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Today’s digital health revolution aims to improve the efficiency of healthcare delivery and

make care more personalized and timely. Sources of data for digital health tools include

multiple modalities such as electronic medical records (EMR), radiology images, and

genetic repositories, to name a few. While historically, these data were utilized in silos,

new machine learning (ML) and deep learning (DL) technologies enable the integration of

these data sources to produce multi-modal insights. Data fusion, which integrates data

from multiple modalities using ML and DL techniques, has been of growing interest in

its application to medicine. In this paper, we review the state-of-the-art research that

focuses on how the latest techniques in data fusion are providing scientific and clinical

insights specific to the field of cardiovascular medicine. With these new data fusion

capabilities, clinicians and researchers alike will advance the diagnosis and treatment of

cardiovascular diseases (CVD) to deliver more timely, accurate, and precise patient care.

Keywords: machine learning, big data, Artificial Intelligence, cardiovascular risk factors, learning health care

system, cardiovascular risk prediction

INTRODUCTION

Cardiovascular disease (CVD) is a well-known leading cause of death worldwide, accounting for
almost a third of all deaths globally (1). In the United States, CVD is widely prevalent, with 1 in 3
adults documented as having some form of CVD (2), and cases have doubled to an estimated 523
million worldwide (3). It is projected that almost half of the US population will have at least one
type of CVD by 2035 (4).

CVD is a major contributor to disability and is a leading cause of primary hospital admissions
in the US (5), with heart failure ranking as the number 1 cause of Medicare readmissions (6). CVD
is also a significant contributor to rising healthcare costs, which have continued on an upward
trajectory over the past decade (3). In the US alone, the estimated financial burden of CVD is over
$400 billion, which is poised to further increase due to the aging population and the increased
prevalence of obesity (2). The direct medical cost of CVD is projected to grow to $749 billion in
2035, with total costs, direct and indirect, potentially crossing the $1 trillion mark for the first time
ever (4).

While CVD will continue to play a crucial role in our society for the foreseeable future, recent
research demonstrates that there can be considerable gains from effective CVD management. In a
life table analysis, Anderson et al. show that effective management of CVD risk factors can translate
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into a 7-year increase in life expectancy for the US population (7).
Such data demonstrate the need for tools to increase our ability to
prevent and manage CVD both at the population and individual
levels. The explosion in healthcare data due to the adoption of
electronic medical records (EMR) and other data sources and
advances in computational algorithms enable the development
of technologies that automate and enhance aspects of healthcare
delivery. These technologies in aggregation could improve lives
and decrease dollars spent on healthcare to the tune of $600 per
person due to increased health care efficiency (8).

With machine learning (ML) and Artificial Intelligence (AI),
the ultimate goal is to train models using collected data to
make predictions about the future, in some ways mimicking
human intelligence. Traditional machine learning algorithms
have focused on one data modality (e.g., imaging OR clinical
text). However, this does not quite mimic human intelligence,
as humans perceive environments by analyzing and integrating
information from various data forms, such as image and sound.
Thus, to build more robust models than those constructed
based on a single modality, researchers have strived to develop
algorithms that can integrate different modalities of data such as
image, text, and speech. The main idea in multimodal machine
learning is that different modalities provide complementary
information in describing a phenomenon (e.g., emotions, objects
in an image, or a disease).

Multimodal data refers to data that spans different types and
contexts (e.g., imaging, text, or genetics). Methods used to fuse
multimodal data fundamentally aim to integrate the data with
values of different scales and distributions into a global feature
space (i.e., database) in which data can be represented in a more
uniform manner (9). This uniformity can then be leveraged
for tasks such as prediction and classification. For example,
data from large biobanks such as the UK biobank, the Million
Veterans Program, and the National Institutes of Health All of Us
initiative contain patient-specific genomic data, imaging studies,
and phenotypic data from EMR and questionnaires (10–12).
Each of these data types can be fused to predict cardiovascular
disease prognosis, improve identification of unique subgroups,
and predict response to treatment. The hope is thatmore accurate
models can be built with multiple types of data than if only one
type of data were utilized.

