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Animal C-reactive protein (CRP) has a widespread existence throughout phylogeny

implying that these proteins have essential functions mandatory to be preserved.

About 500 million years of evolution teach us that there is a continuous interplay

between emerging antigens and components of innate immunity. The most archaic

physiological roles of CRP seem to be detoxication of heavy metals and other

chemicals followed or accompanied by an acute phase response and host defense

against bacterial, viral as well as parasitic infection. On the other hand, unusual

antigens have emerged questioning the black-and-white perception of CRP as being

invariably beneficial. Such antigens came along either as autoantigens like excessive

tissue-stranded modified lipoprotein due to misdirected food intake linking CRP with

atherosclerosis with an as yet open net effect, or as foreign antigens like SARS-CoV-2

inducing an uncontrolled CRP-mediated autoimmune response. The latter two examples

impressingly demonstrate that a component of ancient immunity like CRP should not be

considered under identical “beneficial” auspices throughout phylogeny but might effect

quite the reverse as well.

Keywords: C-reactive protein, phylogeny, acute phase response, host defense, complement system, autoantigen,

enzymatically modified LDL, SARS-CoV-2

INTRODUCTION

In 1930, Tillet and Francis described a protein precipitating pneumococcal C-polysaccharide (CPS)
in the sera of patients with various inflammatory diseases (1). Later on, human being turned out to
be not the only vertebrate harboring such proteins as CRP-like precipitins were also found in plaice
(Pleuronectes platessa) (2) and other marine teleosts demonstrating that CRP is an evolutionary
conserved protein, which was defined by any two of the following three characteristics: (1) cyclic
oligomer comprising similar subunits with a molecular weight of 20–30 kDa, (2) binding to
phosphocholine (PCh) in a Ca2+-dependent manner, and (3) immunological cross-reactivity with
human CRP (3). Given this definition, CRP had a widespread existence throughout phylogeny
implying that these proteins have essential functions mandatory to be preserved (4). After about
500 million years of evolution both structure and function of CRP have evolved in collaboration
with the entire immune system presumably with a gradually loss of its constitutive functions
going along with increasing specific ligand-recognition functions. However, since the latter led to
effector functions and evolutionary structure-function relationships of CRP are largely unknown,
it is mandatory to understand the phylogeny of CRP function and the reasons behind. The aim of
this paper was to review the functional spectrum of CRP during evolution (Table 1) contributing a
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phylogenetic viewpoint to the discussion whether CRP is
functional in all humans and whether it is beneficial or harmful.
The respective structure- and ligand binding-changes throughout
phylogeny have been excellently reviewed recently (3) and are
not a matter of the present review. Likewise, related proteins
with similar structural and functional properties and therefore
termed “pentraxins” by Osmand et al. (47) like serum amyloid
P component or pentraxin-2 (SAP, PTX2) and long pentraxin
(PTX3) are not considered herein.

CHEMICALS

One of the most archaic physiological roles of CRP seemed to
be the detoxication of heavy metals and other chemicals. During
phylogeny, it has been demonstrated already in arthropods and
molluscs. Specifically, the CRP from horseshoe crab (Limulus
polyphemus) bound mercury (Hg) both in vivo and in vitro
maybe scavenging this heavy metal (5). Crossing the taxonomical
barrier, giant African land snail (Achatina fulica) CRP both in
total and individual subunits reversed the toxic effects (leading
to oxidative stress and apoptosis) of lead (Pb) nitrate in rodents
possibly due to scavenging of reactive oxygen species (6).

In terms of teleosts, cadmium (Cd), Hg, phenol, and
hexachlorocyclohexane-polluted water led to three- to five-fold
elevated levels of a pollutant specific molecular variant in the sera
of Rohu carp (Labeo rohita) (7, 8). Likewise, elevated serum levels
of pollutant specific Cd, Hg, phenol and hexachlorocyclohexane
variants of CRP differing significantly in total carbohydrate
contents were observed in South Asian carp (Catla catla) and
other fishes exposed to the above mentioned chemicals (9, 10).

