagnostic accuracy, when the myocardium has more
uniform and diffuse involvement (31).

Pica et al. (32) found T1 mapping highly reproducible in
FD patients. It had 48% sensitivity and 99% specificity in
distinguishing LVH-negative FD subjects from healthy volunteers.
Reduced native T1 was highly prevalent (89%) in LVH-positive
FD patients. LVH-negative FD patients had a 48% prevalence of
reduced native myocardial T1, which was associated with advanced
echocardiographic parameters of cardiac dysfunction (GLS and E/e’
ratio). In FD, native T1 values are reduced in the early stages but
begin to normalize with progressive GL3 accumulation. T1 values
are increased in the advanced stages due to replacement fibrosis and
ongoing inflammation.

In patients with LVH, T1 mapping could differentiate FD from
other phenotypes. In a study by Sado et al. (33), FD patients had
lower septal T1 values (FD vs. healthy volunteers vs. other patients;
882 ± 47, 968 ± 32, 1018 ± 74 ms, P < 0.0001), which were inversely
related to LV wall thickness (r = -0.51; P = 0.0004). In 40% of the
FD patients without LVH, T1 values were abnormal due to the early
phase of GL3 accumulation in myocytes.

Thompson et al. (34) compared LV mass, wall thickness,
mass/volume ratio, LVEF, myocardial T1 values, and ECV as potential
disease-specific imaging biomarkers of FD. The study concluded
that reduced native myocardial T1 values are the most sensitive
and specific CMR parameter in FD patients, irrespective of sex,
LV morphology, or function. Native myocardial T1 values were
substantially lower in FD (1070 ± 50 ms) as compared to healthy
controls (1177 ± 27 ms) and concentric remodeling or hypertrophy
(1207 ± 33 ms). Pagano et al. (35) evaluated RV myocardium by T1
mapping in FD, pulmonary hypertension (PH), and healthy controls.
FD patients with thickened RVs had similarly reduced native T1
values in the RV and LV. This was the first report of reduced native T1
values in the RV. PH patients with thickened RVs showed increased
native T1 values in both ventricles suggesting fibrosis. However, T1
mapping of the RV remains challenging due to relative thinness and
the possibility of contamination from the blood pool or epicardial fat.

T1 mapping parameters, as surrogates for GL3 accumulation,
can be reduced in the absence of LVH and basal inferolateral wall
(BIFL) LGE. Thus, it may play a potential role in detecting the most

appropriate patients for treatment and early quantitative assessment
of treatment efficacy.

3.3.3. T2 mapping
T2 mapping sequences measure T2 relaxation times representing

myocardial edema/inflammation (36). Nordin et al. (37)
demonstrated elevated native T2 values in the early stage of
myocardial involvement, later corresponding to areas of LGE in the
BIFL. High-sensitivity troponin T was elevated in 40% of the patients
(75th percentile: 32 ng/l; range 3–93 ng/l; normal reference 0–14
ng/l), and increased T2 value was the strongest predictor (B = 2.4;
p < 0.001). All patients with elevated troponin had LGE representing
inflammation instead of scar. Chronic T2 elevation in LGE areas
and elevations of global T2 values are both associated with poor
outcomes (38). These findings suggest FD as inflammatory and
infiltrative cardiomyopathy.

3.3.4. Extracellular volume
Myocardial ECV is calculated from native and contrast enhanced

T1 values of myocardium and blood as well as patient’s hematocrit.
ECV, a measurement of the size of the extracellular space, is elevated
in amyloidosis and other infiltrative diseases, but in their absence, it is
a biomarker for myocardial fibrosis. ECV values are normal in FD as
it is an intracellular storage disease (39). However, as cardiomyopathy
progresses, ECV values may increase in the areas of myocardial
fibrosis (37). Hypertrophic cardiomyopathy (HCM) has increased
ECV values due to extracellular matrix expansion and myocardial
disarray, whereas ECV is reduced in athlete’s heart due to an increase
in healthy myocardium by cellular hypertrophy.

3.4. Myocardial perfusion

Fabry disease patients frequently experience angina, and
microvascular dysfunction is the primary underlying mechanism
correlating with the extent of replacement fibrosis (40). CMR
perfusion mapping provides a rapid quantitative assessment of
microvascular dysfunction. Knott et al. (41) demonstrated that FD
patients had lower stress myocardial blood flow maps (MBF) than
healthy controls, even in the absence of LVH. MBF decline, especially
in the endocardium, correlates with disease severity and can be an
early disease marker.