In other words, data fusion aims to overcome problems
that arise by using only one type of data. For instance, while
medical imaging provides exquisite anatomical detail, it does
not contain other important information such as demographics
or clinical diagnoses that can enrich clinical prediction or
phenotyping tasks. Other data, such as unstructured medical
records, contain rich phenotypic data but also suffer from
issues of missing data and encoding medical practice rather
than true biology. Such data can be combined with genetics
and/or physical activity data to supplement missing data from
imaging and/or unstructured medical records. However, with the
exciting promise of data fusion comes interesting and important
technical challenges; chief among them is transforming different
data types into a format that enables efficient processing
by machine learning algorithms. Though examples of multi-
modal data and machine learning models in the cardiovascular

space are limited, nevertheless, in this review, we highlight
specific use cases focused on diagnostics, prediction, and clinical
decision making (Table 1). We discuss technical considerations
for data fusion modeling and conclude with recommendations
for future directions.

MULTIMODAL DATA FUSION ACROSS
DIFFERENT USE CASES

Improved Cardiovascular Disease Risk
Assessment
When it comes to cardiovascular population health, the
American Heart Association Pooled Cohort Equations and the
Framingham coronary heart disease risk score are commonly
cited tools for assessing an individual’s 5–10 year risk of
developing clinically significant cardiovascular disease (13, 14).
Utilizing demographic and clinical data related to cholesterol and
common comorbidities, these risk scores have stood the test of
time as reasonable estimates of the risk of incident disease and are
recommended in multiple clinical practice guidelines and policy
recommendations. However, the performance of these scores,
measured by the area under the receiver operating characteristic
curve (AUC), has been modest when testing them in more
diverse patient populations. Thus, Chaves et al. developed a
framework to use deep learning and machine learning models
that enable opportunistic risk assessment for ischemic heart
disease (IHD) using automatically measured imaging features
from abdominopelvic CT examinations in combination with
information from the patient’s EMR (15).

At a single health care institution, abdominopelvic CTs were
used to extract and measure body composition (BC) biomarkers,
such as hepatic steatosis, low muscle mass, and an increased
ratio of visceral to subcutaneous adipose tissue. These data were
combined with EMR data to develop risk models for 1- and 5-
year incident IHD. Researchers collected a dataset of 8,197 CT
images from individuals with at least 1 year of follow-up, and
1,762 images were obtained from 1,686 individuals who had
at least 5-years of follow-up. The average length of follow-up
was 3.6 years. For each individual, data available in the EMR
in the year before the scan acquisition was obtained. Authors
then developed four types of models (Figure 1): A Segmentation
Only model, based on segmentation data from CTs, an Imaging
Onlymodel, constructed from automated features extracted from
CTs, a Clinical Only model based on EMR data, and Fusion
models, where all three data types (CT segmentation, automated
CT extracted features, and clinical EMR data) were combined to
predict IHD risk.

In the Segmentation Only model, the authors used a
Convolutional Neural Network (CNN) (16), known as a 2D U-
Net model, to segment body composition biomarkers, which
consisted of identification of muscles, visceral adipose tissue
(VAT), and subcutaneous adipose tissue (SAT). A logistic
regression model was then constructed based on the extracted
measurements to predict IHD outcomes at 1 and 5 years. The
Imaging Only Model was constructed using the EfficientNet-
B6 network (17), a CNN-based model, to predict IHD
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TABLE 1 | Summary of the research in cardiovascular disease care using multimodal learning.

Model objective Data modalities used Learning algorithms Evaluation metrics and

performance

Citation

Opportunistic risk

assessment for ischemic

heart disease

- Radiomics from

abdominopelvic

Computed Tomography

- Electronic Medical

Records data

XGBoost, an optimized

gradient-boosting machine

learning system

- AUROC: 0.86

- AUCPR 0.70

Chaves et al.

Improve IHD Prediction - Electronic health records

- Genetics (multiple risk loci)

Logistic regression,

Random forest, gradient

boosting trees, CNN, and

LSTM

- AUROC: 0.790

- AUPRC 0.285

Zhao et al.

Acute coronary artery

disease detection

- Electrocardiograms

- Phonocardiograms

- Echocardiography

- Holter monitor data

- Clinical lab values

Support vector machine

with linear and RBF kernels

- Average

accuracy: 96.67%

- Sensitivity: 96.67%

- Specificity: 96.67%

- F1 score: 96.64%

Zhang et al.