Channel catfish (Ictalurus punctatus) serum contained a
protein similar to human CRP precipitating CPS dependent on
calcium. This protein displayed an acute phase response after
injection of the inflammatory agent turpentine oil (11). On the
other hand, intracellular CRP synthesis in hepatocytes, head
kidney macrophages and spleen lymphocytes of rainbow trouts
(Oncorhynchus mykiss) significantly decreased after exposure to
turpentine oil (12). Up and down of serum CRP levels were
also observed in trouts exposed to anti-ectoparasitic chemicals
formalin, metriphonate or potassium permanganate. The authors
concluded that measurement of CRP levels in trout serum might
be useful as a bioindicator of the state of health (13).

In white rats, a raised level of CRP indicated acute tissue
damage due to inflammation and necrosis caused by Cd (24).
In Hg-treated rats, CRP was found to be synthesized in the liver
which, in turn, sequestered Hg resulting in the denaturation of
the protein into subunits. The subunits retained the Hg and were
released into the serum from where it got excreted (25).

ACUTE PHASE RESPONSE

Generalizing and translating this mechanism to the acute phase
response, it was obvious that changing the plasma concentrations
not only of certain divalent cations like iron but also proteins
during inflammation was an essential component of both
invertebrate and vertebrate immune responses (48). In plaice,

even adrenal hormones increased CRP synthesis without an
additional stimulus (2). In rainbow trout (Salmo gairdneri), a
CRP-like macromolecule could also be rapidly induced both by
chemical and physical stress (14).

In the rabbit, a “neo-ra(rabbit)CRP” cross-reactive with a
free human CRP subunit (“neo-huCRP antigen”) accumulated
at tissue sites of inflammation and necrosis 24 and 48 h after
exposure to typhoid vaccine (26). Moreover, transgenic mice
expressing rabbit CRP were resistant to endotoxemia (27)
and development of antigen-induced arthritis (28). Finally, the
concentration of CRP in normal beagle dogs after surgery showed
a similar pattern as in human beings with acute increase and
subsequent decrease during convalescence (29).

BACTERIA AND VIRUSES, FUNGI,
PROTISTS AND METAZOAN PARASITES

Exposure of peripheral blood leukocytes (PBL) of tongue
sole (Cynoglossus semilaevis) to Gram-negative and Gram-
positive bacteria together with recombinant CRP led to a
significant increase of respiratory burst and phagocytic capacity
indicating that Cynoglossus semilaevis CRP is important for
protection against bacterial infection (15). Significant elevation
of CRP serum levels were also observed in carp (Cyprinus
carpio) infected with Aeromonas spec. and/or Escherichia
coli (16, 17). Black rockfishes (Sebastes schlegelii) exposed to
polysaccharides or live Streptococcus iniae showed a significantly
raised basal expression of CRP in both spleen and head kidney
(18). Nevertheless, the detailed functions of CRP in teleosts
are not entirely clear. Commonly accepted, they opsonize
pathogens to enhance phagocytic clearance. Accordingly,
rainbow trout (Salmo gairdneri) immunized with formalin-
inactivated Vibrio anguillarum emulsified in Freund’s complete
adjuvant (FCA) resisted intraperitoneal administration of
living Vibrio anguillarum several days after immunization.
Thereby, a significant increase of CRP on phagocytic activity and
opsonization demonstrated macrophage activation in the early
stage of infection (19). Likewise, the expression of a CRP/SAP-
like protein from ayu, Plecoglossus altivelis (PaCRP/SAP) was
significantly upregulated following Vibrio anguillarum infection.
In vitro, both Gram-negative and Gram-positive bacteria were
agglutinated by PaCRP/SAP in a calcium-dependent manner. So
far so good. Unexpectedly, however, the agglutination inhibited
deposition of ayu complement 3 (PaC3) on the bacteria further
inhibiting complement-mediated opsonization and phagocytosis
by ayu monocytes/macrophages (20).