3.5. Pediatric population

Society for cardiovascular magnetic resonance (SCMR)
guidelines do not provide FD-specific recommendations for
CMR evaluation in the pediatric population (42). In young athletes,
CMR is the preferred imaging modality to differentiate LVH from
physiological remodeling by assessing hypertrophy regression with
deconditioning (43). CMR provides more accurate wall thickness
measurements and LVM compared to TTE (44). FT-CMR and T1
mapping techniques can identify myocardial fibrosis without using
contrast agents (45). CMR use is limited in children due to a higher
risk of anesthesia, the lower signal-to-noise ratio in small children,
reduced temporal resolution due to higher heart rates, and difficulty
holding breath under anesthesia.
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4. Differentiation of hypertrophic
myocardium, patient selection and
quantitative assessment of treatment
efficacy

Multiparametric CMR has a vital role in differentiating FD
cardiomyopathy from other etiologies of LVH and can strongly
impact clinical decision-making and prognosis by initiating disease-
specific therapies (46) (Table 1). Cardiac and renal disease may
not manifest clinically until adolescence or adulthood. Furthermore,
renal damage is typically subclinical in early stages and requires
biopsy for identification. Children with FD mutations should be
treated as soon as the symptoms develop. Although in asymptomatic
boys with classic FD mutation, treatment should be considered as
early as 8–10 years of age (47). To avoid potentially irreversible
complications, CMR is essential in early recognition and clinical
decision-making. The European Fabry Working Group consensus
statement recommends initiation of therapy in both classic and non-
classic FD patients of both sexes when there is an increased LV wall
thickening >12 mm (Class 1 recommendation) (48). However, major
cardiology guidelines do not provide FD-specific recommendations
for CMR. Nonetheless, it is vital to further study the potential
role of strain analysis and T1/T2 mapping in treatment initiation
and as an early quantitative measure of its efficacy. LVM reduction
varies among various studies (10–27%), likely depending on the
timing of therapy, the intensity of therapy, stage of cardiomyopathy,
and other confounding factors such as age, sex, hypertension, etc.
(Table 1).

5. Treatment options

An interdisciplinary FD center should perform therapy planning
and initiation. The main therapeutic goals are symptom reduction
to improve quality of life and preventing or halting multiorgan
involvement to improve life expectancy. Established treatment
options to reduce GL3 accumulation include replacing deficient
endogenous α-GAL with recombinant enzyme replacement therapy
(ERT) or increasing α-GAL enzyme activity inside lysosomes
by chaperone therapy. Current ERT options include intravenous
agalsidase-α (71) or agalsidase-β (73, 74). Oral chaperone therapy
with migalastat corrects the misfolding of α-GAL and increases
its intra-lysosomal availability. Next-generation plant-derived forms
of ERT include pegunigalsidase-α (75) and moss α-GAL (76)
with increased plasma half-life and reduced immunogenicity.
Other emerging therapies include substrate reduction and gene
therapy. Substrate reduction therapy aims to decrease the substrate
concentration and subsequently inhibit GL3 accumulation in the
cells. Lucerastat (77) and venglustat (78, 79) inhibit glucosylceramide
synthase (GCS) to reduce the biosynthesis of glucosylceramide (GL1)
and downstream GL3. Gene therapies are being developed as a
long-term treatment option to cause endogenous α-GAL expression
within disease phenotype cells, including α-GAL cDNA insertion
via lentivirus (80), adeno-associated virus (AAV) gene delivery
(NCT04455230) and gene-editing technology such as CRISPR
(clustered regularly interspaced palindromic repeats)/Cas (CRISPR-
associated genes).

6. Prognosis

Cardiomyopathy is the leading cause of death in men (34%)
and women (57%) with FD (81). Early diagnosis is vital to prevent
cardiac involvement and stop disease progression to avoid life-
threatening complications of arrhythmias, myocardial infarction, and
heart failure. The efficacy of treatment decreases with advancing
stages of cardiomyopathy (2), thus worsening the overall prognosis.
Orsborne et al. (82) developed a prognostic model based on age,
native myocardial T1 dispersion, and left ventricular mass index
(LVMi) to provide an accurate estimate of the 5-year risk of adverse
cardiac outcomes. CMR-derived myocardial T1 relaxation time with
wider distribution may have a greater prognostic value as it can better
reflect GL3 accumulation, fibrosis/inflammation, and thus disease
severity. LVMi by CMR is independently associated with adverse
cardiac events in FD (83). Other clinical indices of organ involvement
such as renal function, proteinuria, and neurological dysfunction also
portend long-term prognosis.

7. Conclusion

Cardiac involvement should be detected promptly in FD patients
to prevent disease progression and life-threatening complications.
Multiparametric CMR imaging can play a vital role in reaching the
correct diagnosis of hypertrophic myocardium and differentiating
it from other phenotypes. FT-CMR and parametric mapping are
emerging techniques with the potential for preclinical detection
of cardiac involvement and monitoring response to therapy. In
particular, T1 mapping is a superior technique for detecting GL3
accumulation and diffuse fibrosis. It has the potential for quantitative
assessment of treatment efficacy–current data is insufficient, and
further research is required to establish this role.
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