Comprehensive noninvasive

diagnostics of coronary

artery disease

- Computed Tomography

coronary angiography

- Computed

Tomography-derived

fractional flow reserve

- Whole-heart dynamic 3D

cardiac Magnetic

resonance

imaging perfusion

- 3D cardiac Magnetic

resonance imaging late

gadolinium enhancement

Fully connected neural

networks

- Radiologist assessments

of fused image quality:

rated as good to excellent

- Accuracy: highest

accuracy found in

revealing scars or

stenoses (75%)

Von Spiczak et al.

Identify cardiovascular

disease subgroups

- Genetic (SNPs)

- Imaging

- Demographic

- Clinical

- Lifestyle

Generalized low rank

modeling

and K-means clustering

- 4 unique coronary artery

disease subgroups with

distinct clinical trajectories

Flores et al.

Automated cardiovascular

disease detection and care

recommendations

- mobile and medical

sensors (respiration rate,

oxygen saturation, blood

pressure temperature and

electrocardiograms data)

- EMR (lab tests, medical

history, and general

medical observations)

Ensemble deep learning - Precision: 84.5%

- Recall: 84.5%

- Accuracy: 82.5%

- F1-measure: 83.5%

- RMSE: 0.32

- MAE: 0.25

Ali et al.

EMR, electronic medical record; RBF, radial basis function SNP, single nucleotide polymorphism; AUROC, area under the receiver operating characteristic; AUCPR, area under the

precision-recall curve; IHD, ischemic heart disease; RMSE, Root Mean Square Error; MAE, Mean absolute error.

using a single slice from a CT image. Their third model
(the Clinical Only model) was developed to model clinical
and demographic features from the EMR within 1 year of
image acquisition and included features such as demographic
data, vital signs (blood pressure, heart rate, respiratory
rate, oxygen saturation, temperature), body mass index, and
relevant laboratory results (total, low-density lipoprotein, high-
density lipoprotein cholesterol, triglycerides, fasting glucose and
hemoglobin A1c). The Clinical Only model predictions were
performed using an XGBoost algorithm (18). Finally, to evaluate
the performance of adding imaging to different data types,
three fusion models were constructed. The first fusion model
was constructed based on Pooled Cohort Equations (PCE),
average muscle radiodensity, and the VAT/SAT ratio from the
Segmentation Only model. In the second model, features from

the Imaging Only model and Clinical ones were fused. Finally,
the third fusionmodel combined the threemodalities of Imaging,
Clinical, and Segmentation data.

Model performance was assessed using AUC and area
under the precision-recall curve (AUCPR) metrics. Examining
traditional risk factors, the PCE outperformed the FRS in 1-
year IHD estimates (P = 0.04), but not in 5-year estimates, with
AUC/AUCPRs of 0.75/0.12 and 0.71/0.09 at 1-year and 0.73/0.41
and 0.71/0.40 at 5-year, respectively. Their Segmentation Only
model achieved a 1-year AUC/AUCPR of 0.70/0.08 and 5-
year results of 0.73/0.43. The Imaging Only model’s 1-year
AUC/AUCPR was 0.74/0.10 and 0.81/0.64 for 5-year estimates,
outperforming both the Segmentation Only and PCE/FRS
models. Their Clinical Only model achieved similar performance
to the PCE at 1-year but showed improved performance for
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FIGURE 1 | Architecture of multi-modal data fusion combining Imaging and clinical data. Figure taken from Chaves et al. (15). In their described framework, readily

available CT images are combined with clinical data (e.g. vital signs, diagnoses) to predict the likelihood of ischemic heart disease at 1 and 5 years.

the 5-year prediction (1-year AUC/AUCPR of 0.76/0.12, and 5-
year results of 0.84/0.64). Evaluating their fusion models, the
best performing model was ultimately the Imaging + Clinical
5-year model, which achieved an AUC of 0.86 and AUCPR of
0.70. Adding segmentation data to this model did not improve
performance. Based on their results, the authors concluded that
fusion models can be used to automate the detection of IHD
risk in patients who present for care, and obtain abdominopelvic
contrast-enhanced CTs for any reason.