Recently, unexpected in vivo and in vitro anti-viral functions
of the seven CRP (crp1-7) genes of zebrafish (Danio rerio) led to
the discovery of a crp1-7/CRP1-7 primitive anti-viral functional
diversity against spring viremia carp virus (SVCV) (21). Even
before, it was demonstrated that CRP and complement behaved
as acute phase proteins if stimulated by Cyprinid herpesvirus
3 (CyHV-3) infection, with an organ- and time-dependent
response (22). The latter is a severe disease of common carp
Cyprinus carpio and its ornamental koi varieties.
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TABLE 1 | Phylogeny of CRP function.

Taxon Species Antigen/target/systemic host defense response What is CRP doing? Ref.

Arthropods Horseshoe crab (Limulus

polyphemus)

Chemicals Mercury (Hg) Scavenger (5)

Molluscs Giant African land snail

(Achatina fulica)

Lead (Pb) Reversion of the toxic effects (6)

Teleosts Rohu carp (Labeo rohita) Cadmium (Cd), mercury (Hg),

phenol, hexachlorocyclohexane

Elevated serum levels (7, 8)

Major South Asian carp

(Catla catla)

Cadmium (Cd), mercury (Hg),

phenol, hexachlorocyclohexane

Elevated serum levels of glyco-

sylated molecular variants

(9, 10)

Channel catfish (Ictalurus

punctatus)

Turpentine oil Acute phase pattern (11)

Rainbow trout

(Oncorhynchus mykiss)

Turpentine oil Significant decreases in the

expression

(12)

Formalin, metriphonate or

potassium permanganate

Up and down of serum levels (13)

Plaice (Pleuronectes

platessa)

Acute phase response Adrenal hormons Elevated serum levels (2)

Rainbow trout (Salmo

gairdneri)

Temperature shock Elevated serum levels (14)

Tongue sole (Cynoglossus

semilaevis)

Bacteria and viruses,

fungi, protists and

metazoan parasites

Gram-negative pathogens

(Edwardsiella tarda,

Vibrio/Listonella anguillarum,

Escherichia coli) Gram-positive

pathogens (Streptococcus iniae)

Increasing respiratory burst and

phagocytic capacity of peripheral

blood leukocytes

(15)

Common carp (Cyprinus

carpio)

Aeromonas spec. Escherichia

coli

Elevated serum levels (16, 17)

Black rockfish (Sebastes

schlegelii)

Polysaccharides or live

Streptococcus iniae

Significant upregulation in spleen

and head kidney tissues

(18)

Rainbow trout (Salmo

gairdneri)

Vibrio anguillarum (intraperitoneal

challenge)

Significant increase of the

opsonising effect of CRP on

macrophage phagocytosis

(19)

Ayu (Plecoglossus altivelis) Vibrio anguillarum Significant upregulation,

inhibition of complement 3

deposition on the bacteria further

inhibiting comple-

ment-mediated

opsonophagocyto- sis by

monocytes/macrophages

(20)

Zebrafish (Danio rerio) Spring viremia carp virus (SVCV) Neutralization of viral infectivity (21)

Common carp (Cyprinus

carpio)

Cyprinid herpesvirus 3 (CyHV-3) Significant increase of CRP

levels, distinct organ- and

time-dependent expression

profile patterns

(22)

Goldfish (Carassius auratus) Trypanosoma carassii High expression in the kidney,

liver and spleen at various days

post infection, enhanced

complement-mediated killing of

trypanosomes in vitro

(23)

Mammals Sprague Dawley rats Chemicals Raised level indicating acute

tissue damage due to

inflammation and necrosis

caused by cadmium (Cd)

(24)

sequestration and excretion of

mercury (Hg)

(25)

New Zealand white rabbits Acute phase response Typhoid vaccine Accumulation at tissue sites of

inflammation and necrosis

(26)

Transgenic mice expressing

rabbit CRP

Endotoxemia Confers resistance (27)

Antigen-induced arthritis onfers resistance (28)

(Continued)
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TABLE 1 | Continued

Taxon Species Antigen/target/systemic host defense response What is CRP doing? Ref.