Another example of data fusion efforts that provide a
performance improvement over traditional risk factor modeling
was described by Zhao et al. (19). In their efforts, researchers
modeled data from the EMR combined with genetic data to
predict 10-year risk of IHD. To do this, the authors evaluated
EMR data within a 7-year window and built classifiers to identify
risk of IHD in the following 10-year period. Feature selection
was performed using Chi-square analysis (20) of the EMR
data, resulting in 40 EMR-related variables. Single nucleotide
polymorphisms (SNPs) were derived from 2 large meta-analysis
studies, of which 204 SNPs were available in the authors’ dataset.
The authors compared the performance of several models
including an ML model using traditional risk factors in the
American Heart Association PCEs, ML models using aggregated
EMR data and DL models using longitudinal EMR data. Lastly,
they performed data fusion to combine SNP data in a two-stage
approach. The authors first trained separate models to classify
the risk of IHD—one model using only EMR data and one
using only genotyped data. The predictions of these two models
were then fed into an ML model for a final prediction. The
final analysis included 109,490 patients in the clinical data only

model (of which 9,824 were cases) and 10,162 patients included
in the genotyped cohort (of which there were 2,452 cases). In
general, ML models using EMR data outperformed models using
a small number of traditional risk factors (AUC 0.76–0.79 vs.
0.73–0.75, respectively). In the smaller cohort with genetic data,
an ML model using only PCE risk factors produced an AUC
of 0.698 and AUCPR of 0.396, while an ML model utilizing
longitudinal EMR data produced an AUC/AUCPR of 0.71/0.427.
The addition of genetic data in their late fusion approach had
a significant effect on model metrics, improving AUC/AUCPR
by 2.1 and 9.1% respectively (P < 0.05). Zhao et al. highlight
that longitudinal data better captures variability in physiological
and laboratory data and are more informative in determining
the risk of IHD. Furthermore, they point out the importance of
including genetic variants in risk estimates for diseases with a
large heritable component.

Improved Acute Cardiovascular Disease
Detection
Zhang et al. proposed an approach to detecting CAD in a
more acute setting (21). Specifically, Zhang et al. were interested
in testing their hypothesis that a fusion model would be
able to detect the difference between those presenting with
acute chest pain for cardiac and non-cardiac reasons. To
do this, they combined data from electrocardiograms (ECG),
phonocardiograms (22), echocardiography (ECHO), Holter
monitors, and biological markers in 62 patients presenting with
chest pain who ultimately underwent coronary angiography at
a University Hospital. Of these patients, 32 had true CAD
(including 22 with three-vessel disease). For this use case, they
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defined a multimodal feature set that included electrocardiogram
(ECG), phonocardiogram (PCG), the results of 24-h Holter
monitoring, echocardiography (ECHO), and biomarker levels
(BIO). Using data from ECGs and phonocardiograms required
pre-processing and included automated and manual techniques
to remove noisiness from the data (i.e., denoising techniques).
Time, domain, and Holter monitor features were extracted for
each of these modalities. Biological features included lab values
such as glucose and cholesterol levels, sodium and creatinine
as well as blood cell counts. Features from ECHOs included
left ventricular ejection fraction and any regional wall motion
abnormalities. After deriving a total of 304 features, the authors
applied a hybrid feature selection model to identify the topmost
informational features in each data domain.

Once the feature selection process was completed,
investigators combined data into one large feature matrix.
They then evaluated the optimal number of modalities to
use in their final models. Using a support vector machine
algorithm with nested cross-validation, the results showed that
in terms of multimodal feature models, PCG and Holter; PCG,
Holter and ECG; PCG, Holter, ECG, and biomarker levels;
ECG, PCG, Holter, ECHO, and biomarker levels, were the
optimal bimodal, three-modal, four-modal, and five-modal
models, with accuracies of 90.38, 91.92, 95.25, and 96.67%,
respectively. Among them, the five-modal model, constructed
by combining features from ECG, PCG, Holter, ECHO and
biomarker levels, achieved the best classification results with
an average accuracy, sensitivity, specificity, and F1-measure of
96.67, 96.67, 96.67, and 96.64%, respectively. Thus, the authors
concluded that multimodal feature fusion and hybrid feature
selection could obtain more effective information for acute CAD
detection and provide a reference for physicians to improve
the diagnosis of CAD patients prior to an angiogram. Whether
this approach is ultimately more cost-effective than immediate
coronary angiography in cases where patient chest pain etiology
is ambiguous would depend on the practice setting but is
promising overall.