Beagle dogs Surgery Increased and rapidly decreased

with convalescence

(29)

Human Severe trauma Production of anti-inflammatory

cytokines by CD14(high)CD16(+)

monocytes

(30)

Rat, human Bacteria and viruses,

fungi, protists and

metazoan parasites

Plasmodium yoelii Inhibits in vitro development in

hepatocytes

(31)

Mouse Staphylococcus aureus Opsonine, involved in

nonspecific resistance

(32)

CRP transgenic mice Streptococcus pneumoniae Increased expression, protection

by both phosphorylcholine

(PCh)-dependent and

PCh-independent mechanisms

(33–38)

CRP deficient mice Streptococcus pneumoniae protection by reconstitution with

isolated pure human CRP, no

role of the classical complement

pathway

(39, 40)

Rat Schistosoma mansoni Platelets treated with CRP were

capable of conferring significant

protection against

schistosomiasis in transfer

experiments

(41)

Human SARS-CoV-2 Induces an uncontrolled auto-

immune response and

complement- and macrophage

activation

(42, 43)

Transgenic mouse and

rabbit models

Neo-/autoantigens Modified LDL No effect, pro-atherogenic,

anti-atherogenic

(44)

Human Modified LDL Pro- or anti-atherogenic? (45)

Apoptotic cells Promotes noninflammatory clear-

ance of apoptotic cells

(46)

Taxon: systematic animal group; Species: representative example of the taxon; Antigen: abiotic or biotic (differential colored) triggers of innate (or adaptive) immunity; What is CRP

doing?: alterations of expression levels and/or assumed function.

It came as little surprise, that parasites also have an impact on
the expression of CRP. In the goldfish infected with Trypanosoma
carassii, CRP and SAA exhibited the highest expression among
several other acute phase proteins in liver, spleen and kidney.
Recombinant goldfish CRP (rgfCRP) promoted complement-
mediated lysis of trypanosomes in vitro further enhanced by
addition of immune serum. However, neither the production
of reactive oxygen nor nitrogen species by monocytes and
macrophages, respectively, was affected (23). Both rat and human
CRPs bound to sporozoites with subsequent inhibition of their
in vitro development in hepatocytes. Specifically, the penetration
of the sporozoite into the hepatocyte was prevented and parasite
division suppressed by an antibody-like effect (31).

Already in the sixties, it was proposed that mouse CRP
is an opsonin contributing to innate immunity to infection
with S. aureus (32). 30 years later, the study by Szalai et al.
provided evidence that CRP indeed contributed significantly
to host defense: CRP transgenic mice experimentally exposed
to Streptococcus pneumoniae had a significant better outcome
compared to their nontransgenic littermates due to a substantial
reduction of bacterial load. Furthermore, due to an increased

CRP expression mediated by testosterone, male transgenics lived
longer than females (33). Vice versa, CRP-deficient mice had
a worse outcome following Streptococcus pneumoniae infection
and could be protected either by reconstitution with isolated pure
human CRP, or by anti-pneumococcal antibodies (39). Efforts to
shed light on the mechanisms revealed that one of the hallmarks
of CRP function, activation of the classical complement pathway,
was not involved in protecting mice from infection (40).

Interestingly, in rats, treatment of platelets with CRP bestowed
significant protection capacity against schistosomiasis in transfer
experiments and obviously participated in the natural resistance
of this species to schistosomal infection (41).