Improved Cardiovascular Disease Severity
Assessment
In the past 60 years, we have seen an explosion in cardiovascular
imaging modalities translated to direct clinical practice (23).
From 3-dimensional ECHO technology to nuclear medicine
perfusion scans, clinicians have been able to derive better insights
into cardiac function and structure that enables more precise
clinical decision making. While each modality has its specific
use case, fusing imaging modalities can increase understanding
of how cardiac perfusion, structure, and function affect patient
outcomes and theoretically enable better medical and surgical
treatments. For example, Bandera et al. provide an overview of
how multiple imaging modalities can be combined to improve
the prediction of sudden cardiac death (SCD) in individuals
with dilated cardiomyopathies (Figure 2) (24). While SCD
accounts for over 200,000 deaths a year in the U.S. in those
with cardiomyopathies, it can be difficult to predict who is at
highest risk. Furthermore, pharmacological agents have been

proven to reduce the risk of SCD; thus, targeting appropriate
patient populations can have a significant impact on disease
outcomes. As Bandera et al. point out in their review, ECHO is
a gold standard for evaluating left ventricular function, and new
technologies such as speckle tracking ECHO (STE) enable the
opportunity to assess regional myocardial function abnormalities
that might be more predictive of abnormalities that cause SCD,
such as arrhythmias. On the other hand, cardiac magnetic
resonance imaging (CMR) enables better characterization of
important tissue characteristics such as scar formation, which is
also associated with risk of SCD. Thus, combining the advantages
of multiple modalities into a single model for SCD prediction
may be more powerful than using each modality alone.

Another way that multimodal imaging can improve
cardiovascular care is by reducing the cost and invasiveness of
diagnostic studies. Healthcare services for IHD are estimated
to cost >$200 billion annually in the U.S. Part of the costliness
in IHD care involves invasive treatments such as coronary
angiography (CA). While most non-invasive tests range from
$110 to the extreme of PET at $1,500, coronary angiography
generally costs an estimated $1,360–$2,810 in most U.S. health
systems, depending on the place it is performed (25). As
most coronary angiograms are usually accompanied by an
intervention, the costs can rise to as high as $11,685. Coronary
angiography, while a gold standard way to evaluate and treat
CAD can also lead to higher costs, and given its invasiveness,
more complications than other modalities. Thus, researchers
have been working to identify ways to obtain the same diagnostic
information using less-expensive, safer, non-invasive methods.

Von Spiczak et al. proposed a new framework for
comprehensive noninvasive diagnostics of CAD to detect
treatable lesions by using three-dimensional (3D) image fusion,
merging data from CT and MRI images (26). To test their
fusion framework, they performed a study on seventeen patients
that underwent cardiac CT and cardiac MRI. Patients were
on average aged 54 years (±10 years). All but one study
participant was male. Von Spiczak et al. introduced a method
of comprehensive noninvasive diagnostics for CAD that aimed
to visualize multiple pathologic aspects of the disease by using
multimodal multiparametric three-dimensional image fusion
and advanced three-dimensional rendering techniques on
different imaging modalities. By using state-of-the-art image
post-processing techniques and projecting post-processed
images onto a single diagram, their methodology combined
CT coronary angiography, CT-derived fractional flow reserve
(CT-FFR), whole-heart dynamic 3D cardiac MRI perfusion,
and 3D cardiac MRI late gadolinium enhancement. When
evaluating and comparing the detection capabilities across
the modalities and the images outputted from the fusion
model, the image quality was rated as good to excellent by
two radiologists. In performing a qualitative assessment of the
advantages of fusion imaging vs. individual modalities, the
authors pointed to a few important examples. In one patient
example, fusion imaging allowed easier correlation between
visualized perfusion deficits on the MRI perfusion study and
more precise localization of the etiology of this deficit, which
arose from the first diagonal branch and a stented side branch. In
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FIGURE 2 | Framework for combining multiple imaging modalities to improve accuracy of predicting sudden cardiac death (SCD) in patients with dilated

cardiomyopathies [from Bandera et al. (24)].

another patient, fusion imaging allowed mapping of differences
in severity of LAD stenosis with varying areas of tissue viability.
Even so, Von Spiczak et al. acknowledge the small study size
and complexity in acquiring and fusing imaging modalities.
However, improvements in the fusion architecture that allow for
more streamlined image processing and more extensive studies
may enable better clinical utility and ultimately produce results
that can decrease image acquisition cost and improve providers’
decision making.

Improved Cardiovascular Disease
Phenotyping
Cardiovascular population health is another area in which data
fusion can lead to greater insights. Clinicians intuitively know,
for instance, that patients vary in socioeconomic, demographic,
and clinical severity, which can require different approaches to
improve disease management and outcomes. For example, some
patients may require a greater focus on social determinants of
health to improve outcomes in addition to adequate medical
management. With this in mind, Flores et al. aimed to evaluate
whether multimodal data could help provide insights into
different cardiovascular phenotypes that might lend themselves
to different clinical approaches (27). Previous work in the
domain of cardiovascular phenotyping was described by Shah
et al., who demonstrated that unsupervised learning techniques
such as hierarchical clustering can be used to identify clinically
meaningful subgroups of patients with CHF (28). While this
helped establish unsupervised learning as a useful way to identify
clinical subgroups that may benefit from different therapies, Shah
et al. were limited by the data they could use. With traditional
clustering models, data are typically required to be in the same
format (numerical, ordinal, or categorical). Instead, Flores et al.
aimed to combine genetic, imaging, demographic, clinical, and

lifestyle data to identify cardiovascular disease subgroups using
unsupervised methods.

In their efforts, Flores et al. utilized clinical trial data that
consisted of over 150 variables that spanned from categorical
to numerical values. Data were first summarized using a
technique known as generalized low-rank modeling (GLRM)
(29) which allows for the combination of multiple data types
into latent features that are easier to use for unsupervised
learning algorithms such as clustering (Figure 3). By applying
this methodology to a subgroup of clinical trial participants
with CAD, the authors identified four clinically distinct clusters
of patients. One cluster included young individuals that were
mostly diabetics, had low socioeconomic status and education
attainment. This group was at highest risk of futuremajor adverse
cardiovascular events. Another cluster of patients included
those who had a high prevalence of peripheral artery disease,
were older, more likely to be previous smokers, and had the
highest risk of future mortality. Lastly, the authors found two
clusters that initially appeared similar—middle-aged individuals
with relatively high socioeconomic status and generally better
health habits than the previous two clusters. However, one
cluster had a slightly higher prevalence of genetic risk markers
for cardiovascular disease and higher rates of major adverse
cardiovascular events than their counterparts. In addition to the
insights derived from this analysis, Flores et al.’s work provides a
machine learning framework by which insights from population
health can be automatically derived and potentially acted upon
at scale.

Automated Cardiovascular Care
Recommendations
In addition to improved disease detection and prognosis, exciting
application areas for ML and AI include contributions to a
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FIGURE 3 | Generalized low rank modeling. (A) Multiple features are summarized into two low rank matrices (X and Y). (B) Individuals can then be clustered using

latent features, after which original features can be re-identified to summarize clinical features of each group [from Flores et al. (27)].

learning healthcare system whereby data from multiple sources
are analyzed and used to guide treatment and lead to iterative
improvements in healthcare delivery (30). Ali et al. propose a
multimodal fusion model that can be used not just for detecting
disease, but for making automated recommendations about
cardiovascular care (31). In their framework (Figure 4), they
describe a process in which multiple layers of data processing,
aggregation and prediction modeling can be utilized. Specifically,
the first layer involves data collection where data is extracted
frommultiple sources, includingmobile andmedical sensors that
collect physiological parameters such as respiration rate, oxygen
saturation, blood pressure, temperature and ECG data. Another
source of data can be electronic medical records that include
lab tests, medical history, and general medical observations. The
second layer is the data fusion and feature extraction layer,
which first involves the extraction of clinically relevant factors
(such as Framingham risk factors) to estimate the risk of heart
disease from unstructured data. Data fusion is then performed
using the combination of data from multiple data sources into a
large feature matrix. The third layer in their framework includes
data pre-processing that includes four tasks—(1) data filtering,
removal of duplicate and inconsistent data, and handling missing
data; (2) normalization of multiple types of data distributions
to between 0 and 1 to make data useable by computational
algorithms; (3) feature selection that aims to reduce or eliminate
noisy or redundant variables; and (4) feature weighting using
conditional probability to improve the predictive accuracy. After
pre-processing, in the fourth layer, a deep learning algorithm is
used to make predictions regarding disease presence, or other
outcomes of interest. The authors further expand on disease
identification paradigms and include the possibility of including
data from the literature and clinical expertise to develop a rules-
based systemwhereby patients would be recommended to engage