ATHEROSCLEROSIS

At a first glance, discussing CRP and atherosclerosis in
conjunction with phylogeny and “lower” organisms seems to
be absurd. On closer examination, however, the situation is
somewhat different for the following reasons: (1) Establishing
“lower” animal models of atherosclerosis is of great benefit,
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in particular with regard to large scale screening of potential
therapeutic targets. For example, thanks to their unique
properties (fertility, rapid development ex utero, transparency,
lipid metabolism) zebrafish (Danio rerio) has become a
promising animal model for vascular biology as well as screening
and evaluation of drug therapy (49). Even before, it was
stressed that Caenorhabditis elegans, Drosophila melanogaster,
and Danio rerio are useful candidates for the identification of
new pharmaceutical targets for metabolic diseases (50). (2) To
unravel the diverse biological functions obviously associated with
atherogenesis, a lot of transgenic mice and rabbit models had
been used for translational research. The undoubted evidence
obtained from these animal models was that plasma CRP levels
were indeed elevated on the one hand and CRP was present
already in initial atherosclerotic lesions on the other hand.
However, the evidence concerning the net effect of CRP on
initiation and progression of atherosclerosis is still lacking (44)
leading over to (3) with excessive tissue-stranded modified
lipoprotein during atherogenesis being a prime example of the
misguided nutritional culture of the most highly evolved primate
Homo sapiens with subsequent either beneficial or harmful (still
to be clarified) participation of innate immunity with CRP as an
important component (see below).

MECHANISTIC INSIGHTS OF CRP
FUNCTION

Admittedly, the functions of CRP during inflammation are
still a matter of debate; however, it was suggested that
different conformations (native and non-native) of CRP have
to be considered to unravel its functions. In particular, ligand
recognition of CRP was supposed to be dependent on its
conformation shifting at sites of inflammation (3). Other
properties of CRP also depended on dissociation of its native
pentameric conformation into the monomeric form (mCRP)
(34, 51). As for the latter, the cholesterol binding sequence (CBS;
a. a. 35-47) mediated the binding of mCRP to apolipoprotein B,
complement component C1q, fibronectin, collagen, fibrinogen
and, of course, cholesterol. Moreover, activation of endothelial
cells by mCRP in vitro and induction of IL-6 in vivo was
significantly reduced by CBS. The single sequence motif CBS
obviously was a major recognition site of mCRP and a promising
candidate for the regulation of mCRP effects (35).

Another exemplary development of a mechanistic insight of
CRP function was given by the protection of mice by CRP from
Streptococcus pneumoniae infection by the group of Agrawal:
Initially, it was concluded that the CRP-mediated amelioration
of bacterial load and the resulting protection was not to be
connected in any way to CRP binding to the pathogen and
subsequent complement activation. Including the notion that Fcγ
receptors were not involved either (36), possible effects of CRP on
cell-mediated cytotoxicity were favored (37). Shortly after, it was
shown that administration of pneumococci must be followed by
CRP not later than within a few hours. Otherwise, the protective
effect of CRP was abolished suggesting a prophylactic rather than
therapeutic effect of CRP (38). Subsequently, the phosphocholine

(PCh)-binding pocket on CRP turned out to be decisive for
the beneficial CRP effect during early pneumococcal infection
of mice (45). This assumption was once more modified by the
later statement that mice were protected against pneumococcal
infection by both PCh-dependent and PCh-independent CRP
effects (42).

WHAT DOES IT MEAN?

Setting out for about 500 million years of evolution the most
archaic physiological roles of CRP seemed to be detoxication of
heavy metals and other chemicals followed or accompanied by
an acute phase response and host defense against bacterial, viral
as well as parasitic infection. So far, this seems to be conclusive.
As for heavy metals, however, it is legitimate to ask whether
this is really a physiological role and whether the amounts of
heavy metals used in vitro are achievable in the body under in
vivo conditions.

Concerning human diseases, the role of CRP was even more
complex and ambiguous: On the one hand, in autoimmune
conditions like Systemic Lupus Erythematosus (SLE), increased
CRP levels contributed to efficient clearance of potential
autoantigens (43). Monocyte subpopulations of severly injured
trauma patients produced anti-inflammatory cytokines in
response to acute phase concentrations of CRP (30). On the
other hand, dead cell bound CRP is an important target for anti-
CRP antibodies in patients with SLE increasing the production
of cytokines by macrophages thus shifting the clearance process
toward inflammation (52). In addition, CRP played a decisive
role in secondary tissue damage in cardiac infarction (53) and,
vice versa, apheresis of CRP could reduce damaged infarction