in certain physical activity and/or dietary plans based on their
age and gender. While theoretically compelling, Ali et al. use a
small subset of data to demonstrate their framework. Ultimately,
richer data is needed to evaluate the utility of automated disease
detection paired with rules-based treatment recommendations to
enable a learning health care system.

DATA FUSION CONSIDERATIONS

As detailed above, the use cases for multimodal data fusion
and machine learning are varied. In Figure 5 we illustrate a
distillation of the key components to developingmultimodal data
fusion models. In the next part of this review, we will discuss
issues that should be considered when embarking on research
and development that involve data fusion.

Stages of Data Fusion
As previously mentioned, the data fusion process combines data
frommultiple modalities together using machine learning and/or
deep learning techniques or even simpler arithmetic operations
(e.g., simple concatenation). Fusion can happen at different
stages of a modeling process and is mainly performed at three
levels: early fusion, late fusion, or joint fusion.

Early fusion is the process of joining model features at the
model’s input layer mainly by combining the different types of
data before applying a specific algorithm (for example, layer 2
of Ali et al.’s information framework, Figure 4). One challenge
in early fusion is that it is not clear how to combine data from
different modalities when the data formats are very dissimilar.
As an example, consider the problem of combining tabular
data (e.g., clinical biomarkers), which can be one dimensional
with 3D CT imaging data. Ali et al. posit one way to address
this issue using data normalization. With normalization, very
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FIGURE 4 | Information framework for heart disease prediction and recommendations. Figure taken from Ali et al. (31).

different data values and distributions can be centered between
1 and 0, which allows combining data using more traditional
mathematical techniques. Such an approach can also reduce
data noisiness, potentially improvingmodel predictions. Another
approach is to first extract some features andmeasurements from
each data modality and then combine this subset of features.
As an example, in Chaves et al. to construct the Segmentation
+ Clinical fusion model, average muscle radiodensity and the
VAT/SAT ratio were first extracted and then combined with
clinical data (15). In contrast, for late fusion, or decision level
fusion, first, for every single modality a model is trained [for
example, Zhao et al.’ EHR and genetic late fusion model (19)].
Next, the predictions of each model are aggregated to make a
final prediction. The main downside of this approach is that
none of the modalities can aid other modalities by providing
any additional information since a separate model is trained
for each of the modalities. Lastly, in a joint fusion approach,

first, data representations are constructed for each data modality,
typically using deep neural networks. All representations are then
joined across modalities and fed into a prediction model. One
benefit of using joint fusion compared to other fusion levels
is that models can better approximate real-world interactions
between data points; and thus, joint fusion can potentially lead
to improved accuracy of model predictions for complex diseases
or tasks (32).

Evaluation of Data Fusion Models
Multimodal ML models are typically compared to models
using fewer data modalities in order to understand what
additional performance data fusion produces. Evaluation
metrics, in general, are similar across ML domains and include
measurements of accuracy, positive predictive value, negative
predictive value, specificity, sensitivity, calibration, AUC, and
AUCPR. Deciding on which evaluation metric to select mainly

Frontiers in Cardiovascular Medicine | www.frontiersin.org 8 April 2022 | Volume 9 | Article 840262

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Amal et al. Data Fusion in Cardiovascular Disease

FIGURE 5 | Central Illustration. Important components of developing machine learning-based models using multiple data modalities. CNN, convolutional neural

networks; LSTM, long short term memory; ECG, electrocardiogram; RBF, radial basis function; SVM, support vector machine; CT, computed tomography; MRI,

magnetic resonance imaging.

depends on the purpose of the study and the dataset. As an
example, in classifying likelihood of myocardial infarction as a
cause of chest pain, while AUC is important for understanding
model discrimination abilities, health care practitioners will also
need to understand model calibration—how well does a model’s
risk estimate match with the general risk within the population at
hand? Furthermore, precision-recall metrics such as the AUCPR
enable practitioners to evaluate how likely positive and negative
results are to be true. Another important consideration is how
well balanced the datasets used to train and test the models are.
To illustrate, when studying a population of patients, it happens
in many scenarios that the proportion of the patients having a
particular disease is significantly smaller than those without. In
this scenario, other metrics such as the F1 score, which is defined
as the harmonic mean of precision and recall, provides a more
fair metric than each of the two alone (precision or recall) to
assess the performance of a model.

Challenges and Opportunities
Challenges
Combining data from multiple sources with different intrinsic
distributions and different levels of structure can be challenging.
Data fusion methods aim to unify multiple data observations
into a consistent and diverse representation of a phenomenon
in a way that a single modality cannot provide. However, fusion
itself is challenged by noisy and irrelevant data that may affect
model performance, as well as missing data or scarce data, and
high dimensionality (33). Additional challenges are that such a
combination of data can require more sophisticated models (that
can be computationally expensive to train) andmore complicated
data normalization techniques (which includes correction of
errors and variations embedded in data from multiple sources)

(34). Such model complexity can come at the cost of model
“explainability.” Another issue with data fusion that Hamzah et
al. point out is that it can be difficult to reconcile data that is
acquired in different ways (35). For example, the quality of ECHO
data is highly dependent on the expertise of the sonographer.
Thus, data fidelity coming from ECHO can vary widely based on
its reliance on human skill, which may affect model predictions.
On the other hand, this issue points to the promise of multimodal
data fusion whereby combining insights from multiple sources
can supplement data that is variable.

Another challenge in working with multimodal data is that
there are not good “off the shelf ” techniques that will always
work for any type of data combination or guarantee improved
results over single modality analysis. However, algorithms such
as generalized low-rank modeling (GLRM) can be considered for
easier ways to combine data of different distributions and develop
prediction models.

Opportunities and Future Directions
From a technical perspective, despite the many advances
in multimodal data fusion, opportunities abound for further
research. Specifically, data fusion for medical imaging is still
cumbersome, as detailed by Von Spiczak et al. (26). More
efficient algorithms may be needed to make fusion easier and
faster to implement in order to make clinical applications a
reality. Some researchers, such as Piccinelli et al., have focused
on developing more efficient fusion techniques, precisely to
improve clinical translation (36). Some of this improvement
comes from representation learning for image analysis that
enables automated image segmentation, resulting in faster fusion
image rendering. Improved model prediction speeds will be key
to enabling real-time predictions, which are especially important
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in use cases for which more urgent decisions must be made.
Additional future research directions should include developing
novel intuitive frameworks for investigators to understand the
information gain or loss from different data modalities. While
multimodal data fusion can produce better performing models,
this is not always the case, thus a better framework for
evaluating the utility of datamodalities will help researchers focus
their efforts.

From a data perspective, a focus on data quality can improve
model predictions and ultimately help researchers better realize
the promise of AI applied to healthcare. While there has been
less focus on standards for reporting data quality to date,
new standards of reporting are being operationalized (37).
Focusing on improving data quality is as important as technology
development for multiple reasons, the most important of
which are research reproducibility and generalizability. In
addition to the quality of data, the relevance of the model
and effective comparison to standards of care should be
considered when developing data fusion technologies, as this
can significantly affect model adoption. Lastly, future research
directions should focus on prospective studies comparing
differences in care derived from multimodal fusion modeling
compared to conventional modeling or current standards of
care, as this can provide additional validation for the utility of
fusion modeling.

CONCLUSIONS

Multimodal data fusion and machine learning in cardiovascular
medicine is an exciting field of research, though, there are still
very few use cases to date. Using data from multiple modalities

offers the promise of improved AI technology whereby the
weaknesses of each type of health care data can be addressed
through different data combinations. However, algorithms used
to analyze multiple data modalities may be too complex, too
difficult to implement, and too slow to fit into a time frame that
makes them usable in a clinical work environment. Furthermore,
a focus on data quality will be essential to prevent exponentially
propagating errors when combining data. Future research should
focus on streamlined methods for data integration, best practices
for evaluating model gain from different types of data, and
prospective study designs to validate clinical utility.
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