FIGURE 1 | Abundant CRP expression in the lung after SARS-CoV-2

infection. Representative immunohistochemistry of paraffin embedded lung

tissue from a patient died of COVID-19. Diffuse alveolar damage with intensive

positive CRP staining (monoclonal antibody (mAb) clone CRP-8, Sigma) of

macrophages as identified with mAb against CD68 (clone PG-M1, Dako)

(A,C). Negative control with an irrelevant isotype-matched mAb (FLEX, Dako)

(B). Interstitial pulmonary fibrosis illustrated by Elastica-van Gieson stain (D).
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area (54) questioning the black-and-white perception of CRP as a
being invariably beneficial. Moreover, during phylogeny, unusual
antigens have emerged coming along either as autoantigens like
modified LDL (44, 55) or as foreign antigens like SARS-CoV-2
(56, 57). As already mentioned above, excessive tissue-stranded
modified lipoproteins during atherogenesis is a prime example of
an evolutionary emerging autoantigen due to misdirected food
intake with subsequent interaction of CRP with modified LDL
(55). However, the hitherto existing data are ambiguous making
it impossible to draw a conclusion on potential beneficial or
harmful effects of such interaction. Both the structural diversity
of CRP and/ormodified LDLmight be responsible for the current
ambiguity. For example, the mCRP present in atherosclerotic
lesions may be the result of CRP binding to different ligands
(58). The main implications of such ligand binding relate to
foam cell formation on the one hand and complement activation
on the other hand. As for the former, it was suggested that
CRP inhibited foam cell formation by eLDL (enzymatically
modified LDL) (59). Moreover, this inhibitory effect was boosted
by phosphoethanolamine, which potentiated the binding of
CRP to eLDL (60). As for the latter, the eLDL hypothesis
contended modification of LDL by ubiquitous hydrolytic
enzymes resulting in either atherosclerotic lesion initiation with
reversion or progression according as there is a balance between
cholesterol insudation and depletion or not. With regard to
eLDL triggered complement activation, the subsequent effects
of eLDL were ambivalent. The first CRP-dependent activation
step dominated during early atherogenesis (lesion initiation
with reversion by virtue of the capacity of CRP to bind
factor H prohibiting the complement sequence at the stage
of C3b/C5 thus sparing the deleterious terminal complement
cascade), and the second CRP-independent activation step
getting out of hand as eLDL accumulated over a critical
threshold (lesion initiation with progression by completion of
the terminal complement cascade). Of course, the effects of
CRP on both foam cell formation and complement activation
may considerably influence atherosclerotic lesion formation
[reviewed in Torzewski (55, 61)].

Besides is importance as a prognostic factor of severity
and mortality (62), an obviously harmful effect of CRP was
unmask by the recent COVID-19 pandemic insofar as individual
patients were treated successfully by selective CRP apheresis
(56, 57). The rationale behind was that SARS-CoV-2 infection

initiated an unhalted autoimmune response by CRP going along
with macrophage and complement activation suspected to be
responsible for pulmonary fibrosis and subsequent organ failure
in COVID-19. This assumption might be illustrated by our
preliminary observation of an abundant CRP expression in the
lung of patients died of COVID-19 (Figure 1). The latter should
be considered in particular with respect to the recently described
immunological profiles of COVID-19 lungs (63) suggesting a
complex interplay of innate and adaptive immunity underlying
the clinical picture. It has to be emphasized, however, that
other anti-inflammatory treatment options, for example blocking
interleukin-6 or inhibiting the C3 and C5 activation also showed
a promising preclinical effect (64).

CONCLUSION

Coming back to the opening question whether CRP is functional
in all humans and whether it is beneficial or harmful, about 500
million years of evolution teached us that there was a continuous
interplay between emerging antigens and components of innate
immunity. The examples of both atherogenesis and COVID-
19 impressingly demonstrated that a component of ancient
immunity like CRP should not be considered under identical
“beneficial” auspices throughout phylogeny butmight effect quite
the reverse as well.
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